
© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100470 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1106

Nature of a Lexicon in Compiler Design

Rashmi Arora, Tarika Bhutani, Ronak Juneja

Dronacharya College of Engineering

Abstract: As the name suggests, the research paper includes

the description of the lexical analysis of a compiler design. This

includes the introduction to the compiler and its various phases

with their importance. The lexical analysis includes the

understanding of automata and its types. The acceptance of

any string is discussed here and how we could convert one type

of automata into another. And finally minimization of

automata is exemplified.

INDEXED TERMS: Machine language
[2]

, high level

programming language
[3]

, automata
[5]

I. INTRODUCTION

The research paper begins with introduction to the compiler

and details about its various phases. The paper is based upon

the detailed discussion about lexical analysis, the first phase

of the compiler design. Thereafter, it provides details about

the automata and its two types. It furthermore includes the

inter conversion of two type of automata. Lastly it also

provides ways to minimize the automata taking an example.

II. WHAT IS A COMPILER?

In order to reduce the complexity of designing and building

computers, nearly all of these are made to execute relatively

simple commands (but do so very quickly)
.[1]

.Any program

for execution is made by combining such multiple

commands into a single one which is known as machine

language.

This job is very time consuming and error prone, thus we

need some high level programming language. But

understanding this high level language is far more difficult

than the machine language. Therefore we need some

bridging and here comes the role of compilers.

In its most general form, a compiler is a program that

accepts as input a program text in a certain language and

produces as output a program text in another language,

while preserving the meaning of that text
.[4]

III. PHASES OF COMPILER

Compilation process is split into several phases with its well

defined interfaces. Every phase take input from the output

of the previous phase.

These phases operate in a sequence.

a)Lexical Analysis. This is the initial phase. It reads stream

of characters and breaks them up into tokens. Each token

represents a sequence of characters treated as single entity,

i.e., they are the smallest program units that are individually

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100470 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1107

meaningful.

b)Syntax Analysis. The parser receives the tokens from the

lexical analyzer and checks if they arrive in the correct

order. It involve grouping the tokens into grammatical

phrases that are used by the compiler to synthesize output.

c)Semantic Analysis. Checks the source program for

semantic errors and gathers type information for the

subsequent code generation phrase. It uses the syntax

analysis phase to identify the operators and operands of the

expressions and statements.

d)Intermediate code generation. Some compilers generate

an explicit intermediate representation of the source

program. We can think of this intermediate representation as

a program for an abstract machine.

e) Code Optimization. There is a great variation in the

amount of code optimization different compilers perform. In

those that do the most, called optimizing compilers, a

significant fraction of the time of the compiler is spent on

this phase.

f) Code Generation. Generation of target code (in general,

machine code or assembly code) is done here. Intermediate

instructions are each translated into a sequence of machine

instructions

IV. LEXICAL ANALYSIS

4.1Finite automata

A finite automata is one that have finite nonempty set of

states, inputs and final states. Whereas a direct transition

function is used to map each input with its respective output.

The shown transition system include two states Q={q0,q1} ,

input state is q0 whereas output state is q1, the values are

{0,1} which brings change in the state using the direct

transition function.

4.1.1 Deterministic finite automata (DFA)

A deterministic finite automata is one that accepts a single

input on the given state to bring about the transition in the

state. i.e., only one input value is defined to obtain output

from current state.

4.1.2 Nondeterministic finite automata (NDFA)

Given diagram shows the NDFA. If the automaton is in a

state {qa} and the input symbol is 0, what will be the next

state? From the figure it is clear that the next state will be

either {qo} or {qj}. Thus some moves of the machine cannot

be determined uniquely by the input symbol and the present

state. Such machines are called nondeterministic automata
[6]

4.1.3 Converting a NDFA to DFA

Example: Find deterministic equivalent of M = ({q0,q1,q2}

, {a ,b}, δ , {q2}) where δ is given in the table.

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100470 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1108

Solution: Consider that M1 is deterministic equivalent of M.

In the given example q0 is the initial state whereas the final

state is q2. For the input a q0 gives q0 as well as q1.

Similarly q2 gives two states q0 and q1.

4.1.4 Minimization of automata

As our interest lies only in strings accepted by automata;

what really matters is whether a state is a final state or not.

Thus we need to do minimization of the automata

Example:

Solution:

Before we begin we need to construct the transition table of

the given transition diagram as follows:

Here, we will apply step 1 to find out π0 = ({q2},

{q1,q3,q4,q5,q6,q7})

It basically contains two sets of initial and final states

separated to construct π0.

Thereafter we will continue making πi until πi = πi+1

Every nest set created will contain splitting of the previous

sets such that the states included in the new set must be a

part of the previous set constructed whereas previous set

will contain all those states that generate the common output

states

For example, π1 = ({q2} , {q0,q4,q6} , {q1,q7} , {q3,q5})

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100470 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1109

And similarly π2 = ({q2} ,{q0,q4} , {q6} , {q1,q7}

,{q3,q7})

Now further if we try to find out π3, we will find that π3 =

π2

Thus we have our minimization steps. And mow we could

construct our transition diagram with new states. In this the

states that are taken together are considered to be the single

state.

Thus using this transition table we could construct our

transition diagram as follows:

REFERENCES

[1]
 Basics of compiler design

http://www.diku.dk/~torbenm/Basics/basics_lulu2.pdf

[2] Wikipedia-machine language

http://www.webopedia.com/TERM/M/machine_language.ht

ml

[3] Wikipedia-high level programming language

http://en.wikipedia.org/wiki/High-

level_programming_language

[4] Modern compiler design by Dick Grune

http://212.1.208.221/fpriolo/fpriolo/Springer.Modern.Compi

ler.Design.2nd.Edition.Jul.2012.pdf

[5] Wikipedia-automata theory

http://en.wikipedia.org/wiki/Automata_theory.

[6] Theory of computation by K. L. P. Mishra

http://freefundkenotes.files.wordpress.com/2014/02/toc-klp-

mishra.pdf

http://www.diku.dk/~torbenm/Basics/basics_lulu2.pdf
http://www.webopedia.com/TERM/M/machine_language.html
http://www.webopedia.com/TERM/M/machine_language.html
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/High-level_programming_language
http://212.1.208.221/fpriolo/fpriolo/Springer.Modern.Compiler.Design.2nd.Edition.Jul.2012.pdf
http://212.1.208.221/fpriolo/fpriolo/Springer.Modern.Compiler.Design.2nd.Edition.Jul.2012.pdf
http://en.wikipedia.org/wiki/Automata_theory
http://freefundkenotes.files.wordpress.com/2014/02/toc-klp-mishra.pdf
http://freefundkenotes.files.wordpress.com/2014/02/toc-klp-mishra.pdf

