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Abstract— when compare any contest parties who maintain 

private data may cooperatively handle privacy preserving 

distributed data analysis (PPDA) assignments to determine 

constructive data models or analysis results. For example, 

different manufacturing companies may try to build better 

models for the products fraud detection through PPDA 

tasks. Similarly, contesting companies in the same industry 

may try to combine their sales data to build models that may 

predict the future sales. In many of these cases, the 

competing parties have different incentives.  Although 

certain PPDA techniques guarantee that nothing other than 

the final analysis result is revealed, it is impossible to verify 

whether or not participating parties are truthful about their 

private input data. In other words, unless proper incentives 

are set, even current PPDA techniques cannot prevent 

participating parties from modifying their private inputs. 

This raises the question of how to design incentive 

compatible privacy-preserving data analysis techniques that 

motivate participating parties to provide truthful input data. 

Index Terms— Privacy, Secure multi-party computation, 

Non-cooperative computation. 

I. INTRODUCTION 

There is an increasing requirement for sharing 

information across autonomous entities in such a way that 

only minimal and necessary information is disclosed. This 

requirement is being driven by several trends, including 

end-to-end integration of global supply chains, co-

existence of competition and co-operation between 

enterprises, need-to-know sharing between security 

agencies, and the emergence of privacy guidelines and 

legislations. Sovereign information sharing [1, 3] allows 

autonomous entities to compute queries across their 

databases such that nothing apart from the result is 

revealed. 

For example, suppose the entity R has a set VR = fb; u; v; 

yg and the entity S has a set VS = fa; u; v; xg. As the 

result of sovereign intersection VR \VS, R and S will get 

to know the result fu; vg, but R will not know that S also 

has fa; xg, and S will not know that R also has fb; yg. 

Several protocols have been proposed for computing 

sovereign relational operations, including [1, 3, 6, 8, 16]. 

In principle, sovereign information sharing can be 

implemented using protocols for secure function evaluation 

(SFE) [7].Given two parties with inputs x and y 

respectively, SFE computes a function f(x; y) such that the 

parties learn only the result. The above body of work relies 

on a crucial assumption, that the participants in the 

computation are semi-honest. This assumption basically 

says that the participants follow the protocol properly (with 

the exception that they may keep a record of the 

intermediate computations and received messages, and 

analyze the messages). Specifically, it is assumed that the 

participants will not maliciously alter the input data to gain 

additional information. This absence of malice assumption 

is also present in work in which a trusted-third party is 

employed to compute sovereign operations. 

In a real imperfect world, the participants may behave 

dishonestly particularly when they can benefit from such a 

behavior. This benefit can come from learning more than 

necessary private information of others or preventing others 

from learning the necessary information. In the sovereign 

intersection example given in the beginning, R may 

maliciously add x to VR to learn whether VS contains x. 

Similarly, S may exclude v from VS to prevent R from 

learning that it has v.  

Progress in bar-code technology has made it possible for 

retail organizations to collect and store massive amounts of 

sales data, referred to as the basket data. A record in such 

data typically consists of the transaction date and the items 

bought in the transaction. Successful organizations view 

such databases as important pieces of the marketing 

infrastructure. They are interested in instituting information-

driven marketing processes, managed by database 

technology, that enable marketers to develop and implement 

customized marketing programs and strategies [S]. The 

problem of mining association rules over basket data was 

introduced in [4]. An example of such a rule might be that 

98% of customers that purchase tires and auto accessories 

also get automotive services done. Finding all such rules is 

valuable for cross marketing and attached mailing 

applications. Other applications include catalog design, add-
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on sales, store layout, and customer segmentation based 

on buying patterns. The databases involved in these 

applications are very large. It is imperative, therefore, to 

have fast algorithms for this task. 

Privacy and security, particularly maintaining 

confidentiality of data, have become a challenging issue 

with advances in information and communication 

technology.  

The ability to communicate and share data has many 

benefits, and the idea of an omniscient data source carries 

great value to research and building accurate data analysis 

models. For example, for credit card companies to build 

more comprehensive and accurate fraud detection system, 

credit card transaction data from various companies may 

be needed to generate better data analysis models. 

Department of Energy supports research on building 

much more efficient diesel engines [5]. Such an ambitious 

task requires the collaboration of geographically 

distributed industries, national laboratories and 

universities. Those institutions (including the potentially 

competing industry partners) need to share their private 

data for building data analysis models that enable them to 

understand the underlying physical phenomena. Similarly, 

different pharmaceutical companies may want to combine 

their private research data to predict the effectiveness of 

some protein families on certain diseases. 

II. PROBLEM STATEMENT 

Vampire attacks are not protocol-specific, in that they do 

not rely on design properties or implementation faults of 

particular routing protocols, but rather exploit general 

properties of protocol classes such as link-state, distance-

vector, source routing, and geographic and beacon 

routing. Neither do these attacks rely on flooding the 

network with large amounts of data, but rather try to 

transmit as little data as possible to achieve the largest 

energy drain, preventing a rate limiting solution. Since 

Vampires use protocol-compliant messages, these attacks 

are very difficult to detect and prevent. 

This paper makes three primary contributions. First, we 

thoroughly evaluate the vulnerabilities of existing 

protocols to routing layer battery depletion attacks. We 

observe that security measures to prevent Vampire attacks 

are orthogonal to those used to protect routing 

infrastructure, and so existing secure routing protocols 

such as Ariadne [9], SAODV [18], and SEAD [8] do not 

protect against Vampire attacks. Existing work on secure 

routing attempts to ensure that adversaries cannot cause 

path discovery to return an invalid network path, but 

Vampires do not disrupt or alter discovered paths, instead 

using existing valid network paths and protocol compliant 

messages. Protocols that maximize power efficiency are 

also inappropriate, since they rely on cooperative node 

behavior and cannot optimize out malicious action. Second, 

we show simulation results quantifying the performance of 

several representative protocols in the presence of a single 

Vampire (insider adversary). Third, we modify an existing 

sensor network routing protocol to provably bound the 

damage from Vampire attacks during packet forwarding. 

III. SYSTEM DEVELOPMENT 

Privacy-Preserving Data Analysis: 

The privacy   preserving   data analysis protocols assume 

that participating   parties   are    truthful about their   private 

input data. The techniques developed in assume that each 

party has an internal device that can verify whether they are 

telling the truth or not. In our work, we do not assume the 

existence of such a device. Instead, we try to make sure that 

providing the true input is the best choice for a participating 

party. 

Non-Cooperative Computation: 

In the NCC model, each party  participates in a protocol to 

learn the output of some    given    function   f    over    the   

joint  inputs   of  the  parties.      First,    all    participating    

parties send    their   private    inputs securely to a trusted 

third party (TTP), and then TTP computes f and sends back   

the result to every participating party. The NCC model 

makes the following assumptions. 

1) Correctness: 

The first priority for every participating party is to learn the 

correct result; 

2) Exclusiveness: 

If possible, every participating party prefers to learn the 

correct result exclusively. 

Analyzing Data Analysis Tasks Ii The NCC Model: 

Combining the two concepts DNCC and SMC, we can 

analyze privacy preserving data analysis tasks (without 

utilizing a TTP)that are incentive compatible. We next 

prove several such important tasks (as function with 

Boolean output, set operations, linear functions, etc) that 

either satisfy or do not satisfy the DNCC model. Also, note 

that the data analysis tasks analyzed next have practical 

SMC implementations. 

Privacy Preserving Association Rule Mining: 

The association rule mining and analyze whether the 

association rule mining can be done in an incentive 
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compatible manner over horizontally and vertically 

partitioned databases. The Security Code is valid means 

retrieve the data otherwise you are a fraud user. 

IV. RELATED WORK 

Secure multi-party computation (MPC) is one of the most 

surprising computational phenomena known. In fact, the 

paradigm encompasses not one, but a wide range of 

phenomena, depending on the MPC task (functionality) in 

question. However, in another influential work, Canetti 

[C01] showed that under a more demanding but more 

realistic model of security, at least one qualitative 

distinction exists among MPC functionalities, regardless 

of any computational assumption: the separation between 

“trivial” and “non-trivial” functionalities. In this paper we 

show that, under the same intractability assumption 

needed for the results in [GMW87], the distinction 

between trivial and non-trivial functionalities is the only 

qualitative distinction among deterministic 2-party 

functionalities in Canetti’s stronger security framework 

for MPC.  

More formally, we use a natural complexity-theoretic 

reduction to compare the qualitative “cryptographic 

complexities” of MPC functionalities. We say that a 

functionality F reduces to G (written F vPPT G) if there is 

a secure protocol for F that uses ideal access to G. We use 

the strong definition of security from the framework of 

Universal Comparability (UC) [C01]. Under this 

reduction, there are two natural extremes of cryptographic 

complexity: we call functionality “trivial” if it can be 

reduced to every other functionality and “complete” if 

every functionality can be reduced to it. Stated in these 

terms, our main result is the following:  

The following two statements are equivalent: 

Zero-One Law: Every deterministic, finite 2-party 

functionality is either trivial or complete. sh-OT 

Assumption: There exists a 2-party protocol that securely 

realizes the oblivious transfer functionality against semi-

honest (a.k.a., passive, honest-but-curious) PPT 

adversaries. 

The zero-one law applies not just to secure function 

evaluation functionalities, but also to reactive ones that 

receive input and give output repeatedly over many 

rounds of interaction, maintaining secret state between 

rounds. To the best of our knowledge, ours is the first 

work that considers how to use arbitrary reactive 

functionalities for other cryptographic purposes. To 

establish the zero-one law, we advance on two technical 

fronts in the study of complexity of secure multi-party 

computation. The first front focuses on understanding 

distinct non-trivial behavioral components of (possibly 

reactive) functionalities. We identify a list of four 

qualitatively distinct such components. For each one we can 

associate a familiar “canonical” functionality which is non-

trivial for only that reason: 

• Allowing simultaneous exchange of information, 

exemplified by the Boolean XOR functionality FXOR. 

• Selectively hiding one party’s inputs from the other, 

exemplified by a simple SFE functionality we introduce 

called simple cut-and-choose, FCC. 

• Selectively hiding both party’s inputs simultaneously, 

exemplified by the oblivious transfer functionality FOT. 

• Holding meaningful hidden information in internal 

memory between rounds, exemplified by the commitment 

functionality FCOM. (This component can appear only in a 

reactive functionality.) 

Notions from game theory are used widely in this paper. 

Game theory was founded by von Neumann and 

Morgenstern as a general theory of rational behavior. 

Games related to our work include the interdependent 

security (IDS) games [10, 13]. They were primarily to 

model scenarios where a large number of players must make 

individual investment decisions related to a security – 

whether physical, financial, medical, or some other type - 

but in which the ultimate safety of every participant depends 

on the actions of the entire population. IDS games are 

closely related to summarization games [11] in which the 

players' payo  is a function of their own actions and the 

value of a global summarization function that is determined 

by the joint play of the population. Summarization games 

themselves are extensions of congestion games [15, 9] in 

which players compete for some central resources and every 

player's payo is a decreasing function of the number of 

players selecting the resources. We have adopted some 

notions from the IDS games and used them to model 

information exchange. However, our problem is different 

from the one presented in [13], while at the same time we 

are not exploring algorithms for computing the equilibrium 

of the games as in [10]. 

Inspection games [4, 5, 14] are also related to our work. 

These are games repeated for a sequence of iterations. There 

is an inspector responsible for distributing a given number 

of inspections over an inspection period. Inspections are 

done so that possible illegal actions of an inspective can be 

detected. The question addressed is what are the optimal 

strategies for the inspector and the inspect in such a game. 
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The main difference between these games and the game 

we have designed is that in the inspection games the 

inspector is a player of the game. This is not true for our 

game, where the inspector acts as a referee for the players, 

helping them (via auditing) to achieve honest 

collaboration. 

In [12], different information-exchange scenarios are 

considered and the willingness of the participants to share 

their private information is measured using solution 

concepts from coalition games. Our study is 

complementary to this work. We are interested in 

quantifying when people are willing to participate 

truthfully in a game, rather than the complementary 

question of whether they are willing to participate at all. 

The work presented in [20] models information exchange 

between a consumer and a web site. Consumers want to 

interact with web sites, but they also want to keep control 

of their private information. For the latter, the authors 

empower the consumers with the ability to test whether a 

web site meets their privacy requirements. In the 

proposed games, the web sites signal their privacy 

policies that the consumers can test at some additional 

cost. The main conclusion of the study is that such a game 

leads to cyclic instability. The scenario we are modeling 

is completely different. Our players are all empowered 

with the same set of strategies. Our games also admit 

multiple players.  

EXPERIMENTAL RESULTS 

 

The techniques developed in assume that each party 
has an internal device that can verify whether they are 

telling the truth or not. 

 

The Security Code is valid means retrieve the data otherwise 

you are a fraud user. 

V. CONCLUSION 

Even though privacy-preserving data analysis techniques 

guarantee that nothing other than the final result is 

disclosed, whether or not participating parties provide 

truthful input data cannot be verified. In this paper, we have 

investigated what kinds of PPDA tasks are incentives 

compatible under the NCC model. Based on our findings, 

there are several important PPDA tasks that are incentive 

driven. As a future work, we will investigate incentive 

issues in other data analysis tasks, and extend the proposed 

theorems under the probabilistic NCC model. 

The PPDA tasks analyzed in the paper can be reduced to 

evaluation of a single function. Now, the question is how to 

analyze whether a PPDA task is in DNCC if it is reduced to 

a set of functions. In other words, is the composition of a set 

of DNCC functions still in DNCC? We will formally 

answer this question in the future. Another important 

direction that we would like to pursue is to create more 

efficient SMC techniques tailored towards implementing the 

data analysis tasks that are in DNCC. 
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