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Abstract- The propositional calculus (PC) is a formal 

language that adequately represents the set of valid 

(truth preserving) inferences which depend on 

coordinate expressions such as and, or, not, if…then…, 

if and only if.  From the optic of PC, we are only 

interested in those inferences whose validity depends on 

the role of these expressions. 
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Although it is possible to construct an abstract formal 

calculus that has no immediate practical use and next to 

nothing in the way of obvious applications, the very 

name calculus indicates that this species of formal 

system owes its origin to the utility of its prototypical 

members in practical calculation. Generally speaking, 

any mathematical calculus is designed with the 

intention of representing a given domain of formal 

objects, and typically with the aim of facilitating the 

computations and inferences that need to be carried out 

in this representation. Thus some idea of the intended 

denotation, the formal objects that the formulas of the 

calculus are intended to denote, is given in advance of 

developing the calculus itself. 

Index Terms-  Calculus , prototypical 

I. INTRODUCTION 

In mathematical logic, a propositional calculus or 

logic (also called sentential calculus or sentential 

logic) is a formal system in which formulas of a 

formal language  may be interpreted to represent 

propositions. A system of inference rules and axioms 

allows certain formulas to be derived. These derived 

formulas are called theorems and may be interpreted 

to be true propositions. A constructed sequence of 

such formulas is known as a derivation or proof and 

the last formula of the sequence is the theorem. The 

derivation may be interpreted as proof of the 

proposition represented by the theorem.Usually in 

Truth-functional propositional logic, formulas are 

interpreted as having either a truth value of true or a 

truth value of falseTruth-functional propositional 

logic and systems isomorphic to it, are considered to 

be zeroth-order logic. 

Our propositional calculus has ten inference rules. 

These rules allow us to derive other true formulas 

given a set of formulas that are assumed to be true. 

The first eight simply state that we can infer certain 

wffs from other wffs. The last two rules however use 

hypothetical reasoning in the sense that in the 

premise of the rule we temporarily assume an 

(unproven) hypothesis to be part of the set of inferred 

formulas to see if we can infer a certain other 

formula. Since the first eight rules don't do this they 

are usually described as non-hypothetical rules, and 

the last two as hypothetical rules.  

Double negative elimination 

From the wff ¬ ¬ φ, we may infer φ  

Conjunction introduction 

From any wff φ and any wff ψ, we may infer ( φ ∧ ψ 

).  

Conjunction elimination 

From any wff ( φ ∧ ψ ), we may infer φ and ψ  

Disjunction introduction 

From any wff φ, we may infer (φ ∨ ψ) and (ψ ∨ φ), 

where ψ is any wff.  

Disjunction elimination 

From the wffs of the form ( φ ∨ ψ ), ( φ → χ ), and ( ψ 

→ χ ), we may infer χ.  

Biconditional introduction 

From the wffs of the form ( φ → ψ ) and ( ψ → φ ), 

we may infer ( φ ↔ ψ ).  

Biconditional elimination 
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From the wff ( φ ↔ ψ ), we may infer ( φ → ψ ) and ( 

ψ → φ ).  

Modus ponens 

From the wffs of the form φ and ( φ → ψ ), we may 

infer ψ.  

Conditional proof 

If ψ can be derived while assuming the hypothesis φ, 

we may infer ( φ → ψ ).  

Reductio ad absurdum 

If we can derive both ψ and ¬ ψ while assuming the 

hypothesis φ, we may infer ¬ φ.  

II. EXAMPLE OF A PROOF 

The following is an example of a (syntactical) 

demonstration:  

Prove:  

Proof:  

Number  wff  Justification  

1  
 

p  

2  
 

From (1) by 

disjunction 

introduction  

3  
 

From (1) and (2) by 

conjunction 

introduction  

4  
 

From (3) by 

conjunction 

elimination  

5  
 

Summary of (1) 

through (4)  

6  
 

From (5) by 

conditional proof  

Interpret as "Assuming A, infer A". Read 

as "Assuming nothing, infer that A 

implies A," or "It is a tautology that A implies A," or 

"It is always true that A implies A."  

BASIC   CALCULUS 

The following outlines a standard propositional 

calculus. Many different formulations exist which are 

all more or less equivalent but differ in the details of: 

1. their language, that is, the particular 

collection of primitive symbols and operator 

symbols, 

2. the set of axioms, or distinguished formulas, 

and 

3. the set of inference rules. 

Any given proposition may be represented with a 

letter called a 'propositional constant', analogous to 

representing a number by a letter in mathematics, for 

instance, a = 5. All propositions require exactly one 

of two truth-values: true or false. For example, let P 

be the proposition that it is raining outside. This will 

be true (P) if it is raining outside and false otherwise 

(¬P). 

 We then define truth-functional operators, 

beginning with negation. (¬P represents the 

negation of P, which can be thought of as 

the denial of P. In the example above, (¬P 

expresses that it is not raining outside, or by 

a more standard reading: "It is not the case 

that it is raining outside." When P is true, 

(¬P is false; and when P is false, (¬P is true. 

{(¬¬P always has the same truth-value as P. 

 Conjunction is a truth-functional connective 

which forms a proposition out of two 

simpler propositions, for example, P and Q. 

The conjunction of P and Q is written P ∧ 

Q, and expresses that each are true. We read 

P ∧ Q for "P and Q". For any two 

propositions, there are four possible 

assignments of truth values:  

1. P is true and Q is true 

2. P is true and Q is false 

3. P is false and Q is true 

4. P is false and Q is false 

The conjunction of P and Q is true in case 1 

and is false otherwise. Where P is the 

proposition that it is raining outside and Q is 

the proposition that a cold-front is over 

Kansas, P ∧ Q is true when it is raining 

outside and there is a cold-front over 

Kansas. If it is not raining outside, then P ∧ 

Q is false; and if there is no cold-front over 

Kansas, then P ∧ Q is false. 

 Disjunction resembles conjunction in that it 

forms a proposition out of two simpler 

propositions. We write it P ∨ Q, and it is 

read "P or Q". It expresses that either P or Q 

is true. Thus, in the cases listed above, the 

disjunction of P and Q is true in all cases 

except 4. Using the example above, the 
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disjunction expresses that it is either raining 

outside or there is a cold front over Kansas. 

(Note, this use of disjunction is supposed to 

resemble the use of the English word "or". 

However, it is most like the English 

inclusive "or", which can be used to express 

the truth of at least one of two propositions. 

It is not like the English  exclusive"or", 

which expresses the truth of exactly one of 

two propositions. That is to say, the 

exclusive "or" is false when both P and Q 

are true (case 1). An example of the 

exclusive or is: You may have a bagel or a 

pastry, but not both. Often in natural 

language, given the appropriate context, the 

addendum "but not both" is omitted but 

implied. In mathematics, however, "or" is 

always inclusive or; if exclusive or is meant 

it will be specified, possibly by "xor".) 

 Material conditional also joins two simpler 

propositions, and we write P → Q, which is 

read "if P then Q". The proposition to the 

left of the arrow is called the antecedent and 

the proposition to the right is called the 

consequent. (There is no such designation 

for conjunction or disjunction, since they are 

commutative operations.) It expresses that Q 

is true whenever P is true. Thus it is true in 

every case above except case 2, because this 

is the only case when P is true but Q is not. 

Using the example, if P then Q expresses 

that if it is raining outside then there is a 

cold-front over Kansas. The material 

conditional is often confused with physical 

causation. The material conditional, 

however, only relates two propositions by 

their truth-values—which is not the relation 

of cause and effect. It is contentious in the 

literature whether the material implication 

represents logical causation. 

 Biconditional joins two simpler 

propositions, and we write P ↔ Q, which is 

read "P if and only if Q". It expresses that P 

and Q have the same truth-value, thus P if 

and only if Q is true in cases 1 and 4, and 

false otherwise. 

It is extremely helpful to look at the truth tables for 

these different operators, as well as the method of 

analytic tableaux. 

Closure under operations 

Propositional logic is closed under truth-functional 

connectives. That is to say, for any proposition φ, ¬φ 

is also a proposition. Likewise, for any propositions φ 

and ψ, φ ∧ ψ is a proposition, and similarly for 

disjunction, conditional, and biconditional. This 

implies that, for instance, φ ∧ ψ is a proposition, and 

so it can be conjoined with another proposition. In 

order to represent this, we need to use parentheses to 

indicate which proposition is conjoined with which. 

For instance, P ∧ Q ∧ R is not a well-formed formula, 

because we do not know if we are conjoining P ∧ Q 

with R or if we are conjoining P with Q ∧ R. Thus we 

must write either (P ∧ Q) ∧ R to represent the former, 

or P ∧ (Q ∧ R) to represent the latter. By evaluating 

the truth conditions, we see that both expressions 

have the same truth conditions (will be true in the 

same cases), and moreover that any proposition 

formed by arbitrary conjunctions will have the same 

truth conditions, regardless of the location of the 

parentheses. This means that conjunction is 

associative, however, one should not assume that 

parentheses never serve a purpose. For instance, the 

sentence P ∧ (Q ∨ R) does not have the same truth 

conditions of (P ∧ Q) ∨ R, so they are different 

sentences distinguished only by the parentheses. One 

can verify this by the truth-table method referenced 

above. 

Note: For any arbitrary number of propositional 

constants, we can form a finite number of cases 

which list their possible truth-values. A simple way 

to generate this is by truth-tables, in which one writes 

P, Q, ..., Z, for any list of k propositional constants—

that is to say, any list of propositional constants with 

k entries. Below this list, one writes 2
k
 rows, and 

below P one fills in the first half of the rows with true 

(or T) and the second half with false (or F). Below Q 

one fills in one-quarter of the rows with T, then one-

quarter with F, then one-quarter with T and the last 

quarter with F. The next column alternates between 

true and false for each eighth of the rows, then 

sixteenths, and so on, until the last propositional 

constant varies between T and F for each row. This 

will give a complete listing of cases or truth-value 

assignments possible for those propositional 

constants. 

Argument 
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The propositional calculus then defines an argument 

to be a set of propositions. A valid argument is a set 

of propositions, the last of which follows from—or is 

implied by—the rest. All other arguments are invalid. 

The simplest valid argument is modus ponens, one 

instance of which is the following set of propositions: 

 
This is a set of three propositions, each line is a 

proposition, and the last follows from the rest. The 

first two lines are called premises, and the last line 

the conclusion. We say that any proposition C 

follows from any set of propositions 

, if C must be true whenever every 

member of the set is true. In the 

argument above, for any P and Q, whenever P → Q 

and P are true, necessarily Q is true. Notice that, 

when P is true, we cannot consider cases 3 and 4 

(from the truth table). When P → Q is true, we 

cannot consider case 2. This leaves only case 1, in 

which Q is also true. Thus Q is implied by the 

premises. 

This generalizes schematically. Thus, where φ and ψ 

may be any propositions at all, 

 
Other argument forms are convenient, but not 

necessary. Given a complete set of axioms (see below 

for one such set), modus ponens is sufficient to prove 

all other argument forms in propositional logic, thus 

they may be considered to be a derivative. Note, this 

is not true of the extension of propositional logic to 

other logics like first-order logic. First-order logic 

requires at least one additional rule of inference in 

order to obtain completeness.The significance of 

argument in formal logic is that one may obtain new 

truths from established truths. In the first example 

above, given the two premises, the truth of Q is not 

yet known or stated. After the argument is made, Q is 

deduced. In this way, we define a deduction system 

to be a set of all propositions that may be deduced 

from another set of propositions. For instance, given 

the set of propositions 

, we can define a deduction system, Γ, which is the 

set of all propositions which follow from A. 

Reiteration is always assumed, so 

. Also, from the first element of A, last element, as 

well as modus ponens, R is a consequence, and so 

. Because we have not included sufficiently 

complete axioms, though, nothing else may be 

deduced. Thus, even though most deduction systems 

studied in propositional logic are able to deduce 

, this one is too 

weak to prove such a proposition. 

Propositional calculus is about the simplest kind of 

logical calculus in any current use. (Aristotelian 

"syllogistic" calculus, which is largely supplanted in 

modern logic, is in some ways simpler--but in other 

ways more complex--than propositional calculus.) It 

can be extended in several ways.  

The most immediate way to develop a more complex 

logical calculus is to introduce rules that are sensitive 

to more fine-grained details of the sentences being 

used. When the "atomic sentences" of propositional 

logic are broken up into terms, variables, predicates, 

and quantifiers, they yield first-order logic, or first-

order predicate logic, which keeps all the rules of 

propositional logic and adds some new ones. (For 

example, from "All dogs are mammals" we may infer 

"If Rover is a dog then Rover is a mammal.) With the 

tools of first-order logic it is possible to formulate a 

number of theories, either with explicit axioms or by 

rules of inference, that can themselves be treated as 

logical calculi. Arithmetic is the best known of these; 

others include set theory and mereology. Modal logic 

also offers a variety of inferences that cannot be 

captured in propositional calculus. For example, from 

"Necessarily p" we may infer that p. From p we may 

infer "It is possible that p". Many-valued logics are 

those allowing sentences to have values other than 

true and false. (For example, neither and both are 

standard "extra values"; "continuum logic" allows 

each sentence to have any of an infinite number of 

"degrees of truth" between true and false.) These 

logics often require calculational devices quite 

distinct from propositional calculus.  
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