
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100516 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 108

SHARED MEMORY MULTIPROCESSOR-A

BRIEF STUDY

Shivangi Kukreja,Nikita Pahuja,Rashmi Dewan

Student,Computer Science&Engineering,Maharshi Dayanand University

Gurgaon,Haryana,India

Abstract- The intention of this paper is to provide an

overview on the subject of Advanced computer

Architecture. The overview includes its presence in

hardware and software and different types of

organization. This paper also covers different part of

shared memory multiprocessor. Through this paper we

are creating awareness among the people about this

rising field of multiprocessor. This paper also offers a

comprehensive number of references for each concept

in SHARED MEMORY MULTIPROCESSOR.

I. INTRODUCTION

In the mid-1980s, shared-memory multiprocessors

were pretty expensive and pretty rare. Now, as

hardware costs are dropping, they are becoming

commonplace. Many home computer systems in the

under-$3000 range have a socket for a second CPU.

Home computer operating systems are providing the

capability to use more than one processor to improve

system performance. Rather than specialized

resources locked away in a central computing

facility, these shared-memory processors are often

viewed as a logical extension of the desktop. These

systems run the same operating system (UNIX or

NT) as the desktop and many of the same

applications from a workstation will execute on these

multiprocessor servers.

Typically a workstation will have from 1 to 4

processors and a server system will have 4 to 64

processors. Shared-memory multiprocessors have a

significant advantage over other multiprocessors

because all the processors share the same view of the

memory, as shown in (Reference).

These processors are also described as uniform

memory access (also known as UMA) systems. This

designation indicates that memory is equally

accessible to all processors with the same

performance.

The popularity of these systems is not due simply to

the demand for high performance computing. These

systems are excellent at providing high throughput

for a multiprocessing load, and function effectively

as high-performance database servers, network

servers, and Internet servers. Within limits, their

throughput is increased linearly as more processors

are added.

In this paper we are not so interested in the

performance of database or Internet servers. That is

too passé; buy more processors, get better

throughput. We are interested in pure, raw,

unadulterated compute speed for our high

performance application. Instead of running hundreds

of small jobs, we want to utilize all $750,000 worth

of hardware for our single job.

The challenge is to find techniques that make a

program that takes an hour to complete using one

processor, complete in less than a minute using 64

processors. This is not trivial. Throughout this paper

so far, we have been on an endless quest for

parallelism.

The cost of a shared-memory multiprocessor can

range from $4000 to $30 million. Some example

systems include multiple-processor Intel systems

from a wide range of vendors, SGI Power Challenge

Series, HP/Convex C-Series, DEC AlphaServers,

Cray vector/parallel processors, and Sun Enterprise

systems. The SGI Origin 2000, HP/Convex

Exemplar, Data General AV-20000, and Sequent

NUMAQ-2000 all are uniform-memory, symmetric

multiprocessing systems that can be linked to form

even larger shared nonuniform memory-access

systems. Among these systems, as the price

increases, the number of CPUs increases, the

performance of individual CPUs increases, and the

memory performance increases.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100516 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 109

II. SHARED MEMORY MULTIPROCESSOR

ORGANIZATION

2.1) UMA

Uniform memory access (UMA) is a shared

memory architecture used in parallel computers. All

the processors in the UMA model share the physical

memory uniformly. In a UMA architecture, access

time to a memory location is independent of which

processor makes the request or which memory chip

contains the transferred data. Uniform memory

access computer architectures are often contrasted

with non-uniform memory access (NUMA)

architectures. In the UMA architecture, each

processor may use a private cache. Peripherals are

also shared in some fashion. The UMA model is

suitable for general purpose and time sharing

applications by multiple users. It can be used to speed

up the execution of a single large program in time

critical applications.

FIG 1

2.2) NUMA

Non-uniform memory access (NUMA) is a

computer memory design used in multiprocessing,

where the memory access time depends on the

memory location relative to the processor. Under

NUMA, a processor can access its own local memory

faster than non-local memory (memory local to

another processor or memory shared between

processors). The benefits of NUMA are limited to

particular workloads, notably on servers where the

data are often associated strongly with certain tasks

or users.

NUMA architectures logically follow in scaling from

symmetric multiprocessing (SMP) architectures.

They were developed commercially during the 1990s

by Burroughs (later Unisys), Convex Computer (later

Hewlett-Packard), Honeywell Information Systems

Italy (HISI) (later Groupe Bull), Silicon Graphics

(later Silicon Graphics International), Sequent

Computer Systems (later IBM), Data General (later

EMC), and Digital (later Compaq, now HP).

Techniques developed by these companies later

featured in a variety of Unix-likeoperating systems,

and to an extent in Windows NT

FIG 2

2.2.1) CCNUMA

Nearly all CPU architectures use a small amount of

very fast non-shared memory known as cache to

exploit locality of reference in memory accesses.

With NUMA, maintaining cache coherence across

shared memory has a significant overhead. Although

simpler to design and build, non-cache-coherent

NUMA systems become prohibitively complex to

program in the standard von Neumann architecture

programming model.

Typically, ccNUMA uses inter-processor

communication between cache controllers to keep a

consistent memory image when more than one cache

stores the same memory location. For this reason,

ccNUMA may perform poorly when multiple

processors attempt to access the same memory area

in rapid succession. Support for NUMA in operating

systems attempts to reduce the frequency of this kind

of access by allocating processors and memory in

NUMA-friendly ways and by avoiding scheduling

http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Parallel_computer
http://en.wikipedia.org/wiki/Non-uniform_memory_access
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Burroughs_large_systems
http://en.wikipedia.org/wiki/Unisys
http://en.wikipedia.org/wiki/Convex_Computer
http://en.wikipedia.org/wiki/Hewlett-Packard
http://en.wikipedia.org/wiki/Honeywell
http://en.wikipedia.org/wiki/Groupe_Bull
http://en.wikipedia.org/wiki/Silicon_Graphics
http://en.wikipedia.org/wiki/Silicon_Graphics_International
http://en.wikipedia.org/wiki/Sequent_Computer_Systems
http://en.wikipedia.org/wiki/Sequent_Computer_Systems
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Data_General
http://en.wikipedia.org/wiki/EMC_Corporation
http://en.wikipedia.org/wiki/Digital_Equipment_Corporation
http://en.wikipedia.org/wiki/Compaq
http://en.wikipedia.org/wiki/HP
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Windows_NT
http://en.wikipedia.org/wiki/CPU_cache
http://en.wikipedia.org/wiki/Locality_of_reference
http://en.wikipedia.org/wiki/Cache_coherence
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100516 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 110

and locking algorithms that make NUMA-unfriendly

accesses necessary.

Alternatively, cache coherency protocols such as the

MESIF protocol attempt to reduce the

communication required to maintain cache

coherency. Scalable Coherent Interface (SCI) is an

IEEE standard defining a directory-based cache

coherency protocol to avoid scalability limitations

found in earlier multiprocessor systems. For example,

SCI is used as the basis for the NumaConnect

technology.

As of 2011, ccNUMA systems are multiprocessor

systems based on the AMD Opteron processor, which

can be implemented without external logic, and the

IntelItanium processor, which requires the chipset to

support NUMA. Examples of ccNUMA-enabled

chipsets are the SGI Shub (Super hub), the Intel

E8870, the HP sx2000 (used in the Integrity and

Superdome servers), and those found in NEC

Itanium-based systems. Earlier ccNUMA systems

such as those from Silicon Graphics were based on

MIPS processors and the DECAlpha 21364 (EV7)

processor.

FIG 3

III. HARDWARE SUPPORT

3.1) CACHE COHERENCE

in a shared memorymultiprocessor system with a

separate cache memory for each processor, it is

possible to have many copies of any one instruction

operand: one copy in the main memory and one in

each cache memory. When one copy of an operand is

changed, the other copies of the operand must be

changed also. Cache coherence is the discipline that

ensures that changes in the values of shared operands

are propagated throughout the system in a timely

fashion.

There are three distinct levels of cache coherence:

 every write operation appears to occur

instantaneously

 all processors see exactly the same sequence

of changes of values for each separate

operand

 Different processors may see an operation

and assume different sequences of values;

this is considered to be a non-coherent

behavior.

In both level 2 behavior and level 3 behaviors, a

program can observe stale data. Recently, computer

designers have come to realize that the programming

discipline required to deal with level 2 behaviors is

sufficient to deal also with level 3 behavior.

Therefore, at some point only level 1 and level 3

behavior will be seen in machines.

3.1.1) CACHE COHERENCE MODEL

 Idea:

 Keep track of what processors have

copies of what data.

 Enforce that at any given time a single

value of every data exists.

 By getting rid of copies of the data with

old values - invalidate protocols.

 By updating everyonefs copy of the

data - update protocols.

 In practice:

 Guarantee that old values are eventually

invalidated/updated (write

propagation)(recall that without

synchronization there is no guarantee

that a load will return the new value

anyway)

 Guarantee that only a single processor

is allowed to modify a certain datum at

any given time (write serialization)

 Must appear as if no caches were

present

 Implementation

 Can be in either hardware or software,

but software schemes are not very

http://en.wikipedia.org/wiki/MESIF_protocol
http://en.wikipedia.org/wiki/Scalable_Coherent_Interface
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/AMD_Opteron
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Hewlett_Packard
http://en.wikipedia.org/wiki/Silicon_Graphics
http://en.wikipedia.org/wiki/MIPS_architecture
http://en.wikipedia.org/wiki/Digital_Equipment_Corporation
http://en.wikipedia.org/wiki/Digital_Equipment_Corporation
http://en.wikipedia.org/wiki/Shared_memory

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100516 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 111

practical (and will not be discussed

further in this course)

 Add state bits to cache lines to track

state of the line

 Most common: Modified, Owned,

Exclusive, Shared, Invalid

 Protocols usually named after the states

supported

 Cache lines transition between states

upon load/store operations from the

local processor and by remote

processors

 These state transitions must guarantee

the invariant: no two cache copies can

be simultaneously modified

 SWMR: Single writer multiple readers

Example - MSI protocol, MESI protocol.

3.2) MEMORY CONSISTENCY

It basically covers

 When should writes propagate?

 How are memory operations ordered?

 What value should a read return?

FIG 4

3.3) PRIMITIVE SYNCHRONIZATION

It covers:

 Memory fences: memory ordering on

demand

 Read-Modify-writes: support for locks

(critical sections)

FIG 5

IV. IN SOFTWARE

In computer software, shared memory is either

 a method of inter-process communication (IPC),

i.e. a way of exchanging data between programs

running at the same time. One process will create

an area in RAM which other processes can

access, or

 a method of conserving memory space by

directing accesses to what would ordinarily be

copies of a piece of data to a single instance

instead, by using virtual memory mappings or

with explicit support of the program in question.

This is most often used for shared libraries and

for XIP.

Since both processes can access the shared memory

area like regular working memory, this is a very fast

way of communication (as opposed to other

mechanisms of IPC such as named pipes, Unix

domain sockets or CORBA). On the other hand, it is

less powerful, as for example the communicating

processes must be running on the same machine (of

other IPC methods only Internet Domain sockets (not

UNIX sockets) can use a computer network), and

care must be taken to avoid issues if processes

sharing memory are running on separate CPUs and

the underlying architecture is not cache coherent.

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Random-access_memory
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Shared_library
http://en.wikipedia.org/wiki/Execute_in_place
http://en.wikipedia.org/wiki/Named_pipe
http://en.wikipedia.org/wiki/Unix_domain_socket
http://en.wikipedia.org/wiki/Unix_domain_socket
http://en.wikipedia.org/wiki/CORBA
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Cache_coherence

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100516 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 112

IPC by shared memory is used for example to

transfer images between the application and the X

server on Unix systems, or inside the IStream object

returned by CoMarshalInterThreadInterfaceInStream

in the COM libraries under Windows.

Dynamic libraries are generally held in memory once

and mapped to multiple processes, and only pages

that had to be customized for the individual process

(because a symbol resolved differently there) are

duplicated, usually with a mechanism known as

copy-on-write that transparently copies the page

when a write is attempted, and then lets the write

succeed on the private copy.

4.1) SUPPORT ON UNIX PLATFORMS

POSIX provides a standardized API for using shared

memory, POSIX Shared Memory. This uses the

function shm_open from sys/mman.h.
[1]

 POSIX

interprocess communication (part of the POSIX:XSI

Extension) includes the shared-memory functions

shmat, shmctl, shmdt and shmget.UNIX System V

provides an API for shared memory as well. This

uses shmget from sys/shm.h. BSD systems provide

"anonymous mapped memory" which can be used by

several processes.

The shared memory created by shm_open is

persistent. It stays in the system until explicitly

removed by a process. This has a drawback that if the

process crashes and fails to clean up shared memory

it will stay until system shutdown. To avoid this issue

mmap can be used to create a shared memory. Two

communicating processes should open a temporary

file with the same name and do mmap on it to get a

file mapping in the memory. As a result changes in

mapped memory are visible by both processes at the

same time. The advantage of these approaches is that

when both processes exit, OS will automatically

close the files and remove shared memory.

Recent Linux distributions based on the 2.6 kernel

have started to offer /dev/shm as shared memory in

the form of a RAM disk, more specifically as a

world-writable directory (a directory in which every

user of the system can create files) that is stored in

memory. Both the RedHat and Debian based

distributions include it by default. Support for this

type of RAM disk is completely optional within the

kernel configuration file.

SUPPORT ON OTHER PLATFORMS

On Windows the function CreateSharedMemory can

be used to create a shared memory. Alternatively one

can use CreateFileMapping and MapViewOfFile

functions

Some C++ libraries provide a portable and object-

oriented access to shared memory functionality. For

example, Boost contains Boost.Interprocess C++

Library.Qt provides QSharedMemory class.
[9]

There is native support for shared memory also in

programming languages besides C/C++. For

example, PHP provides API to create a shared

memory, similar to POSIX functions.

SUMMARY

In computing, shared memory is memory that may

be simultaneously accessed by multiple programs

with intent to provide communication among them or

avoid redundant copies. Shared memory is an

efficient means of passing data between programs.

Depending on context, programs may run on a single

processor or on multiple separate processors.

Using memory for communication inside a single

program, for example among its multiple threads, is

also referred to as shared memory.

DISCLOSURE STATEMENT

There is no financial support for this research work

from the funding agency.

ACKNOWLEDGMENTS

We thank our guide for his timely help, giving

outstanding ideas and encouragement to finish this

research work successfully.

SIDE BAR

Comparison: it is an act of assessment or evaluation

of things side by side in order to see to what extent

they are similar or different. It is used to bring out

similarities or differences between two things of

same type mostly to discover essential features or

meaning either scientifically or otherwise.

Content: The amount of things contained in

something. Things written or spoken in a book, an

article, a programme, a speech, etc.

DEFINITION

 SHARED: use, occupy, or enjoy (something)

jointly with another or others.

 MEMORY:the faculty by which the mind stores

and remembers information

http://en.wikipedia.org/wiki/X_Window_System
http://en.wikipedia.org/wiki/X_Window_System
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Library_%28computing%29#Dynamic_linking
http://en.wikipedia.org/wiki/Copy-on-write
http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/Shared_memory#cite_note-1
http://en.wikipedia.org/wiki/Mmap
http://en.wikipedia.org/wiki/RAM_disk
http://en.wikipedia.org/wiki/Red_Hat_Linux
http://en.wikipedia.org/wiki/Debian
http://en.wikipedia.org/wiki/Configuration_file
http://en.wikipedia.org/wiki/Boost_%28C%2B%2B_libraries%29
http://en.wikipedia.org/wiki/Qt_%28framework%29
http://en.wikipedia.org/wiki/Shared_memory#cite_note-9
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/POSIX

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100516 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 113

 MULTIPROCESSOR: a computer with more

than one central processor.

 DYNAMIC: characterized by constant change,

activity, or progress.

REFERENCES

1. Documentation of shm_open from the Single

UNIX Specification

2. Robbins, Kay A.; Steven Robbins (2003). UNIX

systems programming: communication,

concurrency, and threads (2 ed.). Prentice Hall

PTR.p. 512.ISBN 978-0-13-042411-2.Retrieved

2011-05-13. "The POSIX interprocess

communication (IPC) is part of the POSIX:XSI

Extension and has its origin in UNIX System V

interprocess communication."

3. Shared memory facility from the Single UNIX

Specification.

4. Stevens, Richard (1999). UNIX Network

Programming, Volume 2, Second Edition:

Interprocess Communications. (2 ed.). Prentice

Hall PTR.p. 311.ISBN 0-13-081081-9.

5. ChristophRohland, Hugh Dickins, KOSAKI

Motohiro. "tmpfs.txt".kernel.org.Retrieved 2010-

03-16.

RELATED REFERENCES

1. CreateSharedMemory function from Win32-

SDK

2. Creating Named Shared Memory from MSDN.

3. Boost.Interprocess C++ Library

4. QSharedMemory Class Reference

5. Shared Memory Functions in PHP-API

http://www.opengroup.org/onlinepubs/007908799/xsh/shm_open.html
http://books.google.com/books?id=tdsZHyH9bQEC
http://books.google.com/books?id=tdsZHyH9bQEC
http://books.google.com/books?id=tdsZHyH9bQEC
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-13-042411-2
http://www.opengroup.org/onlinepubs/007908799/xsh/sysshm.h.html
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-13-081081-9
https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
http://en.wikipedia.org/wiki/Kernel.org
http://msdn2.microsoft.com/en-us/library/aa374778.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366551%28v=vs.85%29.aspx
http://www.boost.org/doc/libs/1_48_0/doc/html/interprocess.html
http://doc.qt.nokia.com/4.7-snapshot/qsharedmemory.html
http://www.php.net/manual/en/ref.shmop.php

