
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100526 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 138

Network (In) Security through IP Packet Filtering

Dhruvika Sharma, Aastha Sharma

Student, Information Technology, Maharishi Dayanand University

New Delhi, Delhi, India

Abstract- Network security has become more

important to personal computer users,

organizations, and the military. With the advent of

the internet, security became a major concern and

the history of security allows a better

understanding of the emergence of security

technology. The internet structure itself allowed

for many security threats to occur. The

architecture of the internet, when modified can

reduce the possible attacks that can be sent across

the network. Knowing the attack methods, allows

for the appropriate security to emerge. Many

businesses secure themselves from the internet by

means of firewalls and encryption mechanisms.

The businesses create an “intranet” to remain

connected to the internet but secured from possible

threats. Used properly, packet filtering is a useful

tool for the security-conscious network

administrator, but its effective use requires a

thorough understanding of its capabilities and

weaknesses, and of the quirks of the particular

protocols that filters are being applied to. This

paper examines the utility of IP packet filtering as

a network security measure, briefly contrasts IP

packet filtering to alternative network security

approaches such as application-level gateways,

describes what packet filters might examine in

each packet, and describes the characteristics of

common application protocols as they relate to

packet filtering. There are currently two

fundamentally different networks, data networks

and synchronous network comprised of switches.

The internet is considered a data network. Since

the current data network consists of

computer‐based routers, information can be

obtained by special programs, such as “Trojan

horses,” planted in the routers. The synchronous

network that consists of switches does not buffer

data and therefore are not threatened by

attackers. That is why security is emphasized in

data networks, such as the internet, and other

networks that link to the internet.

Index Terms- packet filtering works , packet

examples , packet filtering caveats and packet

filtering rules.

I. INTRODUCTION

The Internet as well as local networks is

expanding at a tremendous speed. This one way

helps to improve the quality and convenience of

the human life but on the other hand provides a

platform for network criminals and hackers. An

assumption made throughout is that a site

administrator is generally more interested in

keeping outsiders out than in trying to police

insiders, and that the goal is to keep outsiders

from breaking in and insiders from accidentally

exposing valuable data or services, not to prevent

insiders from intentionally and maliciously

subverting security measures. This paper does

not consider military-grade "secure IP"

implementations (those that implement the "IP

security options" that may be specified in IP

packet headers) and related issues; it is limited to

what is commonly available for sale to the

general public.

Packet filtering may be used as a

mechanism to implement a wide variety of

network security policies. The primary goal of

these policies is generally to prevent

unauthorized network access without hindering

authorized network access; the definitions of

"unauthorized access" and "authorized access"

vary widely from one organization to another. A

secondary goal is often that the mechanisms be

transparent in terms of performance, user

awareness, and application awareness of the

security measures. Another secondary goal is

often that the mechanisms used be simple to

configure and maintain, thus increasing the

likelihood that the policy will be correctly and

completely implemented; in the words of Bill

Cheswick of AT&T Bell Laboratories, "Complex

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100526 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 139

security isn’t". Packet filtering is a mechanism

which can, to a greater or lesser extent, fulfil all

these goals, but only through thorough

understanding of its strengths and weaknesses

and careful application of its capabilities.

To lessen the vulnerability of the

computer to the network there are many

products available. These tools are encryption,

authentication mechanisms, intrusion‐detection,

security management and firewalls. Businesses

throughout the world are using a combination of

some of these tools. “Intranets” are both

connected to the internet and reasonably

protected from it. The internet architecture itself

leads to vulnerabilities in the network.

Understanding the security issues of the internet

greatly assists in developing new security

technologies and approaches for networks with

internet access and internet security itself.

Several factors complicate implementation

of these policies using packet filtering, including

asymmetric access requirements, differing

requirements for various internal and external

groups of machines, and the varying

characteristics of the particular protocols,

services, and implementations of these protocols

and services that the filters are to be applied to.

Asymmetric access requirements usually arise

when an organization desires that its internal

systems have more access to external systems

than vice versa. Differing requirements arise

when an organization desires that some groups of

machines have different network access

privileges than other groups of machines (for

instance, the organization may feel that a

particular subnet is more secure than standard,

and thus can safely take advantage of expanded

network access, or they may feel that a particular

subnet is especially valuable, and thus its

exposure to the external network should be as

limited as possible). Alternatively, an

organization may desire to allow more or less

network access to some specific group of

external machines than to the rest of the external

world (for instance, a company might want to

extend greater network access than usual to a key

client with whom they are collaborating, and less

network access than usual to a local university

which is known to be the source of repeated

cracker attacks). If a suitably modified version

of an application is not available for a given

internal host (a modified TELNET client for a

personal computer, for instance), that internal

host’s users are simply out of luck and are unable

to reach the past the application gateway.

II. HOW PACKET FILTERING WORKS

2.1. What packet filters base their decisions on

Current IP packet filtering implementations

all operate in the same basic fashion; they parse

the headers of a packet and then apply rules from

a simple rule base to determine whether to route

or drop† the packet. Generally, the header fields

that are available to the filter are packet type

(TCP, UDP, etc.), source IP address, destination

IP address, and destination TCP/UDP port. For

some reason, the source TCP/UDP port is often

not one of the available fields; this is a

significant deficiency discussed in detail in

Section 4.2.

In addition to the information contained in

the headers, many filtering implementations also

allow the administrator to specify rules based on

which router interface the packet is destined to

go out on, and some allow rules based on which

interface the packet came in on. Being able to

specify filters on both inbound and outbound†

interfaces allows you significant control over

where the router appears in the filtering scheme

(whether it is "inside" or "outside" your packet

filtering "fence"), and is very convenient (if not

essential) for useful filtering on routers with

more than two interfaces. If certain packets can

be dropped using inbound filters on a given

interface, those packets don’t have to be

mentioned in the outbound filters on all the other

interfaces; this simplifies the filtering

specifications. Further, some filters that an

administrator would like to be able to implement

require knowledge of which interface a packet

came in on; for instance, the administrator may

wish to drop all packets coming inbound from

the external interface that claim to be from an

internal host, in order to guard against attacks

from the outside world that use faked internal

source addresses.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100526 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 140

Some routers with very rudimentary packet

filtering capabilities don’t parse the headers, but

instead require the administrator to specify byte

ranges within the header to examine, and the

patterns to look for in those ranges. This is

almost useless, because it requires the

administrator to have a very detailed

understanding of the structure of an IP packet. It

is totally unworkable for packets using IP option

fields within the IP header, which cause the

location of the beginning of the higher-level TCP

or UDP headers to vary; this variation makes it

very difficult for the administrator to find and

examine the TCP or UDP port information.

2.2. How packet filtering rules are specified

Generally, the filtering rules are expressed

as a table of conditions and actions that are

applied in a certain order until a decision to route

or drop the packet is reached. When a particular

packet meets all the conditions specified in a

given row of the table, the action specified in that

row (whether to route or drop the packet) is

carried out; in some filtering implementations

[Mogul89], the action can also indicate whether

or not to notify the sender that the packet has

been dropped (through an ICMP message), and

whether or not to log the packet and the action

taken on it. Some systems apply the rules in the

sequence specified by the administrator until they

find a rule that applies [Mogul89][Cisco90],

which determines whether to drop or route the

packet. Others enforce a particular order of rule

application based on the criteria in the rules, such

as source and destination address, regardless of

the order in which the rules were specified by the

administrator. Some, for instance, apply filtering

rules in the same order as

 outing table entries; that is, they apply rules

referring to more specific addresses (such as

rules pertaining to specific hosts) before rules

with less specific addresses (such as rules

pertaining to whole subnets and networks)

[CHS91][Telebit92a]. The more complex the

way in which the router reorders rules, the more

difficult it is for the administrator to understand

the rules and their application; routers which

apply rules in the order specified by the

administrator, without reordering the rules, are

easier for an administrator to understand and

configure, and therefore more likely to yield

correct and complete filter sets.

2.3. A packet filtering example

For example, consider this scenario. The

network administrator of a company with Class

B network 123.45 wishes to disallow access from

the Internet to his network in general

(123.45.0.0/16)†. The administrator has a special

subnet in his network (123.45.6.0/24) that is used

in a collaborative project with a local university

which has class B network 135.79; he wishes to

permit access to the special subnet

(123.45.6.0/24) from all subnets of the university

(135.79.0.0/16). Finally, he wishes to deny

access (except to the subnet that is open to the

whole university) from a specific subnet

(135.79.99.0/24) at the university, because the

subnet is known to be insecure and a haven for

crackers. For simplicity, we will consider only

packets flowing from the university to the

corporation; symmetric rules (reversing the

SrcAddr and DstAddr in each of the rules below)

would need to be added to deal with packets

from the corporation to the university. Rule C is

the "default" rule, which specifies what happens

if none of the other rules apply.

 Rule SrcAddr DstAddr Action

A 135.79.0.0/16 123.45.6.0/24 permit

B 135.79.99.0/24 123.45.0.0/16 deny

C 0.0.0.0/0 0.0.0.0/0 deny

Consider these "sample" packets, their

desired treatment under the policy outlined

above, and their treatment depending on whether

the rules above are applied in order "ABC" or

"BAC".

Packet SrcAddr DstAddr Desired Action ABC action BAC action

1

2

135.79.99.1

135.79.99.1

123.45.1.1

123.45.6.1

deny permit deny (B)

permit (A)

deny (B)

deny (B)

3

4

135.79.1.1

135.79.1.1

123.45.6.1

123.45.1.1

permit deny permit (A)

deny (C)

permit (A)

deny (C)

A router that applies the rules in the order

ABC will achieve the desired results: packets

from the "hacker haven" subnet at the university

to the company network in general (such as

packet 1 above) will be denied (by rule B),

packets from the university "hacker haven"

subnet at the university to the company’s

collaboration subnet (such as packet 2 above)

will be permitted (by rule A), packets from the

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100526 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 141

university’s general network to the company’s

"open" subnet (such as packet 3 above) will be

permitted (by rule A), and packets from the

university’s general network to the company’s

general network (such as packet 4 above) will be

denied (by rule C).

If, however, the router reorders the rules by

sorting them into order by number of significant

bits in the source address then number of

significant bits in the destination address, the

same set of rules will be applied in the order

BAC. If the rules are applied in the order BAC,

packet 2 will be denied, when we want it to be

permitted.

2.4. Packet filtering caveats

2.4.1. Complexity of packet filtering

specifications

In fact, there’s a subtle error in this

example that illustrates how difficult it is to

correctly set up filters using such low-level

specifications. Rule B above, which appears to

restrict access from the "hacker haven" net, is

actually superfluous and unnecessary, and is the

cause of the incorrect denial of packet 2 if the

rules are applied in the order BAC. If you

remove rule B, both types of routers (those that

apply rules in the order specified, and those that

reorder rules by number of significant bits in

source or destination addresses) will process the

rules in the order AC. When processed in that

order, the result table becomes:

Packet SrcAddr DstAddr Desired Action AC action

1 135.79.99.1 123.45.1.1 deny deny (C)

2

3

135.79.99.1

135.79.1.1

123.45.6.1

123.45.6.1

permit permit permit (A)

permit (A)

4 135.79.1.1 123.45.1.1 deny deny (C)

There are two points here. First, correctly

specifying filters is difficult. Second, reordering

filtering rules makes correctly specifying filters

even more difficult, by turning a filter set that

works (even if it’s in fact overspecified) if

evaluated in the order given into a filter set that

doesn’t work.

Even though the example presented above

is a relatively simple application of packet

filtering, most administrators will probably read

through it several times before they feel they

understand what is going on. Consider that the

more difficult the rules are to comprehend, the

less likely the rules will be correct and complete.

The way in which filtering rules must be

specified and the order in which they are applied

are key determinants of how useful and powerful

a given router’s filtering capabilities are. Most

implementations require the administrator to

specify filters in ways which make the filters

easy for the router to parse and apply, but make

them very difficult for the administrator to

comprehend and consider.

2.4.2. Reliance on accurate IP source

addresses

Most filtering implementations, of

necessity, rely on the accuracy of IP source

addresses to make filtering decisions. IP source

addresses can easily be faked, however, as

discussed in [Bellovin89], [Kent89],

[Bellovin92a], and [Bellovin92b]. This is a

particular case where being able to filter inbound

packets is useful. If a packet that appears to be

from one internal machine to another internal

machine comes in over the link from the outside

world, you should be mighty suspicious. If your

router can be told to drop such packets using

inbound filters on the external interface, your

filtering specifications for internal interfaces can

be made both much simpler and more secure.

2.4.3. Dangers of IP source routing

Another IP feature ripe for potential abuse

is IP source routing. Essentially, an IP packet

with source routing information included tells

routers how to route the packet, rather than

letting the routers decide for themselves. An

attacker could use this to their advantage

[Bellovin89]. Unless you have a specific need to

allow packets with IP source routes between your

internal network and the outside world, it’s

probably a good idea for your router to ignore IP

source route instructions; whether source routing

can be disabled, whether it is enabled or disabled

by default, and how to disable it vary from

vendor to vendor.

2.4.4. Complications due to IP fragmentation

Yet another complication to packet

filtering is IP packet fragmentation. IP supports

the notion that any router along a packet’s path

may "fragment" that packet into several smaller

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100526 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 142

packets, to accommodate the limitations of

underlying media, to be reassembled into the

original IP packet at the destination. For instance,

an FDDI frame is much larger than an Ethernet

frame; a router between an FDDI ring and an

Ethernet may need to split an IP packet that fit in

a single FDDI frame into multiple fragments that

fit into the smaller Ethernet frames. The problem

with this, from a packet filtering point of view, is

that only the first of the IP fragments has the

higher-level protocol (TCP or UDP) headers

from the original packet, which may be necessary

to make a filtering decision concerning the

fragment. Different filtering implementations

take a variety of responses to this situation. Some

apply filters only to the first fragment (which

contains the necessary higher-level protocol

headers), and simply route the rest, on the

assumption that if the first fragment is dropped

by the filters, the rest of the fragments can’t be

reassembled into a full packet, and will cause no

harm [CHS91]. Others keep a cache of recently-

seen first fragments and the filtering decision that

was reached, and look up non-first fragments in

this cache in order to apply the same decision

[Mogul89]. In particular, it is dangerous to

suppress only the first fragment of outbound

packets; you might be leaking valuable data in

the non-first fragments that are routed on out.

III. FILTERING-RELATED

CHARACTERISTICS OF APPLICATION

PROTOCOLS

Each application protocol has its own

particular characteristics that relate to IP packet

filtering, that may or may not differ from other

protocols. Particular implementations of a given

protocol also have their own characteristics that

are not a result of the protocol per se, but a result

of design decisions made by the implementors.

Since these implementation characteristics are

not covered in the specification of the protocol

(though they aren’t counter to the specification),

they are likely to vary between different

implementations of the same protocol, and might

change even within a given implementation as

that implementation evolves. These

characteristics include what port a server uses,

what port a client uses, whether the service is

typically offered over UDP or TCP or both, and

so forth. An understanding of these

characteristics is essential for setting up effective

filters to allow, disallow, or limit the use of these

protocols. Appendix A discusses in detail the

filtering-related characteristics of several

common protocols.

III.1. "Random" ports

aren’t really random

Although implementations of various

protocols might appear to use a "random" ports

for the client end and a well-known port for the

server end, the ports chosen for the client end

used are usually not totally random. While not

explicitly supported by the RFCs, systems based

on BSD UNIX usually reserve ports below 1024

for use by "privileged" processes, and allow only

processes running as root to bind to those ports;

conversely, non-privileged processes must use

ports at or above 1024. Further, if a program

doesn’t request a particular port, it is often

simply assigned the port after the last one

assigned; if the last port assigned was 5150, the

next one assigned will probably be 5151.

III.2. Privileged versus non-privileged

ports

The distinction between "privileged" and

"non-privileged" ports (those below 1024 and at

or above 1024, respectively) is found throughout

BSD-based systems (and other systems that draw

from a BSD background; keep in mind that

almost all UNIX IP networking, including SysV

IP networking, draws heavily from the original

BSD network implementation). This distinction

is not codified in the RFCs, and is therefore best

regarded as a widely used convention, but not as

a standard. Nonetheless, if you’re protecting

UNIX systems, the convention can be a useful

one. You can, for instance, generally forbid all

inbound connections to ports below 1024, and

then open up specific exceptions for specific

services that you wish to enable the outside

world to use, such as SMTP, TELNET, or FTP;

to allow the "return" packets for connections to

such services, you allow all packets to external

destination ports at or above 1024.

While it would simplify filtering if all

services were offered on ports below 1024 and

all clients used ports at or above 1024, many

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100526 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 143

vulnerable services (such as X, OpenWindows,

and a number of database servers) use server

ports at or above 1024, and several vulnerable

clients (such as the Berkeley r* programs) use

client ports below 1024. These should be

carefully excepted from the "allow all packets to

destination ports at or above 1024" type of rules

that allow return packets for outbound services.

IV. PROBLEMS WITH CURRENT PACKET

FILTERING IMPLEMENTATIONS

IP packet filtering, while a useful network

security tool, is not a panacea, particularly in the

form in which it is currently implemented by

many vendors. Problems with many current

implementations include complexity of

configuration and administration, omission of the

source UDP/TCP port from the fields that

filtering can be based on, unexpected interactions

between "unrelated" parts of the filter rule set,

cumbersome filter specifications forced by

simple specification mechanisms, a lack of

testing and debugging tools, and an inability to

deal effectively with RPC-based protocols such

as YP/NIS and NFS.

IV.1. Filters are difficult to configure

The first problem with many current IP

packet filtering implementations as network

security mechanisms is that the filtering is

usually very difficult to configure, modify,

maintain, and test, leaving the administrator with

little confidence that the filters are correctly and

completely specified. The simple syntax used in

many filtering implementations makes life easy

for the router (it’s easy for the router to parse the

filter specifications, and fast for the router to

apply them), but difficult for the administrator

(it’s like programming in assembly language).

Instead of being able to use high-level language

abstractions ("if this and that and not something-

else then permit else deny"), the administrator is

forced to produce a tabular representation of

rules; the desired behavior may or may not map

well on to such a representation.

Administrators often consider networking

activity in terms of "connections", while packet

filtering, by definition, is concerned with the

packets making up a connection. An

administrator might think in terms of "an

inbound SMTP connection", but this must be

translated into at least two filtering rules (one for

the inbound packets from the client to the server,

and one for the outbound packets from the server

back to the client) in a table-driven filtering

implementation. The concept of a connection is

applied even when considering a connectionless

protocol such as UDP or ICMP; for instance,

administrators speak of "NFS connections" and

"DNS connections". This mismatch between the

abstractions used by many administrators and the

mechanisms provided by many filtering

implementations contributes to the difficulty of

correctly and completely specifying packet

filters.

4.2. Special handling of start-of-connection

packets is impossible

Note that the even the above filters with

source port still don’t protect your servers living

at or above port 1024 from an attack launched

from port 25 on an external machine (which is

certainly possible if the person making the attack

controls the machine the attack is coming from);

rules C and D will allow this. One way to defeat

this type of attack is to suppress TCP start-of-

connection packets (packets with the TCP "SYN"

flag set) in rule C; at least one filter

implementation provides a mechanism for stating

that rules apply only to packets in "established"

connections (those packets without the SYN bit

set) [Cisco90].

Unfortunately, UDP sessions are

"connectionless", so there is never a "start-

ofconnection" packet that can be suppressed in a

UDP session. A solution for UDP is often to

disallow UDP entirely except for a specific

exception for DNS. This exception for DNS can

generally be made safely even with a filtering

implementation that ignores source port, because

of a quirk in the most common DNS

implementation. The quirk causes DNS server-

to-server queries made over UDP to always use

port 53 at both ends of the connection, rather

than a random port at one end. Disallowing UDP

except for DNS also allows you to avoid most of

the problems with filtering RPC-based services

(since most RPC services are UDP based) that

are discussed in Section 4.6.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100526 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 144

4.3. Tabular filtering rule structures are too

cumbersome

While tabular rule structures such as those

shown above are relatively easy and thus

efficient for the router to parse and apply, they

rapidly become too cumbersome for the

administrator to use to specify complex

independent filtering requirements. Even simple

applications of these cumbersome syntaxes are

difficult, and often have unintended and

undesired side effects, as demonstrated in

Section 4.2.

4.4. Testing and monitoring filters is difficult

With many router products, the beleagured

administrator’s life is further complicated by a

lack of built-in mechanisms to test the filter set

or to monitor its performance in action. This

makes it very difficult to debug and validate

filtering rule sets, or to modify existing rule sets;

the administrator always has to wonder if the

filtering rules are really accomplishing what was

intended, or if the rule set has some inadvertent

hole in it that the administrator has somehow

overlooked.

4.5. RPC is very difficult to filter effectively

Finally, RPC-based protocols offer a

special challenge, since they don’t reliably

appear on a given UDP or TCP port number. The

only RPC-related service that is guaranteed to be

at a certain port is the "portmapper" service.

Portmapper maps an RPC service number (which

is a 32-bit number assigned by Sun

Microsystems to each individual RPC service,

including services created by users and other

vendors) to the particular TCP or UDP port

number (which are much smaller 16-bit numbers)

that the service is currently using on the

particular machine being queried. When an RPC-

based service starts up, it registers with the

portmapper to announce what port it is living at;

the portmapper then passes this info along to

anyone who requests it.

The portmapper isn’t required in order to

establish an RPC connection, except to determine

exactly which port to establish the connection to;

if you know (or can guess) which port to

establish the connection to, you can bypass the

portmapper altogether. What port a given RPC

protocol (such as YP/NIS, NFS, or any of a

number of others) ends up using is random

enough that the administrator can’t effectively

specify filters for it (at least, not without risking

the inadvertent filtering of something else that

happened to end up on the same port the

administrator thought an RPC-based service

might end up at), but not so random that an

attacker can’t easily "guess" where a given

protocol lives. Even if they can’t or don’t guess,

a systematic search of the entire port number

space for the RPC service they’re interested in

attacking is not that difficult. Since RPC-based

services might be on any port, the filtering

implementation has no sure way of recognizing

what is and what isn’t RPC; as far as the router is

concerned, it’s all just UDP or TCP traffic.

Two fortuitous characteristics of most

RPC-based services can be used to save us from

this morass, however. First, most RPC-based

services are offered as only on UDP ports; we

can simply drop UDP packets altogether except

for DNS, as described above. Second, almost all

of those that are offered on TCP ports use ports

below 1024, which can be protected by an "deny

all ports below 1024 except specific services like

SMTP" type of filter, such as shown in the

example in Section 4.2.

V. POSSIBLE SOLUTIONS FOR CURRENT

PACKET FILTERING PROBLEMS

V.1. Improve filter specification

syntax

The major improvement that could be

made to many vendor packet filtering

implementations would be to provide better filter

specification mechanisms. The administrator

should be able to specify rules in a form that

makes sense to the administrator (such as a

propositional logic syntax), not necessarily a

form that is efficient for the router to process; the

router can then convert the rules from the high-

level form to a form amenable to efficient

processing. One possibility might be the creation

of a "filter compiler" that accepts filters in a

high-level syntax that was convenient for the

administrator, and emits a "compiled" filter list

that is acceptable to the router.

Addressing the conceptual mismatch

between administrators, who think in terms of

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100526 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 145

connections, and routers, which operate in terms

of the packets making up those connections, as

discussed in Section 4.1, might also prove

valuable.

V.2. Make all relevant header fields

available as filtering criteria

The administrator should be able to specify

all relevant header fields, particularly including

TCP/UDP source port (which is currently often

omitted from many filtering implementations), as

filter criteria. Until this key feature is provided, it

will be difficult or impossible to effectively use

filtering in certain common situations, as

demonstrated in the example in Section 4.2. The

administrator should also be able to specify

whether a filter rule should apply only to

established TCP connections.

V.3. Allow inbound filters as well as

outbound filters

The administrator should be able to specify

both inbound and outbound filters on each

interface, rather than only outbound filters. This

would allow the administrator to position the

router either "inside" or "outside" the filtering

"fence", as appropriate. It would also allow

simpler specification of filters on routers with

more than two interfaces by allowing some cases

(such as a packet appearing from the outside

world that purports to be both to and from

internal hosts) to be handled by the inbound set

of filters on the external interface, rather than

having to duplicate these special cases into the

outbound filter set on each internal interface. The

desired functionality may not even be possible

with only outbound filters; the case of a fake

internal-to-internal packet showing up on the

external interface, as discussed in Section 2.4.2,

can’t be detected in an outbound filter set.

V.4. Provide tools for developing,

testing, and monitoring filters

Better tools for developing, testing and

validating rule sets, perhaps including test suites

and automatic test probe generators, would make

a big difference in the usability of packet filtering

mechanisms. Such an automated test system

might well be a part of the "filter compiler"

described in Section 5.1.

V.5. Simplify specification of

common filters

It would be useful if administrators could

specify common filtering cases (for instance,

"allow inbound SMTP to this single host")

simply, without having to understand the details

of the protocols or filtering mechanisms

involved.

VI. CONCLUSIONS

Packet filtering is currently a viable and

valuable network security tool, but some simple

vendor improvements could have a big impact.

There are several critical deficiencies that seem

to be common to many vendors, such as the

inability to consider source TCP/UDP port in

filters, that need to be addressed. Other

improvements to filter specification mechanisms

could greatly simplify the lives of network

administrators trying to use packet filtering

capabilities, and increase their confidence that

their filters are doing what they think they are.

VII. ACKNOWLEDGEMENTS

Thanks to Steve Bellovin and Bill

Cheswick of AT&T Bell Laboratories for several

lively and fruitful discussions of packet filtering

as a network security tool; in particular, I’d like

to thank Steve for providing me with

prepublication copies of two of his IP

securityrelated papers and of his 1989 article on

TCP/IP security problems. Thanks to Ed DeHart

of the Computer Emergency Response Team for

strongly and repeatedly encouraging me to write

this paper after listening to me moan about the

issues discussed herein. Thanks to Elizabeth

Zwicky of SRI International, Brian Lloyd of

Lloyd & Associates, and Steve Bellovin of

AT&T Bell Laboratories for reviewing drafts of

this paper and providing valuable feedback and

suggestions.

REFERENCES

[Bellovin89]

S. M. Bellovin, "Security Problems in the

TCP/IP Protocol Suite"; Computer

Communications Review, Volume 9,

Number 2; April 1989; pp. 32-48.

[Bellovin92a]

Steven M. Bellovin, "Packets Found on an

Internet"; in preparation; 1992.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100526 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 146

[Bellovin92b]

Steven M. Bellovin, "There Be Dragons";

Proceedings of the Third USENIX UNIX

Security Symposium; Baltimore, MD;

September, 1992.

[Ches90]

Bill Cheswick, "The Design of a Secure

Internet Gateway"; Proceedings of the

USENIX Summer 1990 Conference;

Anaheim, CA; June 11-15, 1990; pp. 233-

237.

[CHS91]

Bruce Corbridge, Robert Henig, Charles

Slater, "Packet Filtering in an IP Router";

Proceedings of the Fifth USENIX Large

Installation and System Administration

Conference (LISA V); San Diego, CA;

October, 1992; pp. 227-232.

[Cisco90]

Cisco Systems (Menlo Park, CA);

"Gateway System Manual; Software

Release 8.2"; 1990.

[CMQ92]

Smoot Carl-Mitchell and John S.

Quarterman, "Building Internet Firewalls";

UnixWorld; February, 1992; pp 93-102.

[Comer91]

Douglas E. Comer, Internetworking with

TCP/IP, Volume I; Second Edition, 1991;

Prentice-Hall, Inc.

[Kent89]

Stephen Kent, "Comments on ’Security

Problems in the TCP/IP Protocol Suite’";

Computer Communications Review; July

1989.

[Mogul89]

Jeffrey C. Mogul, "Simple and Flexible

Datagram Access Controls for UNIX-

based Gateways"; Proceedings of the

USENIX Summer 1989 Conference; pp.

203-221.

[Ranum92]

Marcus J. Ranum, "A Network Firewall";

Proceedings of the World Conference on

System Administration and Security; July

1992; Washington, D.C.; pp. 153-163.

[RFC1058]

C. Hedrick, "Routing Information

Protocol", Request For Comments 1058;

available from the DDN Network

Information Center (NIC.DDN.MIL).

[RFC1340]

J. Reynolds and J. Postel, "Assigned

Numbers", Request For Comments 1340;

available from the DDN Network

Information Center (NIC.DDN.MIL).

[Telebit92a]

Telebit Corporation (Sunnyvale, CA),

"NetBlazer Command Reference"; 1992.

[Telebit92b]

Telebit Corporation (Sunnyvale, CA),

"NetBlazer Version 1.4 Release Notes";

1992.

Appendix A — Filtering Characteristics of

Common IP Protocols

A.1. SMTP

SMTP is provided as a TCP service with

the server end of the connection at port 25 and

the client end at a random port.

A.2. TELNET

TELNET is provided as a TCP service

with the server end of the connection at port 23,

and the client end at a random port.

A.3. FTP

FTP is slightly tricky, in that an FTP

conversation actually involves two TCP

connections in typical UNIX implementations:

one for connection for commands, and one for

data. The command connection is at port 21 on

the server, and the data connection is at port 20

on the server; both connections use random ports

on the client side.

A.4. NNTP

NNTP is provided as a TCP service with

the server end at port 119, and the client end at a

random port.

