RECOVERING THE COLOUR IMAGES BY USING CRYPTOGRAPHIC SCHEMES

M.Ajay Kumar, C.Jayarama Krishna
Assistant profesor, vbit, pallavolu, proddatur

Abstract

This paper presents an improved algorithm for hiding a colored image into multiple colored cover images. This scheme achieves lossless recovery and reduces the noise in the cover images without adding any computational complexity. Visual Cryptography is one kind of image encryption. It is different from traditional cryptography, because it does not need complex computation to decrypt. In current technology, most of visual cryptography are embedded a secret using two shares is limited. Visual Cryptography is based on cryptography where \boldsymbol{n} images are encoded in a way that only the human visual system can decrypt the hidden message without any cryptographic computations when all shares are stacked together.

Index Terms- Image processing, visual Cryptography, secret sharing.

I. Introduction

Visual cryptography is a new cryptographic scheme where the ciphertext is decoded by the human visual system. Hence, there is no need to any complex cryptographic computation for decryption. The idea is to hide a secret message (text, handwriting, picture, etc...) in different images called shares or cover images. When the shares (transparencies) are stacked together in order to align the sub pixels, the secret message can be recovered. The simplest case is the 2 out of 2 scheme where the secret message is hidden in 2 shares, both needed for a successful decryption [11]. This can be further extended to the k out of n scheme where a secret message is encrypted into n shares but only k shares are needed for decryption where k $\leq \mathrm{n}$. . If $k-1$ shares are presented, this will give no information about the secret message. More advanced schemes based on visual cryptography were introduced in [3,6,7], where a colored image is hidden into multiple meaningful cover images. A new colored secret sharing and hiding scheme based on Visual Cryptography schemes (VCS) where the traditional stacking operation of subpixels and rows interrelations is
modified.[6] This new technique does not require transparencies stacking and hence, it is more convenient to use in real applications. However, it requires the use and storage of a Color Index Table (CIT) in order to losselessly recover the secret image. CIT requires space for storage and time to lookup the table. Also, if number of colors c increases in the secret image, CIT becomes bigger and the pixel expansion factor becomes significant which results in severe loss of resolution in the camouflage images.

This is an advanced scheme for hiding a colored image into multiple images that does not require a CIT. This technique achieves a lossless recovery of the secret image but the generated shares (camouflage images) contain excessive noise. Here we can introduces an improved scheme, in order to enhance the quality of the cover images while achieving lossless recovery and without increasing the computational complexity of the algorithm.

II. DEVELOPMENT

A new secret color image sharing scheme [3] based on modified visual cryptography. The proposed approach uses meaningful shares (cover images) to hide the colored secret image and the recovery process is lossless. The scheme defines a new stacking operation (XOR) and requires a sequence of random bits to be generated for each pixel.

Method description:

Assume that a gray image with 256 colors constitute a secret to be hidden. Each color can be represented as an 8- bit binary vector. The main idea is to expand each colored pixel into m subpixels and embed them into n shares. This scheme uses $m=9$ as an expansion factor. The resulting structure of a pixel can be represented by an nx 9 Boolean matrix $\mathrm{S}=\left[\mathrm{S}_{\mathrm{ij}}\right]$ where ($1 \leq \mathrm{i} \leq n, 1 \leq \mathrm{j} \leq 9$) and $S_{i j}=1$, if and only if, the j th subpixel in the $\mathrm{i}_{\text {th }}$ share has a non-white color. To recover the color of the original secret pixel, an "XOR" operation on the stacked rows of the n shares is performed.

A. Hiding Algorithm

For a 2 out of 2 scheme, the construction can be described by a collection of 2 x 9 Boolean matrices C. If a pixel with color $k=\left(k_{1} k_{2} \ldots k s\right)_{2}$ needs to be shared, a dealer randomly picks an integer r between 1 and 9 inclusively as well as one matrix in C. The construction is considered valid if the following conditions are satisfied.

$$
\begin{equation*}
\mathbf{k i}=\mathbf{S} \mathbf{1} \mathbf{j} \oplus \mathbf{S} \mathbf{2} \mathbf{j} \tag{1}
\end{equation*}
$$

$$
\text { where } \begin{array}{ll}
\mathbf{j}=\mathbf{i} & \text { if } \mathbf{i}<\mathbf{r} \\
& \mathbf{j}=\mathbf{i}+1
\end{array} \quad \text { if } \mathbf{i}>\mathbf{r} .
$$

Note that the number of 1's in the first row of S must exceed the number of 0 's by one.

Steps of the Algorithm:

Step1: Take a colored secret image $I_{H L}$ of size $H x L$ and choose any two arbitrary cover images $O^{I}{ }_{H L}$ and $O_{H L}^{2}$ of size $H x L$

Step2: Scan through I_{HL} and convert each pixel I_{ij} to an 8- bits binary string denoted as $k=\left(k_{1} k 2 \ldots k 8\right)_{2}$

Step3: Select a random integer r_{p}, where $1 \leq \mathrm{r}_{\mathrm{p}} \leq 9$ for each pixel I_{ij}

Step4: According to r_{p} and k for each pixel, construct S to satisfy equation (1)

Step5: Scan through O^{1} and for each pixel of color $K^{1}{ }_{p}$, arrange the row " i " in S as a 3×3 block $\mathrm{B}_{\mathrm{p}}{ }^{1}$ and fill the subpixels valued " 1 " with the color K_{p}^{l}

Step6: Do the same for O^{2} and construct $\mathrm{B}_{\mathrm{p}}^{2}$. The resulting blocks $B^{l}{ }_{p}$ and $B^{2}{ }_{p}$ are the subpixels of the P^{th} pixel after the expansion.

Step7: After processing all the pixels in Ihl, two camouflage colored images O^{1} and O^{2} are generated. In order to losselessly recover Ihl, both $\mathrm{O}^{1}{ }^{\prime}$ and $\mathrm{O}^{2 \prime}$ as well as a sequence of random bits $\mathrm{R}=\left\{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{II}}\right\}$ are needed.

Figure1: Secret Sharing Algorithm Process.
Figure 1 describes the $(2,2)$ scheme for hiding one pixel. This process is repeated for all pixels in Ihl to construct both camouflage images O^{1} and O^{2}.

B. Recovering Algorithm

In order to recover the secret image in a 2 out of 2 scheme, both camouflage images O^{1}, $\mathrm{O}^{2 \prime}$ as well as the string of random bits R are required for the recovery process (Fig.2). The camouflage images are t time bigger than Ihl due to the expansion factor of subpixels.

Steps of the Algorithm:

Step1: Extract the first 3×3 blocks $V^{l}{ }_{r}$ and $V^{2} r$ from both camouflage images $\mathrm{O}^{1^{\prime}}$ and $\mathrm{O}^{2^{\prime}}$, respectively.

Step2: Re-arrange $V^{l}{ }_{r}$ and $V^{2}{ }_{r}$ in a 2 x 9 matrix format S_{r}

Step3: Select the first random bit r_{p} corresponding to the first encrypted pixel.

Step4: Input S_{r} and r_{p} to the $F(.,$.$) function$ corresponding to equation (1).

Step5: Recover k_{p}, the first pixel in IhL
Step6: Repeat for all 3×3 blocks in O^{1} and $\mathrm{O}^{2}{ }^{\prime}$

Figure2: Secret Sharing Recovering Process.

III. Improved Image Generation SCHEME

In this section, we introduce a modification of algorithm to generate better quality camouflage images. Most of the modifications are applied to the subpixel expansion block described in the next section.

A. Hiding Algorithm

Before subpixel expansion, add one to all pixels in the cover images and limit their maximum value to 255 . This ensures that no " 0 " valued pixels exist in the images. When the images are expanded, replace all the 0 's in S_{0}, S_{l} by values corresponding to $k_{1}-1$ in B_{1} and $k_{2}-1$ in B_{2} (Figure 3) instead of leaving them transparent. Also, adjust all pixel values to be between 0-255.

Figure3: Improved block subpixel expansion technique.

B. Decryption algorithm

To recover the secret image, both camouflage images $\mathrm{O}^{1^{\prime}}, \mathrm{O}^{2^{\prime}}$ and the string of random bits R are required.

Steps of the Algorithm:

Step1: Take all regions of size $t x t$ in the camouflage images.

Step2: Re-structure the square matrices as 1 xm vectors.

Step3: Scan through the 9 subpixels in the vector and note the coordinates of the K^{l} and the $K^{1}-1$ colors previously encrypted

Step4: Count the number of k and $k-1$ pixels in the processed vector, denoted as count $_{k-1}$, count $_{\mathrm{k}}$, respectively.

Step5: If count $k-1<$ count $_{k}$, the transparent pixel is color $k-1$, otherwise, set it to k

Step6: Use the K^{1} and K^{2} colors to find the secret pixel using the $F(.,$.$) function and the random$ number previously transmitted

Step7: Repeat for all txt block pixels in the camouflage images.

IV. EXPERIMENTAL RESULTS

A secret image is hidden into two cover images. As seen in Figure 5 (A ,B), the camouflage images obtained using the original algorithm are noisy and of poor resolution. However, the recovery process is lossless and the used cover images are meaningful. Figure 6(A, B) shows the camouflage obtained using the enhanced algorithm where noise is considerably reduced while achieving lossless recovery of the secret message.

Figure4(A): Cover Image 1.
Figure4(B): Cover Image 2.
Figure4(C): Secret Image.

Secret Sharing Algorithm Results:

Figure5(A): Camouflage Image 1.
Figure5(B): Camouflage Image 2.
Figure5(C): Recovered Image.

Improved Secret Sharing Algorithm Results:

6(C)
Figure6(A): Camouflage Image 1.
Figure6(B): Camouflage Image 2. Figure6(C): Recovered Image.

V. CONLUSION

This paper presented a new technique to hide a color secret image into multiple colored images. This developed method does not require any additional cryptographic computations and achieves a lossless recovery of the secret image. In addition, the camouflage images obtained using the modified algorithm look less susceptible of containing a secret message than the ones obtained using the original method.

VI. Future Work

As future work, this scheme can possibly be modified to hide two independent colored secret images into n meaningful colored cover images. The recovery process of both secret images should remain lossless while using the same expansion factor as described in this paper.

REFERENCES

[1] Hrng , G. Chen T. and T. sai D., Cheating in visual cryptography, Design codes and cryptography. 2006.
[2] R.Youmaran, A. Adler, A. Miri Yr of Transaction: visual cryptography techniques IEEE Jan 2006
[3] Chang, C. C. and Yu. T. X., Sharing a Secret Gray Image in Multiple Images, in the Proceedings of International Symposium on Cyber Worlds: Theories and Practice, Tokyo, Japan, Nov. 2002, pp.230-237.
[4] Chen- Chen Chang " Sharing a secret gray image in multiple images", National cheng cheng university, Taiwan, 2002.
[5] Gnanaguruparan,M, and Kak.S Recursive hiding of secreats in visual cryptography, cryptologia 2002
[6] C. Chang, C. Tsai, and T. Chen, A new scheme for sharing secret color images in computer network. In the Proceedings of International Conference on Parallel and Distributed Systems, pages 21-27, July 2000.
[7] C. Yang and C. Laih., New colored visual secret sharing schemes. Designs, Codes and Cryptography, 20:325-335,2000.
[8] R. J. Hwang and C. C. Chang, "Some Secret Sharing Schemes and Their Applications," PhD. dissertation of National Chung Cheng University, Taiwan, 1998.
[9] E.Verheul and H. V. Tilborg., Constructions and properties of k out of n visual secret sharing schemes. Designs, Codes and Cryptography, 11(2):179-196, 1997.
[10] G. Ateniese, C. Blundo, A. D. Santis, and D. Stinson. Visual cryptography for general access structures. Information and Computation, 129(2):86-106, 1996.
[11] M.Naor and A.Shamir, Visual cryptography. Advances in Cryptology EUROCRYPT '94. Lecture Notes in Computer Science, (950):1-12, 1995

AUTHORS:

M.AJAY KUMAR working as assistant professor in Vignana bharathi institute of technology at proddatur.

C.JAYARAMA KRSHNA working as assistant professor in vignana bharathi institute of technology at proddatur.

