
 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100084 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 141

Windows Memory Management
Aastha Trehan, Ritika Grover, Prateek Puri
Dronacharya College Of Engineering, Gurgaon

Abstract- Memory plays a key part in any kind of

processing that takes place in a computer. Virtual

memory is critical for doing Windows memory

management. There are several ways a virtual

memory can be allocated. Also there are various

functions that be used for doing the effective memory

management.

Index Tersms- Virtual memory, Memory allocations,

Memory functions, Memory pages

I. INTRODUCTION

The memory manager implements virtual memory

provides a core set of services such as memory

mapped files, copy-on-write memory, large

memory support, and underlying support for the

cache manager. Each process on 32-bit Microsoft

Windows has its own virtual address space that

enables addressing up to 4 gigabytes of memory.

Each process on 64-bit Windows has a virtual

address space of 8 terabytes. All threads of a

process can access its virtual address space.

However, threads cannot access memory that

belongs to another process, which protects a

process from being corrupted by another process.

II. VIRTUAL MEMORY FUNCTIONS

The virtual memory functions enable a process to

manipulate or determine the status of pages in its

virtual address space. They can perform the

following operations:

 Reserve a range of a process's virtual

address space. Reserving address space

does not allocate any physical storage, but

it prevents other allocation operations

from using the specified range. It does not

affect the virtual address spaces of other

processes. Reserving pages prevents

needless consumption of physical storage,

while enabling a process to reserve a range

of its address space into which a dynamic

data structure can grow. The process can

allocate physical storage for this space, as

needed.

 Commit a range of reserved pages in a

process's virtual address space so that

physical storage (either in RAM or on

disk) is accessible only to the allocating

process.

 Specify read/write, read-only, or no access

for a range of committed pages. This

differs from the standard allocation

functions that always allocate pages with

read/write access.

 Free a range of reserved pages, making the

range of virtual addresses available for

subsequent allocation operations by the

calling process.

 Decommit a range of committed pages,

releasing their physical storage and

making it available for subsequent

allocation by any process.

 Lock one or more pages of committed

memory into physical memory (RAM) so

that the system cannot swap the pages out

to the paging file.

 Obtain information about a range of pages

in the virtual address space of the calling

process or a specified process.

 Change the access protection for a

specified range of committed pages in the

virtual address space of the calling process

or a specified process.

III. ALLOCATING VIRTUAL MEMORY

The virtual memory functions manipulate pages of

memory. The functions use the size of a page on

the current computer to round off specified sizes

and addresses. The VirtualAlloc function performs

one of the following operations:

 Reserves one or more free pages.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100084 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 142

 Commits one or more reserved pages.

 Reserves and commits one or more free

pages.

You can specify the starting address of the pages to

be reserved or committed, or you can allow the

system to determine the address. The function

rounds the specified address to the appropriate page

boundary. Reserved pages are not accessible, but

committed pages can be allocated

with PAGE_READWRITE, PAGE_READONL

Y, or PAGE_NOACCESS access. When pages are

committed, memory charges are allocated from the

overall size of RAM and paging files on disk, but

each page is initialized and loaded into physical

memory only at the first attempt to read from or

write to that page. You can use normal pointer

references to access memory committed by

the VirtualAlloc function.

IV. COMPARING MEMORY ALLOCATION

METHODS

The following is a brief comparison of the various

memory allocation methods:

 CoTaskMemAlloc

 GlobalAlloc

 HeapAlloc

 LocalAlloc

 malloc

 new

 VirtualAlloc

Although the GlobalAlloc, LocalAlloc,

and HeapAlloc functions ultimately allocate

memory from the same heap, each provides a

slightly different set of functionality. For

example, HeapAlloc can be instructed to raise an

exception if memory could not be allocated, a

capability not available

with LocalAlloc. LocalAlloc supports allocation of

handles which permit the underlying memory to be

moved by a reallocation without changing the

handle value, a capability not available

with HeapAlloc.

Starting with 32-bit

Windows, GlobalAlloc and LocalAlloc are

implemented as wrapper functions that

call HeapAllocusing a handle to the process's

default heap.

Therefore, GlobalAlloc and LocalAlloc have

greater overhead thanHeapAlloc.

Because the different heap allocators provide

distinctive functionality by using different

mechanisms, you must free memory with the

correct function. For example, memory allocated

with HeapAlloc must be freed with HeapFree and

not LocalFree or GlobalFree. Memory allocated

with GlobalAlloc or LocalAlloc must be queried,

validated, and released with the corresponding

global or local function.

The VirtualAlloc function allows you to specify

additional options for memory allocation.

However, its allocations use a page granularity, so

using VirtualAlloc can result in higher memory

usage.

The malloc function has the disadvantage of being

run-time dependent. The new operator has the

disadvantage of being compiler dependent and

language dependent.

The CoTaskMemAlloc function has the advantage

of working well in either C, C++, or Visual Basic.

It is also the only way to share memory in a COM-

based application, since MIDL

uses CoTaskMemAlloc and CoTaskMemFree to

marshal memory.

V. FREEING VIRTUAL MEMORY

The VirtualFree function decommits and releases

pages according to the following rules:

 Decommits one or more committed pages,

changing the state of the pages to reserved.

Decommitting pages releases the physical

storage associated with the pages, making it

available to be allocated by any process. Any

block of committed pages can be decommitted.

 Releases a block of one or more reserved

pages, changing the state of the pages to free.

Releasing a block of pages makes the range of

reserved addresses available to be allocated by

the process. Reserved pages can be released

only by freeing the entire block that was

initially reserved by VirtualAlloc.

 Decommits and releases a block of one or

more committed pages simultaneously,

changing the state of the pages to free. The

specified block must include the entire block

initially reserved by VirtualAlloc, and all of

the pages must be currently committed.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms692727(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366574(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366597(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366723(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366574(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366723(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366597(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366574(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366723(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366597(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366597(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366701(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366730(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366579(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366574(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366723(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms692727(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680722(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366892(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100084 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 143

After a memory block is released or decommitted,

you can never refer to it again. Any information

that may have been in that memory is gone forever.

Attempting to read from or write to a free page

results in an access violation exception. If you

require information, do not decommit or free

memory containing that information.

To specify that the data in a memory range is no

longer of interest,

call VirtualAlloc with MEM_RESET. The pages

will not be read from or written to the paging file.

However, the memory block can be used again

later.

VI. WORKING WITH PAGES

To determine the size of a page on the current

computer, use the GetSystemInfo function.

The VirtualQuery and VirtualQueryEx functions

return information about a region of consecutive

pages beginning at a specified address in the

address space of a process. VirtualQuery returns

information about memory in the calling

process. VirtualQueryEx returns information

about memory in a specified process and is used to

support debuggers that need information about a

process being debugged. The region of pages is

bounded by the specified address rounded down to

the nearest page boundary. It extends through all

subsequent pages with the following attributes in

common:

 The state of all pages is the same: either

committed, reserved, or free.

 If the initial page is not free, all pages in the

region are part of the same initial allocation of

pages that were reserved by a call

to VirtualAlloc.

 The access protection of all pages is the same

(that

is, PAGE_READONLY, PAGE_READWRI

TE, or PAGE_NOACCESS).

The VirtualLock function enables a process to

lock one or more pages of committed memory into

physical memory (RAM), preventing the system

from swapping the pages out to the paging file. It

can be used to ensure that critical data is accessible

without disk access. Locking pages into memory is

dangerous because it restricts the system's ability to

manage memory. Excessive use

of VirtualLock can degrade system performance

by causing executable code to be swapped out to

the paging file. The VirtualUnlock function

unlocks memory locked by VirtualLock.

The VirtualProtect function enables a process to

modify the access protection of any committed

page in the address space of a process. For

example, a process can allocate read/write pages to

store sensitive data, and then it can change the

access to read only or no access to protect against

accidental overwriting. VirtualProtect is typically

used with pages allocated by VirtualAlloc, but it

also works with pages committed by any of the

other allocation functions.

However, VirtualProtect changes the protection of

entire pages, and pointers returned by the other

functions are not necessarily aligned on page

boundaries. The VirtualProtectEx function is

similar to VirtualProtect, except it changes the

protection of memory in a specified process.

Changing the protection is useful to debuggers in

accessing the memory of a process being debugged.

VII. MEMORY MANAGEMENT FUNCTIONS

A. General Memory Functions

This topic describes the memory management functions:

The following functions are used in memory management.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724381(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366902(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366907(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366895(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366910(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366898(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366899(v=vs.85).aspx

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100084 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 144

Function Description

AddSecureMemoryCacheCallback Registers a callback function to be called when a secured

memory range is freed or its protections are changed.

CopyMemory Copies a block of memory from one location to another.

CreateMemoryResourceNotification Creates a memory resource notification object.

FillMemory Fills a block of memory with a specified value.

GetLargePageMinimum Retrieves the minimum size of a large page.

GetPhysicallyInstalledSystemMemory Retrieves the amount of RAM that is physically installed

on the computer.

GetSystemFileCacheSize Retrieves the current size limits for the working set of the

system cache.

GetWriteWatch Retrieves the addresses of the pages that have been written

to in a region of virtual memory.

GlobalMemoryStatusEx Obtains information about the system's current usage of

both physical and virtual memory.

MoveMemory Moves a block of memory from one location to another.

QueryMemoryResourceNotification Retrieves the state of the specified memory resource

object.

RemoveSecureMemoryCacheCallback Unregisters a callback function that was previously

registered with

theAddSecureMemoryCacheCallback function.

ResetWriteWatch Resets the write-tracking state for a region of virtual

memory.

SecureMemoryCacheCallback An application-defined function that is called when a

secured memory range is freed or its protections are

changed.

SecureZeroMemory Fills a block of memory with zeros.

SetSystemFileCacheSize Limits the size of the working set for the file system

cache.

http://msdn.microsoft.com/en-us/library/windows/desktop/bb870879(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366535(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366541(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366561(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366568(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/cc300158(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa965224(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366573(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366589(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366788(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366799(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb870881(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb870879(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366874(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb870882(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366877(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa965240(v=vs.85).aspx

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100084 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 145

Function Description

ZeroMemory Fills a block of memory with zeros.

B. Data Execution Prevention Functions

The following functions are used with Data Execution Prevention (DEP).

Function Description

GetProcessDEPPolicy Retrieves DEP settings for a process.

GetSystemDEPPolicy Retrieves DEP settings for the system.

SetProcessDEPPolicy Changes DEP settings for a process.

C. File Mapping Functions

The following functions are used in file mapping.

Function Description

CreateFileMapping Creates or opens a named or unnamed file mapping object for a

specified file.

CreateFileMappingFromApp Creates or opens a named or unnamed file mapping object for a

specified file from a Windows Store app.

CreateFileMappingNuma Creates or opens a named or unnamed file mapping object for a

specified file, and specifies the NUMA node for the physical

memory.

FlushViewOfFile Writes to the disk a byte range within a mapped view of a file.

GetMappedFileName Checks whether the specified address is within a memory-mapped

file in the address space of the specified process. If so, the function

returns the name of the memory-mapped file.

MapViewOfFile Maps a view of a file mapping into the address space of a calling

process.

MapViewOfFileEx Maps a view of a file mapping into the address space of a calling

process. A caller can optionally specify a suggested memory

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366920(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb736297(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb736298(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb736299(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366556(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366537(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh994453(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366539(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366563(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683195(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366761(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366763(v=vs.85).aspx

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100084 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 146

address for the view.

MapViewOfFileExNuma Maps a view of a file mapping into the address space of a calling

process, and specifies the NUMA node for the physical memory.

MapViewOfFileFromApp Maps a view of a file mapping into the address space of a calling

process from a Windows Store app.

OpenFileMapping Opens a named file mapping object.

UnmapViewOfFile Unmaps a mapped view of a file from the calling process's address

space.

D. AWE Functions

The following are the AWE functions.

Function Description

AllocateUserPhysicalPages Allocates physical memory pages to be mapped and unmapped

within any AWE region of the process.

FreeUserPhysicalPages Frees physical memory pages previously allocated

withAllocateUserPhysicalPages.

MapUserPhysicalPages Maps previously allocated physical memory pages at the specified

address within an AWE region.

MapUserPhysicalPagesScatter Maps previously allocated physical memory pages at the specified

address within an AWE region.

E. Heap Functions

The following are the heap functions.

Function Description

GetProcessHeap Obtains a handle to the heap of the calling process.

GetProcessHeaps Obtains handles to all of the heaps that are valid for the calling process.

HeapAlloc Allocates a block of memory from a heap.

HeapCompact Coalesces adjacent free blocks of memory on a heap.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366767(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh994454(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366791(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366882(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366527(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366528(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366566(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366528(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366753(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366755(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366711(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366569(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366571(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366597(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366598(v=vs.85).aspx

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100084 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 147

HeapCreate Creates a heap object.

HeapDestroy Destroys the specified heap object.

HeapFree Frees a memory block allocated from a heap.

HeapLock Attempts to acquire the lock associated with a specified heap.

HeapQueryInformation Retrieves information about the specified heap.

HeapReAlloc Reallocates a block of memory from a heap.

HeapSetInformation Sets heap information for the specified heap.

HeapSize Retrieves the size of a memory block allocated from a heap.

HeapUnlock Releases ownership of the lock associated with a specified heap.

HeapValidate Attempts to validate a specified heap.

HeapWalk Enumerates the memory blocks in a specified heap.

F. Virtual Memory Functions

The following are the virtual memory functions.

Function Description

PrefetchVirtualMemory Prefetches virtual address ranges into physical memory.

VirtualAlloc Reserves or commits a region of pages in the virtual address space of the

calling process.

VirtualAllocEx Reserves or commits a region of pages in the virtual address space of the

specified process.

VirtualAllocExNuma Reserves or commits a region of memory within the virtual address space

of the specified process, and specifies the NUMA node for the physical

memory.

VirtualFree Releases or decommits a region of pages within the virtual address space

of the calling process.

VirtualFreeEx Releases or decommits a region of memory within the virtual address

space of a specified process.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366599(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366700(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366701(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366702(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366703(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366704(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366705(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366706(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366707(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366708(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366710(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366916(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh780543(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366890(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366891(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366892(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366894(v=vs.85).aspx

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100084 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 148

VirtualLock Locks the specified region of the process's virtual address space into

physical memory.

VirtualProtect Changes the access protection on a region of committed pages in the

virtual address space of the calling process.

VirtualProtectEx Changes the access protection on a region of committed pages in the

virtual address space of the calling process.

VirtualQuery Provides information about a range of pages in the virtual address space

of the calling process.

VirtualQueryEx Provides information about a range of pages in the virtual address space

of the calling process.

VirtualUnlock Unlocks a specified range of pages in the virtual address space of a

process.

G. Global and Local Functions

The following are the global and local functions. These functions are provided for compatibility with 16-bit

Windows and are used with Dynamic Data Exchange (DDE), the clipboard functions, and OLE data objects.

Unless documentation specifically states that a global or local function should be used, new applications should

use the corresponding heap function with the handle returned by GetProcessHeap. For equivalent functionality

to the global or local function, set the heap function's dwFlags parameter to 0.

Function Description Corresponding

heap function

GlobalAlloc,LocalAlloc Allocates the specified number of bytes

from the heap.

HeapAlloc

GlobalDiscard,LocalDiscard Discards the specified global memory

block.

Not applicable.

GlobalFlags,LocalFlags Returns information about the specified

global memory object.

Not applicable.

UseHeapValidate to

validate the heap.

GlobalFree,LocalFree Frees the specified global memory

object.

HeapFree

GlobalHandle,LocalHandle Retrieves the handle associated with the

specified pointer to a global memory

block. This function should be used

only with OLE and clipboard functions

Not applicable.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366895(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366898(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366899(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366902(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366907(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366910(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366596(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366711(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366569(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366574(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366723(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366597(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366575(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366727(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366577(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366728(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366708(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366579(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366730(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366701(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366582(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366733(v=vs.85).aspx

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100084 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 149

that require it.

GlobalLock,LocalLock Locks a global memory object and

returns a pointer to the first byte of the

object's memory block.

Not applicable.

GlobalReAlloc,LocalReAlloc Changes the size or attributes of a

specified global memory object.

HeapReAlloc

GlobalSize,LocalSize Retrieves the current size of the

specified global memory object.

HeapSize

GlobalUnlock,LocalUnlock Decrements the lock count associated

with a memory object. This function

should be used only with OLE and

clipboard functions that require it.

Not applicable.

H. Bad Memory Functions

The following are the bad memory functions.

Function Description

BadMemoryCallbackRoutine An application-defined function registered with

theRegisterBadMemoryNotification function that is

called when one or more bad memory pages are detected.

GetMemoryErrorHandlingCapabilities Gets the memory error handling capabilities of the system.

RegisterBadMemoryNotification Registers a bad memory notification that is called when

one or more bad memory pages are detected.

UnregisterBadMemoryNotification Closes the specified bad memory notification handle.

VIII. CONCLUSION

This paper details the importance of virtual

memory for Windows memory management. The

paper highlights a major advantage of virtual

memory, which is that it allows more processes to

execute concurrently than might otherwise fit in

physical memory. The paper aptly defines the

various functions for using, allocating and even

freeing Virtual Memory, comparing memory

allocation methods and details some of the key

Memory Management Functions.

REFERENCES

[1] http://msdn.microsoft.com/en-

us/library/windows/desktop/aa366525(v=vs.85).asp

x

[2]

http://www.intellectualheaven.com/Articles/WinM

M.pdf

[3]

http://blogs.technet.com/b/askperf/archive/2007/02/

23/memory-management-101.aspx

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366584(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366737(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366590(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366742(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366704(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366593(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366745(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366706(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366595(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366747(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh691011(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh691013(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh691012(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh691013(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh691014(v=vs.85).aspx

