
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100504 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 74

SOFTWARE PROJECT MANAGEMENT

Surbhi Thakur, Srijan S Rawat

Information Technology

Dronacharya College of Engineering, Gurgaon,India

Abstract- In this paper we discuss that Software projects

have several properties that make them very different

to other kinds of engineering project and discuss a
platform where people share their skills and work on

the project. In this platform the project managers make

out a handbook in which all the basics and essentials

about the project are laid out. It is a rich knowledge
about managers experience and view about the work

atmosphere to be created and maintained. The research

in the handbook enhances the previous knowledge

about a software’s project management. This handbook
becomes the shared knowledge from personal

knowledge and aids in the development of the

software’s project. The basics and the use of expert
knowledge in managing a software project are the key

factors in a proper development of the project.

I. INTRODUCTION

Software project management is the art and science

of planning and leading of software projects.

The challenges in software development are vast, and

considerable research has addressed how these

challenges can be met by passing on experience, hard

earned knowledge, and well-proven practices to other

software developers and managers . This has, in

particular, been studied from a knowledge sharing

perspective. This,however cannot be done useless

there is accurate information and how this is provided

will be explored.

II. MAKING SENSE OF SOFTWARE PROJECT

MANAGEMENT

A software project has two main activity

dimensions:engineering and project management.A

software development process is concerned primarily

with the production aspect of software development,

as opposed to the technical aspect, such as software

tools. These processes exist primarily for supporting

the management of software development, and are

generally skewed toward addressing business

concerns. Many software development processes can

be run in a similar way to general project

management processes. Examples are:

Risk management is the process of measuring or

assessing risk and then developing strategies to

manage the risk. In general, the strategies employed

include transferring the risk to another party,

avoiding the risk, reducing the negative effect of the

risk, and accepting some or all of the consequences

of a particular risk. Risk management in software

project management begins with the business case for

starting the project, which includes a cost-benefit

analysis as well as a list of fallback options for

project failure, called a contingency plan.

A subset of risk management that is gaining more

and more attention is Opportunity Management,

which means the same thing, except that the potential

risk outcome will have a positive, rather than a

negative impact. Though theoretically handled in the

same way, using the term "opportunity" rather than

the somewhat negative term "risk" helps to keep a

team focused on possible positive outcomes of any

given risk register in their projects, such as spin-off

projects, windfalls, and free extra resources.

Requirements management is the process of

identifying, eliciting, documenting, analyzing,

tracing, prioritizing and agreeing on requirements and

then controlling change and communicating to

relevant stakeholders. New or altered computer

system[1] Requirements management, which

includes Requirements analysis, is an important part

Project management is the application of

knowledge ,skills,tools andtechniques to project

activities to meet project requirenments of the

software engineering process; whereby business

analysts or software developers identify the needs or

requirements of a client; having identified these

requirements they are then in a position to design a

solution.

Change management is the process of identifying,

documenting, analyzing, prioritizing and agreeing on

changes to scope (project management) and then

controlling changes and communicating to relevant

stakeholders. Change impact analysis of new or

altered scope, which includes Requirements analysis

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100504 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 75

at the change level, is an important part of the

software engineering process; whereby business

analysts or software developers identify the altered

needs or requirements of a client; having identified

these requirements they are then in a position to re-

design or modify a solution. Theoretically, each

change can impact the timeline and budget of a

software project, and therefore by definition must

include risk-benefit analysis before approval.

Software configuration management is the process

of identifying, and documenting the scope itself,

which is the software product underway, including all

sub-products and changes and enabling

communication of these to relevant stakeholders. In

general, the processes employed include version

control, naming convention (programming), and

software archival agreements.

Release management is the process of identifying,

documenting, prioritizing and agreeing on releases of

software and then controlling the release schedule

and communicating to relevant stakeholders. Most

software projects have access to three software

environments to which software can be released;

Development, Test, and Production. In very large

projects, where distributed teams need to integrate

their work before releasing to users, there will often

be more environments for testing, called unit testing,

system testing, or integration testing, before release

to User acceptance testing (UAT).

A subset of release management that is gaining

more and more attention is Data Management, as

obviously the users can only test based on data that

they know, and "real" data is only in the software

environment called "production". In order to test their

work, programmers must therefore also often create

"dummy data" or "data stubs". Traditionally, older

versions of a production system were once used for

this purpose, but as companies rely more and more

on outside contributors for software development,

company data may not be released to development

teams. In complex environments, datasets may be

created that are then migrated across test

environments according to a test release schedule,

much like the overall software release schedule.

III. THEORETICAL FRAMEWORK

Structure of Development Plan

1. Introduction brief intro to project —references to

requirements spec

2. Project organisation intro to organisations, people,

and their roles

3. Risk Analysis what are the key risks to the project?

4. Hardware and software resources what h/ware and

s/ware resources will be required for the project

and when?

5. Work breakdown the project divided into

activities, milestones, deliverables; dependencies

between tasks etc

6. Project schedule actual time required —allocation

of dates

7. Reporting and progress measurement mechanisms

to monitor progress.

Work Breakdown

_ There are many ways of breaking down the

activities in a project, but the most usual is into:

– work packages;

– tasks;

– deliverables;

– milestones.

- A workpackage is a large, logically distinct section

of work:

– typically at least 12 months duration;

– may include multiple concurrent activities;

– independent of other activities;

– but may depend on, or feed into other activities;

– typically allocated to a single team.

_ A task is typically a much smaller piece of work:

A part of a workpackage.

– typically 3–6 person months effort;

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100504 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 76

– may be dependent on other concurrent activities;

– typically allocated to a single person.

_ A deliverable is an output of the project that can

meaningfully be assessed.

Examples:

– a report (e.g., requirements spec);

– code (e.g., alpha tested product).

Deliverables are indicators (but only indicators) of

progress.

_ A milestone is a point at which progress on the

project may be assessed.

Typically a major turning point in the project.

EXAMPLES:

– delivery of requirements spe. . .

– work packages are numbered WP1, WP2, . . . ;

– tasks are numbered T1.1, T1.2, etc, the first number

is the number of the workpackage; the second is a

sequence number.

– deliverables are numbered D1.1, D1.2, etc

– milestones are numbered M1, M2 etc.

_ For each workpackage & task, it is usual to

document:

– brief description;

– earliest start date;

– earliest end date;

– total person months effort;

– pre-requisite WPs or tasks;

– dependent WPs or tasks;

– who is responsible.

3.1 Creating

The cognitive processes in the first period of creating

are based on the understanding that or-ganizational

members notice in particular the parts of the ongoing

flow of information that they are exposed to.

IV. CONCLUSION

In this article we addressed the research questions of

how software project managers draw on software

project issues and how to work on them collectively.

The framework is usually important to work in an

organized way.

REFERENCES

[1] Alavi, M., and Leidner, D. E., (2001).

Review: Knowledge Management and

Knowledge Management Systems:

Conceptual Foundation and Research

Issues. MIS Quarterly, (25:1): 107-136.

[2] Althoff, K.-D., Bomarius, F., and Tautz,
C., (2000a). Knowledge Management for
Building Learning Software
Organizations. Information Systems
Frontiers, (2:3-4): 349-367.

[3] Althoff, K. D., Müller, W., Nick, M., and Snoek,

B., (2000b). KM-PEB: An Online Experience

Base on Knowledge Management Technology. In:

Advances in Case-Based Reasoning. Proc. of the

5th European Workshop on Case-Based

Reasoning (EWCBR’00), E. Blanzieri and L.

Portinale, editors, Springer, Berlin.

[4] Arent, J., and Nørbjerg, J., (2000).

Software Process Improvement as

Organizational Knowl-edge Creation—A

multiple case analysis. In: Proceedings of

the 33rd Hawaii International Conference

on System Sciences, Wailea, Hawaii, p.

11.

