
© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100483 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1121

Java Remote Method Invocation (RMI)

Sheena Batra, Rakesh Sondal

Dronacharya College of Engineering, Guragon

Abstract- RMI helps access the objects residing on one

machine to access the methods of that object. When we

invoke the methods of that object, method gets executed

and the result is sent to the method caller. In RMI, the

object whose method make remote call is termed as the

client object and the remote object itself is called as

server object. The computer running the code that calls

remote method is client for that object and the hosting

computer of object is server for that call. A remote lives

on a server. Each remote object implements a remote

interface that specifies which of its methods can be

invoked by the clients. Clients invoke methods of remote

objects as that of its local methods. This concept of

remote hosts invoking raises various security issues.

Thus remote objects can perform limited functions. The

main aim of this paper is to find an ultimate solution of

these security issues and enhance the concept of RMI.

I. INTRODUCTION

RMI is the action of invoking a method of a remote

interface on a remote object. If you have an access to

an object on a different machine, you can call

methods of the remote object. of course, the method

parameters must somehow be shipped to the other

machine, the server must be informed to execute the

method & the return value must be shipped back. In

RMI, the object whose methods makes the remote

call is called the client object. The remote object is

called the server object. The computer running the

java code that calls the remote method is the client

for that call. The computer hosting the object that

processes the call is the server for that call. In this

way, the object-oriented paradigm is preserved in

distributed computing. There are several

implementation architectures for the remote method

invocation. The most well-known one is CORBA

which has several commercial implementations

available. However, with the success of the Java

language, Java RMI is earning more and more

attention. In contrast to CORBA that is programming

language independent, Java RMI only works between

Java programs. On the other hand, Java RMI is far

more flexible than CORBA. Java RMI is gaining

popularity, it is only a matter of time before the

performance of Java RMI over wireless links

becomes important. We have analyzed and measured

performance characteristics of Java RMI over GSM

Data Service. The results

are not encouraging. Java RMI works poorly in slow

wireless environments.

Registration (binding)- A server can register its

remote objects with a naming service – the

rmiregistry. Once registered, each remote object has a

unique URL.

Obtaining a remote object reference - A client

can use the naming service to lookup a URL to obtain

a remote object reference. The application can pass

and return remote object references as part of its

operation.

Stubs & Parameter Marshalling- When client code

invokes a remote method on a remote object, it

actually calls an ordinary method on a proxy object

called a stub. The stub resides on the client machine.

The stub packages the parameters used in the remote

method into a block of bytes. This packaging uses a

device independent encoding for each parameter. The

process of encoding the parameters is called

parameter marshalling. The Purpose of parameter

marshalling is to convert the parameters into a format

suitable for transport from one m/c to another.

Skeleton - A proxy object on server side is called

Skeleton.

Dynamic Class Loading- When u pass a remote

object to another program, either as a parameter or

return value of a remote method, then that program

must have the class file for that object.

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100483 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1122

II. RMI DETAILED KNOWLEDGE

Java RMI was designed to simplify the

communication between two objects in different

virtual machines by allowing transparent calls to

methods in remote virtual machines.Once a reference

of a remote object is obtained,it is possible to call

methods of that object in the same way as methods of

local objects. Since the remote object resides in a

different virtual machine, an RMI Registry is needed

to manage remote references. When an RMI server

wants to make its local methods available to remote

objects, it registers the objects to a local registry. A

remote object connects to the remote registry, which

listens to a well-known socket,and obtains a remote

reference. Java RMI is built on top of a transport

layer, which provides abstract RMI connections built

on top of TCP connections. When an RMI connection

is opened, the transport layer either opens a new TCP

connection, or reuses an existing one if a free one is

available. If the reused connection has been idle for

more than the time of a round-trip, the transport layer

first sends a ping packet to make sure the connection

is still working. Once an acknowledgment for the

ping packet is received, the new RMI connection is

established.

If a TCP connection has not been used by any

RMI connections for a while, it is closed.

The general Java RMI architecture is depicted in

Figure 1. First a server creates a remote object and

registers it to a local Registry . The client then

connects to the remote Registry and obtains the

remote reference. At this point, a stub of the remote

object is transferred from

the remote virtual machine to the client virtual

machine, if the stub is not yet present. When the

client invokes a method at a remote object, the

method is actually invoked at the local stub. The stub

marshals the parameters and sends a message to the

associated skeleton on the server side. The skeleton

unmarshals the parameters and invokes the

appropriate method. The remote object executes the

method and passes the return value back to the

skeleton, which marshals it and sends a message to

the associated stub on the client side. Finally the stub

unmarshals the return value and passes it to the client.

Client Virtual Machine

Client

Server Virtual Machine

Stub

Remote

Object

Skeleton

Registry Virtual Machine

RmiRegistry

Server

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100483 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1123

RMI

Flow

1. Define the Remote Interface –

Your client program needs to manipulate server

objects,but it doesnot actually have copies of all

of them.The objects themselves reside on the

server.The client code must still know what it

can do with those objects.Their capabilities are

expressed in an interface that is shared between

the client & server & so resides simulateneously

on both machines.To define the remote service,

we write a remote interface.All interfaces for

remote objects must extend Remote interface

defined in java.rmi package.

 import java.rmi.*;

 public interface Hello extends Remote

 {

 public String sayHello() throws

RemoteException;

 }

2. Implementing the Remote Interface- On the

server side,you must implement the class that actually

carries out the methods advertised in the remote

Client Virtual Machine

Client

Server Virtual Machine

Stub

Remote

Object

Skeleton

Registry Virtual Machine

RmiRegistry

Server

1

2

1. Server Creates Remote Object

2. Server Registers Remote Object

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100483 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1124

interface.Declare the remote interface being

implemented. You can tell that the class is a server

for remote methods because it extends

UnicastRemoteObject,which is a concrete java class

that makes objects remotely accessible. A

UnicastRemoteObject object resides on a server.This

is the class that we extend for all the server classes.

3 Locating Server Objects-To access a remote

object that exists on the server,the client needs a local

stub object.Then how can a client request such a

stub? The most common method is to call a remote

method of another server object & get a stub object

as a return value. A server programs registers objects

with the bootstrap registry service & the client

retrieves stubs to those objects.You register a server

object by giving the bootstrap registry service a

reference to the object & a name.

RMI URLs start with rmi:// & are followed by a

server, an optional port number, another slash, &

the name of the remote object. Eg:

rmi://localhost:99:port/central_warehouseFor

security reasons,an application can bind,unbind

or rebind registry object refrences only if it runs

on the same host as the registry. Registry used

for client bootstraping to get the initial reference.

4. Client program

import java.rmi.*;

public class HelloClient

{

public static void main(String args[])

{

try

{

Client Virtual Machine

Client

Server Virtual Machine

Stub

Remote

Object

Skeleton

Registry Virtual Machine

RmiRegistry

Server

4

3. Client requests object from Registry

4. Registry returns remote reference

(and stub gets created)

3

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100483 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1125

Hello

h=(Hello)Naming.lookup("rmi://localhost/server");

System.out.println("client: Hello!");

System.out.println("server:" +h.sayHello());

}

catch(Exception e)

{

System.out.println("Error:"+e);

}

}

}

III. CONCLUSION
Due to its high protocol overhead, Java RMI is

poorly suited for wireless communication. However,

it can be optimized without breaking compatibility

with Java RMI specification, and with minimal

changes to existing software. New software is

necessary only at the mobile terminal and at its

access point to the fixed network. The results are

encouraging. The new features will greatly improve

the usability of Java RMI in a mobile environment.

Client Virtual Machine

Client

Server Virtual Machine

Stub

Remote

Object

Skeleton

Registry Virtual Machine

“Fred”

Server

6

5. Client invokes stub method

6. Stub talks to skeleton

7. Skeleton invokes remote object

 method

5 7

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100483 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1126

REFRENCES
[1] A. Bakre and B. R. Badrinath. M-RPC: A Remote

Procedure Call Service for Mobile Clients. In Proc.

of the ACM MobiCom’95, pages 97–110, Berkeley,

Calif., Nov. 1995.

[2] S. Microsystems. Java Remote Method Invocation

– Distributed Computing for Java. White Paper,

1998.

[3] http://en.wikipedia.org/wiki

http://en.wikipedia.org/wiki

