
© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100468 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1097

AWK Utility

Ravi Sangwan, Pankaj Gupta

Dronacharya College of Engineering

Abstract: AWK is an interpreted programming

language designed for text processing and typically used as

a data extraction and reporting tool. It is a standard feature

of most Unix-like operating systems. The term AWK refers

to a particular program, and to the language you use to tell

this program what to do. When we need to be careful, we

call the program “the AWK utility” and the language “the

AWK language”. The term gawk refers to a version of AWK

developed as part the GNU project. The purpose of this

paper is to explain both the AWK language and how to run

the AWK utility.

INDEXED TERMS: One-Short, Throw-Away, AWK

Programs, Long, comments.

I. INTRODUCTION

AWK is an interpreted programming language designed

for text processing and typically used as a data extraction

and reporting tool. It is a standard feature of most Unix-

like operating systems. AWK (also written as Awk and

AWK) is a utility that enables a programmer to write

small but effective programs in the form of statements

that define text patterns that are to be searched for in each

line of a document and the action that is to be taken when

a match is found within a line. AWK comes with most

UNIX-based operating systems such as Linux, and also

with some other operating systems, such as Windows

95/98/NT. The basic function of AWK is to search files

for lines (or other units or text) that contains certain

patterns. When a line matches one of the patterns, AWK

performs specified actions on that line. AWK keeps

processing input lines in this way until the end of the

input files are reached.

Program in AWK are different from programs in most

other languages, because AWK programs are data-driven;

i.e., you describe the data you wish to work with, and then

what to do when you find it. Most other languages are

procedural; you have to describe, in great detail, every

step the program is to take. When working with

procedural languages, it is usually much harder to clearly

describe the data your program will process. For this

reason, AWK programs are often refreshingly easy to

both writer and reader.

When you run AWK, you specify an AWK program that

tells AWK what to do. The program consists of a series of

rules. Syntactically, a rule consists of a pattern followed

by an action. The action is enclosed in curly braces to

separate it from the pattern. Rules are usually separated

by new lines.

Therefore, an AWK programs looks like this:

 pattern {action}

 pattern {action}

 ...

where pattern is typically an expression and action is a

series of commands. The input is split into records, where

by default records are separated by newline characters so

that the input is split into lines. The program tests each

record against each of the patterns in turn, and executes

the action for each expression that is true. Either the

pattern or the action may be omitted. The pattern defaults

to matching every record. The default action is to print

the record. This is the same pattern-action structure as

sed.

II. HOW TO RUN AWK PROGRAMS

There are several ways to run an AWK program. If the

program is short it is easy to include in the command that

runs AWK, like this:

 awk ‘program’ input-file1 input-file2 . . .

where program consists of a series of patterns and actions,

as described earlier. (The reason for the single quotes is

described below; in section One-short throw-away AWK

programs.)

When the program is long it is usually more convenient to

put in a file and run it with a command like this:

awk –f program-file input-file1 input-file2 . . .

 One-Short: Running a short throw-away AWK

program.

 Read Terminal : Using no input files (input

from terminal instead)

 Long: Putting permanent AWK program in files.

 Executable scripts: Making self contained

AWK programs.

http://en.wikipedia.org/wiki/Interpreter_(computing)
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Data_extraction
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Interpreter_%28computing%29
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Data_extraction
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Operating_system
http://searchenterpriselinux.techtarget.com/definition/Unix
http://searchenterpriselinux.techtarget.com/definition/Linux

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100468 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1098

 Comments: Adding documentation to gawk

programs.

2.1 One-Short Throw-Away AWK Programs

Once you are familiar with AWK, you will often type in

simple programs the moment you want to use them. Then

you can write the program as the first argument of the

AWK command, like this:

awk ‘program’ input-file1 input-file2 . . .

when program consist of a series of patterns and actions,

as described earlier.

This command format instructs the shell, or command

interpreter, to start AWK and use the program to process

records in the input files. There are single quotes around

program so that the shell doesn’t interpret any AWK

characters as special shell characters. They also cause the

shell to treat all of program as a single argument for

AWK and allow program to be more than one line long.

This format is also useful for running short or medium-

sized AWK programs for shell scripts, because it avoids

the need for separate file for the AWK program. A shell

contain shell script is more reliable since there are no

other files to be misplaced.

 As an interesting side point, the command

 awk ‘/foo/’ files . . .

is essentially the same as

 egrep foo files . . .

2.2 Running AWK without Input Files

You can run AWK without any input files. If you type the

command line:

 awk ‘programs’

then AWK applies the program to the standard input,

which usually means whatever you type on the terminal.

This continues until you indicate end of file by typing

control-d. (On other operating systems, the end of file

character may be different. For example, on OS/2 and

MS-DOS, it is control-z.)

For example, the following program prints a friendly

piece of advice (from ‘Douglas Adams’ The Hitchhiker’s

Guide to Galaxy), to keep you from worrying about the

complexities of computer programming (‘BEGIN’ is a

feature that we haven’t discussed yet).

$ awk “BEGIN {print \”Don’t Panic! \”}”

 -| Don’t Panic!

This program doesn’t read any input. The ‘\’ before each

of the inner double quotes is necessary because of the

shell’s quoting rules, in particular because it mixes both

single quotes and double quotes.

This next simple AWK program emulates the cat utility; it

copies whatever you type at the keyboard to its standard

output.

$awk ‘{ print }’

 Now is the time for all good men

 -| Now is the time for all good men

 to come to the aid of their country

 -| to come to the aid of their country

 Four score and seven year ago, . . .

 -| Four score and seven year ago, . . .

 What, me worry?

 -| What, me worry?

 Control-d

2.3 Running Long Programs

Sometimes your AWK programs can be very long. In this

case it is more convenient to put the program into a

separate file. To tell AWK to use that file for its program,

you type:

 awk –f source-file input-file1 input-file2 . . .

The ‘-f’ instructs the AWK utility to get the AWK

program from the file source file. Any filename can be

used for source file. For example, you could put the

program:

 BEGIN { print “Don’t Panic!” }

into the file ‘advice’. Then this command:

 awk –f advice

does the same thing as this one:

 awk “BEGIN {print \”Don’t Panic! \” }”

this was explained earlier. Note that you don’t usually

need single quotes around the file name that you specify

with ‘-f’, because most file names don’t any of the shell’s

special character. Notice that in ‘advice’, the AWK

program does not have single quotes around it. The

quotes are only needed for programs that are provided on

the AWK program line.

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100468 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1099

If you want to identify your AWK files clearly as such,

you can add the extension ‘.awk’ to the file name. This

doesn’t affect the execution of the AWK program but it

does makes “housekeeping” easier.

2.3 Executable AWK Programs

Once you have learned AWK, you may want to write self

contained AWK script, using the ‘#!’ script mechanism.

You can do this on many UNIX systems (and some day

on the GNU systems).

For example, you could update the file ‘advice’ to look

like this:

 #! /bin/awk -f

 BEGIN {print "Don't Panic!" }

You should not put more than one argument on the ‘#!’

line after the path to awk. It does not work. The operating

system treats the rest of the line as a single argument and

passes it to awk. Doing this leads to confusing behavior—

most likely a usage diagnostic of some sort from awk.

After making this file executable (with the chmod utility),

simply type ‘advice’ at the shell and the system arranges

to run AWK as if you had typed ‘awk -f advice’:

$ chmod +x advice

$ advice

-| Don't Panic!

Self-contained awk scripts are useful when you want to

write a program that users can invoke without their

having to know that the program is written in awk. Some

systems limit the length of the interpreter name to 32

characters. Often, this can be dealt with by using a

symbolic link. The ‘#!’ mechanism works on GNU/Linux

systems, BSD-based systems and commercial UNIX

systems.

The colon ensures execution by the standard shell.

 awk ‘program’ “&@”

Using this technique, it is vital to enclose the program in

single quotes to protect it from interpretation by the shell.

If you omit the quotes, only a shell wizard can predict the

result.

2.4 Comments in AWK Programs

A comment is some text that is included in a program for

the sake of human readers; it is not really an executable

part of the program. Comments can explain what the

program does and how it works. Nearly all programming

languages have provisions for comments, as programs are

typically hard to understand without them.

In the awk language, a comment starts with the sharp sign

character (‘#’) and continues to the end of the line. The

‘#’ does not have to be the first character on the line. The

awk language ignores the rest of a line following a sharp

sign. For example, we could have put the following into

advice:

 # This program prints a nice friendly message.

It helps

 # keep novice users from being afraid of the

computer.

 BEGIN { print "Don't Panic!" }

 You can put comment lines into keyboard-composed

throwaway awk programs, but this usually isn’t very

useful; the purpose of a comment is to help you or another

person understand the program when reading it at a later

time.

CAUTION: As mentioned in One-shot, you can enclose

small to medium programs in single quotes, in order to

keep your shell scripts self-contained. When doing so,

don’t put an apostrophe (i.e., a single quote) into a

comment (or anywhere else in your program). The shell

interprets the quote as the closing quote for the entire

program. As a result, usually the shell prints a message

about mismatched quotes, and if awk actually runs, it will

probably print strange messages about syntax errors. For

example, look at the following:

 $ awk '{ print "hello" } # let's be cute'

The shell sees that the first two quotes match, and that a

new quoted object begins at the end of the command line.

It therefore prompts with the secondary prompt, waiting

for more input. With Unix awk, closing the quoted string

produces this result:

 $ awk '{ print "hello" } # let's be cute'

 > '

 error→ awk: can't open file be

 error→ source line number 1

Putting a backslash before the single quote in ‘let's’

wouldn’t help, since backslashes are not special inside

single quotes. The next subsection describes the shell’s

quoting rules.

2.5 A Very Simple Example

The following command runs a simple awk program that

searches the input file `BBS-list' for the string of

characters: `foo'. (A string of characters is usually called a

string. The term string is perhaps based on similar usage

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100468 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1100

in English, such as "a string of pearls," or, "a string of

cars in a train.")

 awk '/foo/ { print $0 }' BBS-list

When lines containing `foo' are found, they are printed,

because `print $0' means print the current line. (Just `print'

by itself means the same thing, so we could have written

that instead). You will notice that slashes, `/', surround the

string `foo' in the awk program. The slashes indicate that

`foo' is a pattern to search for. This type of pattern is

called a regular expression, and is covered in more detail

later (see section Regular Expressions). The pattern is

allowed to match parts of words. There are single-quotes

around the awk program so that the shell won't interpret

any of it as special shell characters.

Here is output of the program:

 $ awk '/foo/ { print $0 }' BBS-list

 -| fooey 555-1234 2400/1200/300 B

 -| foot 555-6699 1200/300 B

 -| macfoo 555-6480 1200/300 A

 -| sabafoo 555-2127 1200/300 C

In an awk rule, either the pattern or the action can be

omitted, but not both. If the pattern is omitted, then the

action is performed for every input line. If the action is

omitted, the default action is to print all lines that match

the pattern. Thus, we could leave out the action (the print

statement and the curly braces) in the above example, and

the result would be the same: all lines matching the

pattern `foo' would be printed. By comparison, omitting

the print statement but retaining the curly braces makes an

empty action that does nothing; then no lines would be

printed.

III. CONCLUSIONS

The basic function of awk is to search files for lines (or

other units of text) that contain certain patterns. When a

line matches one of the patterns, awk performs specified

actions on that line. awk keeps processing input lines in

this way until the end of the input files are reached.

Programs in awk are different from programs in most

other languages, because awk programs are data-driven;

that is, you describe the data you wish to work with, and

then what to do when you find it. Most other languages

are procedural; you have to describe, in great detail, every

step the program is to take. When working with

procedural languages, it is usually much harder to clearly

describe the data your program will process. For this

reason, awk programs are often refreshingly easy to both

write and read.

REFERENCES

[1] Pankaj Sharma, System Programming and System

Administration, Ghaziabad, 2010.

[2]https://www.gnu.org/software/gawk/manual/html_nod

e/Index.html#Index

[3] http://www.linuxjournal.com/article

[4] http://www.grymoire.com/Unix/Awk.html

[5]http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1

.1.31.1299

[6]Hamilton, Naomi (2008-05-27). "The A-Z of

Programming Languages: AWK".

