
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100506 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 77

SOFTWARE DEVELOPMENT LIFE CYCLE MODELS

Rahul Yadav, Rajeev Ranjan

Student, Department of Information Technology

Dronacharya College Of Engineering

Abstract- In present all software systems are not perfect

because they cannot be built with mathematical or

physical certainty. In the era of software development

there exist an outsized variety of Models to develop

software. Each model has its own characteristics,

limitations and dealing surroundings. In step with the

wants, software industry people use completely

different models to develop different software. There

are numerous models however none of them is capable

to address the problems of client satisfaction. Thus in

this research paper the comparison of various software

development models has been carried out. According

SDLC each and every model has the advantage and

drawbacks so in this research we have to calculate the

performance of each model on behalf of some important

features. Many models were suggested like waterfall,

Incremental model, spiral model etc. We also discussed

new free flow SDLC model for software development.

Index Terms- Software Development Life cycle (SDLC),

Software lifecycle, and software development.

I. INTRODUCTION

A software development method, conjointly referred

to as a software development life cycle (SDLC),

could be a structure imposed on the development of a

software product. It is often thought-about as a set of

system development life cycle. There are many

models for such processes, each describing

approaches to a range of activities that take place

throughout the method.

A software life cycle model is either a descriptive or

prescriptive characterization of how software is or

should be developed. A descriptive model describes

the history of how a particular software system was

developed. Descriptive models may be used as the

basis for understanding and improving software

development processes or for building empirically

grounded prescriptive models. None of these models

deals with the concept of rigorous requirement

gathering management and robust testing techniques.

Requirement gathering is the process through which

requirements of the software to be built is gathered

and obtained by its users and Testing is the technique

wherein the developed software is tested through

different phases to check the stability and robustness

of the software. In this paper, we are dealing with and

augmenting different phases of Software

Development Lifecycle Model (SDLC) which helps

us in providing an efficient, reliable, easy to

implement and effective during and after

implementation.

II. SOFTWARE DEVELOPMENT MODELS

(1) Waterfall Model - The Waterfall model

is a conventional, linear, sequential or

traditional waterfall software life cycle

model. It is a sequential development

approach, in which development is seen as

flowing steadily downwards through the

phases of requirements analysis, design,

implementation, testing (validation),

integration, and maintenance.

Advantages – It is simple to use and understand and

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100506 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 78

each stage has well defined deliverable.

Disadvantages - Small changes or errors that arise in

the completed software may cause a lot of problems.

Its biggest disadvantage is that you cannot go back a

step. Another major disadvantage of the waterfall

model is that, until the final stage of the development

cycle is complete, a working model of the software

does not lie in the hands of the client.

(2) Spiral Model - The Spiral model defined by

Barry Boehm, which describes a model where a

prototype is refined to a product or system in a series

of cycles. The governing idea is that each cycle starts

with risk evaluation, and not until the risk is resolved

does the cycle continue with implementation and

testing. (These tasks can very well be carried out with

any development model, for example the sequential.)

In the end of each cycle, there is a usable prototype,

in early cycles with limited functionality, which is

evaluated – if more functionality is needed, another

cycle starts.

Advantages - Better productivity through reuse

capabilities, Proper control over cost, time and

manpower requirement for a project work, Errors are

eliminated in early phases of project development

only.

Disadvantages - This model requires risk

identification, its projection, risk assessment and risk

management which is not an easy task. Cost and time

estimations are also not very easy. This model is not

suitable for smaller project as then the cost of risk

analysis is greater than cost of the entire project.

(3) Incremental Model - With incremental

development lifecycle models, risk of developing the

wrong thing is reduced “by breaking the project into

a series of small subprojects. The total scope of work

is decomposed to smaller chunks of work,

increments, based on the risks, architecture and/or the

requirements. In incremental models, as in sequential

models, the overall requirements of the final system

or product are known at the start of the development.

In incremental models however a limited set of

requirements is allocated to each increment and with

each successive (internal) release more requirements

are addressed until the final (external) release

satisfies all requirements. One risk with the

incremental approach is that the first releases

addresses such a limited set of requirements that the

customer could be dissatisfied, one opportunity on

the other hand is that wrong or missing requirements

can be corrected in time.

Advantages - Generates working software

quickly and early during the software life cycle.

This model is more flexible – less costly to

change scope and requirements. It is easier to test

and debug during a smaller iteration. In this model

customer can respond to each built. Lowers initial

delivery cost. Easier to manage risk because risky

pieces are identified and handled during it’d

iteration.

Disadvantages - Needs good planning and

design. Needs a clear and complete definition of

the whole system before it can be broken down

and built incrementally

(4) Free Flow Model – It is a new SDLC model. The

architecture of the model is based on the organized

phases of SDLC and the free flow of control between

these phases. The up and down arrows denote the

flow of control during software development in any

direction i.e. upwards or downwards.

With each phase a definite output matrix is associated

which helps to keep track on the development

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100506 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 79

activities and modify them according to the

requirement of the project. Free-Flow Model

eliminates the risks and errors in early stages through

pipelined flow of processes and control. Complete

architecture of Free-Flow Model is shown as below

in Figure.

FREE-FLOW SDLC FEATURES

Requirement Capture We capture requirements

through conference calls, interfacing with on-site

resources, client side visits and studying existing

code and implementations.

Prototype and High Level Diagrams Documents

are always necessary in a well-defined process but it

is very difficult for customers to figure out upfront

what they will get for their money. Prototype and

High level diagrams help the clients to have a clue of

what will be delivered after coding.

Module releases - Every project is divided into

multiple modules. As soon as a module is completed

we send the demonstration version to the customer.

This enables customers to track progress and notify

us with any change in flow.

Check-List Method From planning to development,

drastically reducing the commonly made mistakes by

developers while coding, releasing and deploying

Well-Defined Architecture The above architecture

helps us to train newly recruited developers and

leaders quickly. The responsibilities are clearly

defined at every stage which helps in improving the

efficiency during the development.

III. PERFORMANCE EVALUATION

IV. CONCLUSION

After analysis of all models through the various

factors, it has been found that the original water fall

model is used by various big companies for their

internal projects .Since the development team is

familiar to the environment and it is feasible to

specify all requirements of working environment.

Spiral model is used for development of large,

complicated and expensive projects like scientific

Projects .Since spiral model approach enables the

project term to address the highest risk at the lowest

total cost. The proposed work can be summarized as

the creation of the approach FREE-FLOW SDLC to

develop software more efficiently. The aim of

Software Engineering is to develop software of high

quality within budget and schedule. The proposed

plan tries to fulfil the objective of Software

Engineering by defining a well-defined procedure

and targets for the client to discover the requirements

efficiently from the client in order to estimate cost,

schedule and effort more accurately and map them

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100506 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 80

further in the development lifecycle. With the

proposed work, the effectiveness of optimization has

been studied carefully. Further investigation to the

topic reveals that FREE-FLOW SDLC can give good

results. The concept has been worked out and can be

used in future.

REFERENCES

[1]http://www.idt.mdh.se/kurser/ISD_cdt417/files/art

icles/paper5.pdf

[2]http://www.ijarcsse.com/docs/papers/Volume_3/9

_September2013/V3I9-0191.pdf

[3]http://www.ijarcsse.com/docs/papers/May2012/Vo

lum2_issue5/V2I500405.pdf

[4] http://software-

security.sans.org/resources/paper/cissp/comparison-

software-development-lifecycle-methodologies

[5]https://www.google.co.in/?gfe_rd=cr&ei=471VV

NL6BcnM8gemzYCQCw&gws_r=ssl#q=advantage+

and+disadvantage+of+incremental+model

