
© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100469 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1101

Graphical Kernel System (GKS)
Ravi Sangwan, Pankaj Gupta

Dronacharya College of Engineering

Abstract: The Graphical Kernel System (GKS) was the first

ISO standard for low-level computer graphics, introduced in

1977. The Graphical Kernel System (GKS) is a document

produced by the International Standards Organization

(ISO) which defines a common interface to interactive

computer graphics for application programs. GKS has been

designed by a group of experts representing the national

standards institutions of most major industrialized

countries. This paper will tell you everything about GKS

and all the primitives used in this system. GKS provides a

set of drawing features for two-dimensional vector graphics

suitable for charting and similar duties. The calls are

designed to be portable across different programming

languages, graphics devices and hardware, so that

applications written to use GKS will be readily portable to

many platforms and devices. Keywords: GKS primitives,

Polylines, Fill Area, Polymarkers.

I. INTRODUCTION

The main objective of the Graphical Kernel System,

GKS, is the production and manipulation of pictures (in a

way that does not depend on the computer or graphical

device being used). Such pictures vary from simple line

graphs (to illustrate experimental results, for example), to

engineering drawings, to integrated circuit layouts (using

colour to differentiate between layers), to images

representing medical data (from computerized

tomographic (CT) scanners) or astronomical data (from

telescopes) in grey scale or colour. Each of these various

pictures must be described to GKS, so that they may be

drawn.

However, one should point out that GKS itself is not

portable. Individual GKS implementations will vary

substantially as they have to support different graphics

devices on different computers. Moreover, GKS is a

kernel system, and thus does not include an arbitrary

collection of functions to produce histograms or contour

plots, etc. Such facilities are regarded as applications

which sit on top of the basic graphics package and, at

CERN, they are provided by the Graphical Extensions to

the NAG Library, or the HPLOT package.

The GKS functions have been defined independently

from a specific programming language, and bindings to

individual languages are subject to separate standards

efforts which have been undertaken for all the major

languages. The FORTRAN binding is defined by. The

Graphical Kernel System for two dimensional graphics

was adopted as an ISO standard in 1985, and since that

date work has been in progress to define a three

dimensional super-set which was accepted as an

International Standard during 1988. The FORTRAN

binding to GKS-3D has also been published as a Draft

International Standard.

The GKS standard (as described in the Standard

document: Computer Graphics Graphical Kernel System

(GKS) Function Description, ANSI X3.124-1985)

consists of three basic parts:

1. An informal exposition of the contents of the

standard that includes such things a show text is

positioned, how polygonal areas is to be filled,

and so forth.

2. A formalization of the expository material in 1.

By way of abstracting the ideas into discrete

functional description. These functional

description contain such information as

descriptions of input and output parameters,

precise descriptions of the effect each function

should have, reference into the expository

material in 1, and a description of error

conditions. The functional description in this

section are language independent.

3. Language bindings, these bindings are an

implementation of the abstract functions

described in 2 in a specific computer language

such as FORTRAN or Ada or C.

In order to allow particular applications to choose a

graphics package with the appropriate capability, GKS

has been defined to have different levels. The level

structure has two dimensions, one for output (0, 1, or 2)

and one for input (a, b, or c). Higher levels include the

capabilities of lower levels. In the United States, ANSI

has defined also a level 'm', for very simple applications,

which sits below output level '0'. Most implementations

provide all output (level '2') and intermediate input (level

'b'). The reason input level 'c' is not usually supported is

that it requires asynchronous input facilities not found in

all operating systems.

II. GKS PRIMITIVES

The main objective of the Graphical Kernel System, GKS

is the production and manipulation of pictures (in a way

http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100469 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1102

that does not depend on the computer or graphical device

being used). Such pictures vary from simple line graphs

(to illustrate experimental results, for example), to

engineering drawings, to integrated circuit layouts (using

color to differentiate between layers), to images

representing medical data (from computerized

tomographic (CT) scanners) or astronomical data (from

telescopes) in grayscale or color. Each of these various

pictures must be described to GKS, so that they may be

drawn.

In GKS, pictures are considered to be constructed from a

number of basic building blocks. These basic building

blocks or primitives as they are called are of a number of

types each of which can be used to describe a difference

component of a picture. The five main primitives in GKS

are:

1. Polyline: which draws a sequence of connected

line segments.

2. Polymarker: which marks a sequence of points

with the same symbol.

3. Fill area: which displays a specified area.

4. Text: which draws a string of characters.

5. Cell array: which displays an image composed

of a variety of colours or grey scales.

Associated with each primitive is a set of parameters

which is used to define particular instances of that

primitive. For example, the parameters of the text

primitive are the string or characters to be drawn and the

starting position of that string. Thus:

 TEXT(X, Y, 'ABC')

will draw the characters ABC at the position (X, Y).

Although the parameters enable the form of the primitives

to be specified, additional data are necessary to describe

the actual appearance (or aspects) of the primitives. For

example, GKS needs to know the height of a character

string and the angle at which it is to be drawn. These

additional data are known as attributes.

The attributes represent features of the primitives which

vary less often than the form of the primitives. Attributes

will frequently retain the same values for the description

of several primitives. Once a suitable character height has

been selected, for example, several character strings may

be plotted using this character height (such as the labels

on the axis of a graph).

2.1 POLYLINE

The main line drawing primitive of GKS is the polyline

which is generated by calling the function:

POLYLINE (N, XPTS, YPTS)

where XPTS and YPTS are arrays giving the N points

(XPTS(1), YPTS(1)) to (XPTS(N), YPTS(N)). The

polyline generated consists of N - 1 line segments joining

adjacent points starting with the first point and ending

with the last.

Why was the polyline chosen as the basic line drawing

primitive in GKS? If we consider actual graphical

devices, we can see that there are many ways of

describing line segments. Incremental plotters require

each individual increment of the approximated line

segment to be specified. Other graphical devices rely on

the concept of a current point. Only one end of each line

segment need be specified and a line segment is drawn

from the current point to the specified end point, which

then itself becomes the current point. Yet other graphical

devices expect a connected sequence of line segments to

be specified.

In order to interface to all these devices, GKS uses an

abstract description of a line. Unlike many graphics

systems which rely on the concept of a current point with

several related problems, GKS recognizes the frequency

with which a set of connected line segments is drawn and,

therefore, uses polyline as its basic line drawing

primitive.

Suppose we wish to plot a graph of a set of data, maybe

some experimental results. The data consist of a set of

ordered pairs (X, Y), thus:

X 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.4 17.0

17.3

Y 8.8 7.6 7.1 7.4 8.0 8.9 9.6 9.9 9.4 9.7

12.0

X 17.8 18.5 20.0 22.0 24.0 26.0 28.0 29.0

Y 14.0 16.1 17.0 17.0 16.0 13.9 13.1 13.2

The graph may be drawn by joining adjacent points with

straight line segments. Thus we can plot our graph by the

following sequence:

REAL XDK(19), YDK(19)

DATA XDK/O.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0,

16.4, 17.0, 17.3, 17.8, 18.5, 20.0, 22.0, 24.0, 26.0,

28.0, 29.0/

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100469 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1103

DATA YDK/8.8, 7.6, 7.1, 7.4, 8.0, 8.9, 9.6, 9.9, 9.4,

9.7, 12.0, 14.0, 16.1, 17.0, 17.0, 16.0, 13.9, 13.1,

13.2/

 POLYLINE(19, XDK, YDK)

Fig. 1 Representation of polylines

2.2 POLYMARKER

Instead of drawing lines through a set of points, we may

wish just to mark the set of points. GKS provides the

primitive polymarker to do just this. A polymarker is

generated by the function:

POLYMARKER (N, XPTS, YPTS)

where the arguments are the same as for the polyline

function, namely XPTS and YPTS are arrays giving the N

points (XPTS (1), YPTS (1)) to (XPTS(N), YPTS(N)).

Polymarker places a centered marker at each point. GKS

recognizes the common use of markers to identify a set of

points in addition to marking single points and so the

marker function is a polymarker.

The attributes that control the appearance of polymarkers

are:

1. Marker, which specify one of five standardized

symmetric characters to be used for the marker.

The five characters are dot, plus, asterisk, circle

and cross.

2. Marker size scale factor, which controls how

large each marker is (except for the dot marker).

3. Polymarker color index which specifies what

color the marker is.

Fig. 2 Polymarkers

2.3 TEXT

So far we have not attempted to put a title on our pictures.

To do this, GKS has a text primitive which is used to title

pictures or place labels on them as appropriate. A text

string may be generated by invoking the function:

TEXT(X, Y, STRING)

where (X, Y) is the text position and STRING is a string

of characters.

However, text is more complicated than the other

primitives that we have examined. Everybody is used to

good quality text in books whether it is the printed text of

the book itself or text within the context of diagrams. Text

is printed at different sizes, in different fonts, at different

orientations and at different spacings. Graphics devices.

on the other hand, are often not good at text; indeed some

are not capable of text at all. Those that do often only

have a restricted number of sizes. one or perhaps two

orientations, and a single font. The attributes that control

the appearance of text are:

1. Text font and precision, which specifies what

text font, should be used for the characters and

how precisely their representation should adhere

to the settings of the text attributes.

2. Character expansion factor, which controls the

height-to-width ratio of each plotted character.

3. Character spacing, which specifies how much

additional white space should be inserted

between characters in a string.

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100469 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1104

4. Text color index, which specifies what color the

text ring should be.

5. Character height, which specifies how large the

characters should be.

6. Character up vector, which specifies at what

angle the text should be drawn.

7. Text path, which specifies in what the text

should be written (right,left,up or down).

8. Text alignment, which specifies vertical and

horizontal centering options for the text string.

2.3 FILL AREA

There are many applications for which line drawings are

insufficient. The design of integrated circuit layouts

requires the use of filled rectangles to display a layer.

Animation systems need to be able to shade areas of

arbitrary shape. Other applications using colour only

realize their full potential when they are able to use

coloured areas rather than coloured lines.

At the same time, there are now many devices which have

the concept of an area which may be filled in some way.

These vary from intelligent pen plotters which can cross-

hatch an area to raster displays which can completely fill

an area with a single colour or in some cases fill an area

by repeating a pattern.

GKS provides a fill area function to satisfy the application

needs which can use the varying device capabilities.

Defining an area is a fairly simple extension of defining a

polyline. An array of points is specified which defines the

boundary of the area. If the area is not closed (i.e. the first

point is not the same as the last point), the boundary is the

polyline defined by the points but extended to join the last

point to the first point. A fill area may be generated by

invoking the function:

FILL AREA (N, XPTS, YPTS)

where, as usual XPTS and YPTS are arrays giving the N

points (XPTS(1), YPTS(1)) to (XPTS(N), YPTS(N)).

Let us extend our original set of data to describe a closed

area. Nineteen data points were previously defined to

which we add a further 24.

X 28.8 27.2 25.0 23.0 21.5 21.1 21.5 22.8 24.1

25.1

Y 12.3 11.5 11.5 11.5 11.2 10.5 9.0 8.0 7.0

5.1

X 25.2 24.2 22.1 20.0 18.0 16.0 14.0 12.0 10.0

8.0

Y 3.6 1.9 1.1 0.9 0.7 0.8 1.0 1.0 1.2 1.8

X 6.1 4.2 3.0 1.3

Y 2.1 2.9 4.1 6.0

Like the other primitives we have considered. Fill area

has a representation accessed by a fill area attribute called

the fill area index.

The fill area index is set by the function:

SET FILL AREA INDEX (N)

where N is the desired value of the fill area index. Filled

areas may be distinguished by their filling style (called

interior style in GKS) and colour. Let us assume that fill

area representation 1 is interior style HOLLOW and that

fill area representation 2 is interior style SOLID, each in

standard colour. The filling style patterns used are given

in the figure below:

Fig. 3 Pattern of Filling Area

III. CELL ARRAY

The GKS cell array function displays raster like images in

a device-independent manner. The cell array function

takes the two corner points of a rectangle that you specify

a number of divisions (M) in the X direction and a

number of divisions (N) in the Y direction. It then

partitions the rectangle into M x N sub rectangles called

cells. You assign each cell a color and create the final cell

array by coloring each individual cell with its assigned

color. At level 0A, cell array has no associated attributes.

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100469 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1105

Fig. 4 Example illustrating GKS output primitives

IV. CONCLUSIONS

GKS is widely adopted for use in systems all over the

world. The functions are defined independently of device

type, application and programming language.

Implementation of GKS in any programming language

consequently remain device and application independent.

The functionality of GKS is wrapped up as a data model

standard in the STEP standard. Graphical application

programs based on GKS thereby achieve device

independent too.

REFERENCES

[1] Udit Agarwal, Computer Graphics, Bareilly, 2010.

[2] http://ngwww.ucar.edu/gks/intro.html

[3] Hopgood, F. R. A. (1983). Introduction to the

Graphical Kernel System (GKS). London: Academic

Press. ISBN 0-12-355570-1.

http://en.wikipedia.org/wiki/Academic_Press
http://en.wikipedia.org/wiki/Academic_Press
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-12-355570-1

