
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100507 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 81

ARRAY DATA STRUCTURE

Isha Batra, Divya Raheja

Information Technology

Dronacharya College Of Engineering, Farukhnagar,Gurgaon

Abstract- In computer science, an array data structure

or simply an array is a data structure consisting of a

collection of elements (values or variables), each

identified by at least one array index or key. An array is

stored so that the position of each element can be

computed from its index tuple by a mathematical

formula. The simplest type of data structure is a linear

array, also called one-dimensional array. For example,

an array of 10 32-bit integer variables, with indices 0

through 9, may be stored as 10 words at memory

addresses 2000, 2004, 2008, … 2036, so that the element

with index i has the address 2000 + 4 × i. The term array

is often used to mean array data type, a kind of data

type provided by most high-level programming

languages that consists of a collection of values or

variables that can be selected by one or more indices

computed at run-time. Array types are often

implemented by array structures; however, in some

languages they may be implemented by hash tables,

linked lists, search trees, or other data structures.

Arrays are used to implement mathematical vectors and

matrices, as well as other kinds of rectangular tables.

Many databases, small and large, consist of (or include)

one-dimensional arrays whose elements are records.

Index Terms- data type , structures ,vectors, dynamic

memory allocation, identifiers

I. INTRODUCTION

Arrays are among the oldest and most important data

structures, and are used by almost every program.

They are also used to implement many other data

structures, such as lists and strings. They effectively

exploit the addressing logic of computers. In most

modern computers and many external storage

devices, the memory is a one-dimensional array of

words, whose indices are their addresses. Processors,

especially vector processors, are often optimized for

array operations.Arrays are useful mostly because the

element indices can be computed at run time. Among

other things, this feature allows a single iterative

statement to process arbitrarily many elements of an

array. For that reason, the elements of an array data

structure are required to have the same size and

should use the same data representation. The set of

valid index tuples and the addresses of the elements

(and hence the element addressing formula) are

usually but not always fixed while the array is in use.

The term array is often used to mean array data type,

a kind of data type provided by most high-level

programming languages that consists of a collection

of values or variables that can be selected by one or

more indices computed at run-time. Array types are

often implemented by array structures; however, in

some languages they may be implemented by hash

tables, linked lists, search trees, or other data

structures. The term is also used, especially in the

description of algorithms, to mean associative array

or "abstract array", a theoretical computer science

model (an abstract data type or ADT) intended to

capture the essential properties of arrays.

 APPLICATIONS

Arrays are used to implement mathematical vectors

and matrices, as well as other kinds of rectangular

tables. Many structures small and large, consist of (or

include) one-dimensional arrays whose elements are

records.Arrays are used to implement other data

structures, such as heaps, hash tables, deques, queues,

stacks, strings, and VLists. One or more large arrays

are sometimes used to emulate in-program dynamic

memory allocation, particularly memory pool

allocation. Historically, this has sometimes been the

only way to allocate "dynamic memory" portably.

Arrays can be used to determine partial or complete

control flow in programs, as a compact alternative to

(otherwise repetitive) multiple IF statements. They

are known in this context as control tables and are

used in conjunction with a purpose built interpreter

whose control flow is altered according to values

contained in the array. The array may contain

subroutine pointers (or relative subroutine numbers

that can be acted upon by SWITCH statements) that

direct the path of the execution.

 ELEMENTS IDENTIFIER AND

ADDRESSING FORMULAS

When data objects are stored in an array, individual

objects are selected by an index that is usually a non-

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100507 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 82

negative scalar integer. Indices are also called

subscripts. An index maps the array value to a stored

object. There are three ways in which the elements of

an array can be indexed:

 0 (zero-based indexing): The first element of

the array is indexed by subscript of 0.

 1 (one-based indexing): The first element of

the array is indexed by subscript of 1.

 n (n-based indexing): The base index of an

array can be freely chosen. Usually

programming languages allowing n-based

indexing also allow negative index values

and other scalar data types like

enumerations, or characters may be used as

an array index.

Arrays can have multiple dimensions, thus it is not

uncommon to access an array using multiple indices.

For example a two-dimensional array A with three

rows and four columns might provide access to the

element at the 2nd row and 4th column by the

expression A[1, 3] (in a row major language) or A[3,

1] (in a column major language) in the case of a zero-

based indexing system. Thus two indices are used for

a two-dimensional array, three for a three-

dimensional array, and n for an n-dimensional

array.The number of indices needed to specify an

element is called the dimension, dimensionality, or

rank of the array.In standard arrays, each index is

restricted to a certain range of consecutive integers

(or consecutive values of some enumerated type), and

the address of an element is computed by a "linear"

formula on the indices.

 One-dimensional arrays

A one-dimensional array (or single dimension array)

is a type of linear array. Accessing its elements

involves a single subscript which can either represent

a row or column index.As an example consider the C

declaration int anArrayName[10];Syntax : datatype

anArrayname[sizeofArray];In the given example the

array can contain 10 elements of any value available

to the int type. In C, the array element indices are 0-9

inclusive in this case. For example, the expressions

anArrayName[0] and anArrayName[9] are the first

and last elements respectively. For a vector with

linear addressing, the element with index i is located

at the address B + c × i, where B is a fixed base

address and c a fixed constant, sometimes called the

address increment or stride. If the

valid element indices begin at 0, the constant B is

simply the address of the first element of the array.

For this reason, the C programming language

specifies that array indices always begin at 0; and

many programmers will call that element "zeroth"

rather than "first".

However, one can choose the index of the first

element by an appropriate choice of the base address

B. For example, if the array has five elements,

indexed 1 through 5, and the base address B is

replaced by B + 30c, then the indices of those same

elements will be 31 to 35. If the numbering does not

start at 0, the constant B may not be the address of

any element.

 Multidimensional arrays

For a two-dimensional array, the element with

indices i,j would have address B + c · i + d · j, where

the coefficients c and d are the row and column

address increments, respectively.More generally, in a

k-dimensional array, the address of an element with

indices i1, i2, …, ik is

B + c1 · i1 + c2 · i2 + … + ck · ik.For example:

int a[3][2];

This means that array a has 3 rows and 2 columns,

and the array is of integer type. Here we can store 6

elements they are stored linearly but starting from

first row linear then continuing with second row. The

above array will be stored as a11, a12, a13, a21, a22, a23.

This formula requires only k multiplications and k

additions, for any array that can fit in memory.

Moreover, if any coefficient is a fixed power of 2, the

multiplication can be replaced by bit shifting.

The coefficients ck must be chosen so that every valid

index tuple maps to the address of a distinct element.

If the minimum legal value for every index is 0, then

B is the address of the element whose indices are all

zero. As in the one-dimensional case, the element

indices may be changed by changing the base address

B. Thus, if a two-dimensional array has rows and

columns indexed from 1 to 10 and 1 to 20,

respectively, then replacing B by B + c1 - − 3 c1 will

cause them to be renumbered from 0 through 9 and 4

through 23, respectively. Taking advantage of this

feature, some languages (like FORTRAN 77) specify

that array indices begin at 1, as in mathematical

tradition; while other languages (like Fortran 90,

Pascal and Algol) let the user choose the minimum

value for each index.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100507 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 83

II. COMPACT LAYOUTS

Often the coefficients are chosen so that the elements

occupy a contiguous area of memory. However, that

is not necessary. Even if arrays are always created

with contiguous elements, some array slicing

operations may create non-contiguous sub-arrays

from them.

There are two systematic compact layouts for a two-

dimensional array. For example, consider the matrix

In the row-major order layout (adopted by C for

statically declared arrays), the elements in each row

are stored in consecutive positions and all of the

elements of a row have a lower address than any of

the elements of a consecutive row:

1 2 3 4 5 6 7 8 9

In column-major order (traditionally used by

Fortran), the elements in each column are

consecutive in memory and all of the elements of a

column have a lower address than any of the

elements of a consecutive column:

1 4 7 2 5 8 3 6 9

For arrays with three or more indices, "row major

order" puts in consecutive positions any two elements

whose index tuples differ only by one in the last

index. "Column major order" is analogous with

respect to the first index.

In systems which use processor cache or virtual

memory, scanning an array is much faster if

successive elements are stored in consecutive

positions in memory, rather than sparsely scattered.

Many algorithms that use multidimensional arrays

will scan them in a predictable order. A programmer

(or a sophisticated compiler) may use this

information to choose between row- or column-major

layout for each array. For example, when computing

the product A·B of two matrices, it would be best to

have A stored in row-major order, and B in column-

major order.

III. RESIZING

Static arrays have a size that is fixed when they are

created and consequently do not allow elements to be

inserted or removed. However, by allocating a new

array and copying the contents of the old array to it, it

is possible to effectively implement a dynamic

version of an array; see dynamic array. If this

operation is done infrequently, insertions at the end

of the array require only amortized constant

time.Some array data structures do not reallocate

storage, but do store a count of the number of

elements of the array in use, called the count or size.

This effectively makes the array a dynamic array

with a fixed maximum size or capacity; Pascal strings

are examples of this.

IV. NON-LINEAR FORMULAS

More complicated (non-linear) formulas are

occasionally used. For a compact two-dimensional

triangular array, for instance, the addressing formula

is a polynomial of degree 2.

V. EFFICIENCY

Both store and select take (deterministic worst case)

constant time. Arrays take linear (O(n)) space in the

number of elements nthat they hold. In an array with

element size k and on a machine with a cache line

size of B bytes, iterating through an array of n

elements requires the minimum of ceiling(nk/B)

cache misses, because its elements occupy

contiguous memory locations. This is roughly a

factor of B/k better than the number of cache misses

needed to access n elements at random memory

locations. As a consequence, sequential iteration over

an array is noticeably faster in practice than iteration

over many other data structures, a property called

locality of reference (this does not mean however,

that using a perfect hash or trivial hash within the

same (local) array, will not be even faster - and

achievable in constant time). Libraries provide low-

level optimized facilities for copying ranges of

memory (such as memcpy) which can be used to

move contiguous blocks of array elements

significantly faster than can be achieved through

individual element access. The speedup of such

optimized routines varies by array element size,

architecture, and implementation. Memory-wise,

arrays are compact data structures with no per-

element overhead. There may be a per-array

overhead, e.g. to store index bounds, but this is

language-dependent. It can also happen that elements

stored in an array require less memory than the same

elements stored in individual variables, because

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100507 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 84

several array elements can be stored in a single word;

such arrays are often called packed arrays. An

extreme (but commonly used) case is the bit array,

where every bit represents a single element. A single

octet can thus hold up to 256 different combinations

of up to 8 different conditions, in the most compact

form.Array accesses with static.

VI. COMPARISON WITH OTHER DATA STRUCTURES

Comparison of list data structures

Linked list Array

Dynamic

array

Balanced

tree

Random access

list

Indexing Θ(n) Θ(1) Θ(1) Θ(log n) Θ(log n)

Insert/delete at

beginning
Θ(1) N/A Θ(n) Θ(log n) Θ(1)

Insert/delete at end

Θ(n) when last element is

unknown;

Θ(1) when last element is

known

N/A
Θ(1)

amortized
Θ(log n)

Θ(log n)

updating

Insert/delete in

middle
search time + Θ(1) N/A Θ(n) Θ(log n)

Θ(log n)

updating

Wasted space

(average)
Θ(n) 0 Θ(n) Θ(n) Θ(n)

Growable arrays are similar to arrays but add the

ability to insert and delete elements; adding and

deleting at the end is particularly efficient. However,

they reserve linear (Θ(n)) additional storage, whereas

arrays do not reserve additional storage.

Associative arrays provide a mechanism for array-

like functionality without huge storage overheads

when the index values are sparse. For example, an

array that contains values only at indexes 1 and 2

billion may benefit from using such a structure.

Specialized associative arrays with integer keys

include Patricia tries, Judy arrays, and van Emde

Boas trees.

Balanced trees require O(log n) time for indexed

access, but also permit inserting or deleting elements

in O(log n) time, whereas growable arrays require

linear (Θ(n)) time to insert or delete elements at an

arbitrary position.

Linked lists allow constant time removal and

insertion in the middle but take linear time for

indexed access. Their memory use is typically worse

than arrays, but is still linear.

An Iliffe vector is an alternative to a

multidimensional array structure. It uses a one-

dimensional array of references to arrays of one

dimension less. For two dimensions, in particular,

this alternative structure would be a vector of

pointers to vectors, one for each row. Thus an

element in row i and column j of an array A would be

accessed by double indexing (A[i][j] in typical

notation). This alternative structure allows ragged or

jagged arrays, where each row may have a different

http://en.wikipedia.org/wiki/File:Array_of_array_storage.svg

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100507 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 85

size — or, in general, where the valid range of each

index depends on the values of all preceding indices.

It also saves one multiplication (by the column

address increment) replacing it by a bit shift (to index

the vector of row pointers) and one extra memory

access (fetching the row address), which may be

worthwhile in some architectures.

REFRENCES

[1] Black, Paul E. (13 November 2008). "arraY".

Dictionary of Algorithms and Data Structures.

National Institute of Standards and Technology.

Retrieved 22 August 2010.

[2] Bjoern Andres; Ullrich Koethe; Thorben

Kroeger; Hamprecht (2010). "Runtime-Flexible

Multi-dimensional Arrays and Views for C++98

and C++0x".

[3] Garcia, Ronald; Lumsdaine, Andrew (2005).

"MultiArray: a C++ library for generic

programming with arrays". Software: Practice

and Experience 35 (2): 159–188.

[4] David R. Richardson (2002), The Book on Data

Structures. iUniverse, 112 pages,

[5] T. Veldhuizen. Arrays in Blitz++. In Proc. of the

2nd Int. Conf. on Scientific Computing in

Object-Oriented Parallel Environments

(ISCOPE), LNCS 1505, pages 223-220.

Springer, 1998.

[6] http://en.wikipedia.org/wiki/Array_data_structur

e

