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Abstract- Network security has become more 

important to personal computer users, 

organizations, and the military. With the advent of 

the internet, security became a major concern and 

the history of security allows a better 

understanding of the emergence of security 

technology. The internet structure itself allowed 

for many security threats to occur. The 

architecture of the internet, when modified can 

reduce the possible attacks that can be sent across 

the network. Knowing the attack methods, allows 

for the appropriate security to emerge. Many 

businesses secure themselves from the internet by 

means of firewalls and encryption mechanisms. 

The businesses create an “intranet” to remain 

connected to the internet but secured from possible 

threats. Used properly, packet filtering is a useful 

tool for the security-conscious network 

administrator, but its effective use requires a 

thorough understanding of its capabilities and 

weaknesses, and of the quirks of the particular 

protocols that filters are being applied to. This 

paper examines the utility of IP packet filtering as 

a network security measure, briefly contrasts IP 

packet filtering to alternative network security 

approaches such as application-level gateways, 

describes what packet filters might examine in 

each packet, and describes the characteristics of 

common application protocols as they relate to 

packet filtering. There are currently two 

fundamentally different networks, data networks 

and synchronous network comprised of switches. 

The internet is considered a data network. Since 

the current data network consists of 

computer‐based routers, information can be 

obtained by special programs, such as “Trojan 

horses,” planted in the routers. The synchronous 

network that consists of switches does not buffer 

data and therefore are not threatened by 

attackers. That is why security is emphasized in 

data networks, such as the internet, and other 

networks that link to the internet. 

Index Terms- packet filtering works , packet 

examples , packet filtering  caveats and packet 

filtering rules. 

 

I. INTRODUCTION 

The Internet as well as local networks is 

expanding at a tremendous speed. This one way 

helps to improve the quality and convenience of 

the human life but on the other hand provides a 

platform for network criminals and hackers.  An 

assumption made throughout is that a site 

administrator is generally more interested in 

keeping outsiders out than in trying to police 

insiders, and that the goal is to keep outsiders 

from breaking in and insiders from accidentally 

exposing valuable data or services, not to prevent 

insiders from intentionally and maliciously 

subverting security measures. This paper does 

not consider military-grade "secure IP" 

implementations (those that implement the "IP 

security options" that may be specified in IP 

packet headers) and related issues; it is limited to 

what is commonly available for sale to the 

general public. 

Packet filtering may be used as a 

mechanism to implement a wide variety of 

network security policies. The primary goal of 

these policies is generally to prevent 

unauthorized network access without hindering 

authorized network access; the definitions of 

"unauthorized access" and "authorized access" 

vary widely from one organization to another. A 

secondary goal is often that the mechanisms be 

transparent in terms of performance, user 

awareness, and application awareness of the 

security measures. Another secondary goal is 

often that the mechanisms used be simple to 

configure and maintain, thus increasing the 

likelihood that the policy will be correctly and 

completely implemented; in the words of Bill 

Cheswick of AT&T Bell Laboratories, "Complex 



© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002 

IJIRT 100526 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 139 
 

security isn’t". Packet filtering is a mechanism 

which can, to a greater or lesser extent, fulfil all 

these goals, but only through thorough 

understanding of its strengths and weaknesses 

and careful application of its capabilities. 

To lessen the vulnerability of the 

computer to the network there are many 

products available. These tools are encryption, 

authentication mechanisms, intrusion‐detection, 

security management and firewalls. Businesses 

throughout the world are using a combination of 

some of these tools. “Intranets” are both 

connected to the internet and reasonably 

protected from it. The internet architecture itself 

leads to vulnerabilities in the network. 

Understanding the security issues of the internet 

greatly assists in developing new security 

technologies and approaches for networks with 

internet access and internet security itself.  

  

Several factors complicate implementation 

of these policies using packet filtering, including 

asymmetric access requirements, differing 

requirements for various internal and external 

groups of machines, and the varying 

characteristics of the particular protocols, 

services, and implementations of these protocols 

and services that the filters are to be applied to. 

Asymmetric access requirements usually arise 

when an organization desires that its internal 

systems have more access to external systems 

than vice versa. Differing requirements arise 

when an organization desires that some groups of 

machines have different network access 

privileges than other groups of machines (for 

instance, the organization may feel that a 

particular subnet is more secure than standard, 

and thus can safely take advantage of expanded 

network access, or they may feel that a particular 

subnet is especially valuable, and thus its 

exposure to the external network should be as 

limited as possible). Alternatively, an 

organization may desire to allow more or less 

network access to some specific group of 

external machines than to the rest of the external 

world (for instance, a company might want to 

extend greater network access than usual to a key 

client with whom they are collaborating, and less 

network access than usual to a local university 

which is known to be the source of repeated 

cracker attacks).  If a suitably modified version 

of an application is not available for a given 

internal host (a modified TELNET client for a 

personal computer, for instance), that internal 

host’s users are simply out of luck and are unable 

to reach the past the application gateway.  

II. HOW PACKET FILTERING WORKS 

2.1. What packet filters base their decisions on 

Current IP packet filtering implementations 

all operate in the same basic fashion; they parse 

the headers of a packet and then apply rules from 

a simple rule base to determine whether to route 

or drop† the packet. Generally, the header fields 

that are available to the filter are packet type 

(TCP, UDP, etc.), source IP address, destination 

IP address, and destination TCP/UDP port. For 

some reason, the source TCP/UDP port is often 

not one of the available fields; this is a 

significant deficiency discussed in detail in 

Section 4.2. 

In addition to the information contained in 

the headers, many filtering implementations also 

allow the administrator to specify rules based on 

which router interface the packet is destined to 

go out on, and some allow rules based on which 

interface the packet came in on. Being able to 

specify filters on both inbound and outbound† 

interfaces allows you significant control over 

where the router appears in the filtering scheme 

(whether it is "inside" or "outside" your packet 

filtering "fence"), and is very convenient (if not 

essential) for useful filtering on routers with 

more than two interfaces. If certain packets can 

be dropped using inbound filters on a given 

interface, those packets don’t have to be 

mentioned in the outbound filters on all the other 

interfaces; this simplifies the filtering 

specifications. Further, some filters that an 

administrator would like to be able to implement 

require knowledge of which interface a packet 

came in on; for instance, the administrator may 

wish to drop all packets coming inbound from 

the external interface that claim to be from an 

internal host, in order to guard against attacks 

from the outside world that use faked internal 

source addresses. 
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Some routers with very rudimentary packet 

filtering capabilities don’t parse the headers, but 

instead require the administrator to specify byte 

ranges within the header to examine, and the 

patterns to look for in those ranges. This is 

almost useless, because it requires the 

administrator to have a very detailed 

understanding of the structure of an IP packet. It 

is totally unworkable for packets using IP option 

fields within the IP header, which cause the 

location of the beginning of the higher-level TCP 

or UDP headers to vary; this variation makes it 

very difficult for the administrator to find and 

examine the TCP or UDP port information. 

2.2. How packet filtering rules are specified 

Generally, the filtering rules are expressed 

as a table of conditions and actions that are 

applied in a certain order until a decision to route 

or drop the packet is reached. When a particular 

packet meets all the conditions specified in a 

given row of the table, the action specified in that 

row (whether to route or drop the packet) is 

carried out; in some filtering implementations 

[Mogul89], the action can also indicate whether 

or not to notify the sender that the packet has 

been dropped (through an ICMP message), and 

whether or not to log the packet and the action 

taken on it. Some systems apply the rules in the 

sequence specified by the administrator until they 

find a rule that applies [Mogul89][Cisco90], 

which determines whether to drop or route the 

packet. Others enforce a particular order of rule 

application based on the criteria in the rules, such 

as source and destination address, regardless of 

the order in which the rules were specified by the 

administrator. Some, for instance, apply filtering 

rules in the same order as 

 outing table entries; that is, they apply rules 

referring to more specific addresses (such as 

rules pertaining to specific hosts) before rules 

with less specific addresses (such as rules 

pertaining to whole subnets and networks) 

[CHS91][Telebit92a]. The more complex the 

way in which the router reorders rules, the more 

difficult it is for the administrator to understand 

the rules and their application; routers which 

apply rules in the order specified by the 

administrator, without reordering the rules, are 

easier for an administrator to understand and 

configure, and therefore more likely to yield 

correct and complete filter sets. 

2.3. A packet filtering example 

For example, consider this scenario. The 

network administrator of a company with Class 

B network 123.45 wishes to disallow access from 

the Internet to his network in general 

(123.45.0.0/16)†. The administrator has a special 

subnet in his network (123.45.6.0/24) that is used 

in a collaborative project with a local university 

which has class B network 135.79; he wishes to 

permit access to the special subnet 

(123.45.6.0/24) from all subnets of the university 

(135.79.0.0/16). Finally, he wishes to deny 

access (except to the subnet that is open to the 

whole university) from a specific subnet 

(135.79.99.0/24) at the university, because the 

subnet is known to be insecure and a haven for 

crackers. For simplicity, we will consider only 

packets flowing from the university to the 

corporation; symmetric rules (reversing the 

SrcAddr and DstAddr in each of the rules below) 

would need to be added to deal with packets 

from the corporation to the university. Rule C is 

the "default" rule, which specifies what happens 

if none of the other rules apply. 

 Rule SrcAddr DstAddr Action 

A 135.79.0.0/16 123.45.6.0/24 permit 

B 135.79.99.0/24 123.45.0.0/16 deny 

C 0.0.0.0/0 0.0.0.0/0 deny 

Consider these "sample" packets, their 

desired treatment under the policy outlined 

above, and their treatment depending on whether 

the rules above are applied in order "ABC" or 

"BAC". 

Packet SrcAddr DstAddr Desired Action ABC action BAC action 

1 

2 

135.79.99.1 

135.79.99.1 

123.45.1.1 

123.45.6.1 

deny permit deny (B) 

permit (A) 

deny (B) 

deny (B) 

3 

4 

135.79.1.1 

135.79.1.1 

123.45.6.1 

123.45.1.1 

permit deny permit (A) 

deny (C) 

permit (A) 

deny (C) 

A router that applies the rules in the order 

ABC will achieve the desired results: packets 

from the "hacker haven" subnet at the university 

to the company network in general (such as 

packet 1 above) will be denied (by rule B), 

packets from the university "hacker haven" 

subnet at the university to the company’s 

collaboration subnet (such as packet 2 above) 

will be permitted (by rule A), packets from the 
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university’s general network to the company’s 

"open" subnet (such as packet 3 above) will be 

permitted (by rule A), and packets from the 

university’s general network to the company’s 

general network (such as packet 4 above) will be 

denied (by rule C). 

If, however, the router reorders the rules by 

sorting them into order by number of significant 

bits in the source address then number of 

significant bits in the destination address, the 

same set of rules will be applied in the order 

BAC. If the rules are applied in the order BAC, 

packet 2 will be denied, when we want it to be 

permitted. 

2.4. Packet filtering caveats 

2.4.1. Complexity of packet filtering 

specifications 

In fact, there’s a subtle error in this 

example that illustrates how difficult it is to 

correctly set up filters using such low-level 

specifications. Rule B above, which appears to 

restrict access from the "hacker haven" net, is 

actually superfluous and unnecessary, and is the 

cause of the incorrect denial of packet 2 if the 

rules are applied in the order BAC. If you 

remove rule B, both types of routers (those that 

apply rules in the order specified, and those that 

reorder rules by number of significant bits in 

source or destination addresses) will process the 

rules in the order AC. When processed in that 

order, the result table becomes: 

Packet SrcAddr DstAddr Desired Action AC action 

1 135.79.99.1 123.45.1.1 deny deny (C) 

2 

3 

135.79.99.1 

135.79.1.1 

123.45.6.1 

123.45.6.1 

permit permit permit (A) 

permit (A) 

4 135.79.1.1 123.45.1.1 deny deny (C) 

There are two points here. First, correctly 

specifying filters is difficult. Second, reordering 

filtering rules makes correctly specifying filters 

even more difficult, by turning a filter set that 

works (even if it’s in fact overspecified) if 

evaluated in the order given into a filter set that 

doesn’t work. 

Even though the example presented above 

is a relatively simple application of packet 

filtering, most administrators will probably read 

through it several times before they feel they 

understand what is going on. Consider that the 

more difficult the rules are to comprehend, the 

less likely the rules will be correct and complete. 

The way in which filtering rules must be 

specified and the order in which they are applied 

are key determinants of how useful and powerful 

a given router’s filtering capabilities are. Most 

implementations require the administrator to 

specify filters in ways which make the filters 

easy for the router to parse and apply, but make 

them very difficult for the administrator to 

comprehend and consider. 

2.4.2. Reliance on accurate IP source 

addresses 

Most filtering implementations, of 

necessity, rely on the accuracy of IP source 

addresses to make filtering decisions. IP source 

addresses can easily be faked, however, as 

discussed in [Bellovin89], [Kent89], 

[Bellovin92a], and [Bellovin92b]. This is a 

particular case where being able to filter inbound 

packets is useful. If a packet that appears to be 

from one internal machine to another internal 

machine comes in over the link from the outside 

world, you should be mighty suspicious. If your 

router can be told to drop such packets using 

inbound filters on the external interface, your 

filtering specifications for internal interfaces can 

be made both much simpler and more secure. 

2.4.3. Dangers of IP source routing 

Another IP feature ripe for potential abuse 

is IP source routing. Essentially, an IP packet 

with source routing information included tells 

routers how to route the packet, rather than 

letting the routers decide for themselves. An 

attacker could use this to their advantage 

[Bellovin89]. Unless you have a specific need to 

allow packets with IP source routes between your 

internal network and the outside world, it’s 

probably a good idea for your router to ignore IP 

source route instructions; whether source routing 

can be disabled, whether it is enabled or disabled 

by default, and how to disable it vary from 

vendor to vendor. 

 

 

2.4.4. Complications due to IP fragmentation 

Yet another complication to packet 

filtering is IP packet fragmentation. IP supports 

the notion that any router along a packet’s path 

may "fragment" that packet into several smaller 
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packets, to accommodate the limitations of 

underlying media, to be reassembled into the 

original IP packet at the destination. For instance, 

an FDDI frame is much larger than an Ethernet 

frame; a router between an FDDI ring and an 

Ethernet may need to split an IP packet that fit in 

a single FDDI frame into multiple fragments that 

fit into the smaller Ethernet frames. The problem 

with this, from a packet filtering point of view, is 

that only the first of the IP fragments has the 

higher-level protocol (TCP or UDP) headers 

from the original packet, which may be necessary 

to make a filtering decision concerning the 

fragment. Different filtering implementations 

take a variety of responses to this situation. Some 

apply filters only to the first fragment (which 

contains the necessary higher-level protocol 

headers), and simply route the rest, on the 

assumption that if the first fragment is dropped 

by the filters, the rest of the fragments can’t be 

reassembled into a full packet, and will cause no 

harm [CHS91]. Others keep a cache of recently-

seen first fragments and the filtering decision that 

was reached, and look up non-first fragments in 

this cache in order to apply the same decision 

[Mogul89]. In particular, it is dangerous to 

suppress only the first fragment of outbound 

packets; you might be leaking valuable data in 

the non-first fragments that are routed on out. 

III. FILTERING-RELATED 

CHARACTERISTICS OF APPLICATION 

PROTOCOLS 

Each application protocol has its own 

particular characteristics that relate to IP packet 

filtering, that may or may not differ from other 

protocols. Particular implementations of a given 

protocol also have their own characteristics that 

are not a result of the protocol per se, but a result 

of design decisions made by the implementors. 

Since these implementation characteristics are 

not covered in the specification of the protocol 

(though they aren’t counter to the specification), 

they are likely to vary between different 

implementations of the same protocol, and might 

change even within a given implementation as 

that implementation evolves. These 

characteristics include what port a server uses, 

what port a client uses, whether the service is 

typically offered over UDP or TCP or both, and 

so forth. An understanding of these 

characteristics is essential for setting up effective 

filters to allow, disallow, or limit the use of these 

protocols. Appendix A discusses in detail the 

filtering-related characteristics of several 

common protocols. 

III.1. "Random" ports 

aren’t really random 

Although implementations of various 

protocols might appear to use a "random" ports 

for the client end and a well-known port for the 

server end, the ports chosen for the client end 

used are usually not totally random. While not 

explicitly supported by the RFCs, systems based 

on BSD UNIX usually reserve ports below 1024 

for use by "privileged" processes, and allow only 

processes running as root to bind to those ports; 

conversely, non-privileged processes must use 

ports at or above 1024. Further, if a program 

doesn’t request a particular port, it is often 

simply assigned the port after the last one 

assigned; if the last port assigned was 5150, the 

next one assigned will probably be 5151. 

III.2. Privileged versus non-privileged 

ports 

The distinction between "privileged" and 

"non-privileged" ports (those below 1024 and at 

or above 1024, respectively) is found throughout 

BSD-based systems (and other systems that draw 

from a BSD background; keep in mind that 

almost all UNIX IP networking, including SysV 

IP networking, draws heavily from the original 

BSD network implementation). This distinction 

is not codified in the RFCs, and is therefore best 

regarded as a widely used convention, but not as 

a standard. Nonetheless, if you’re protecting 

UNIX systems, the convention can be a useful 

one. You can, for instance, generally forbid all 

inbound connections to ports below 1024, and 

then open up specific exceptions for specific 

services that you wish to enable the outside 

world to use, such as SMTP, TELNET, or FTP; 

to allow the "return" packets for connections to 

such services, you allow all packets to external 

destination ports at or above 1024. 

While it would simplify filtering if all 

services were offered on ports below 1024 and 

all clients used ports at or above 1024, many 
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vulnerable services (such as X, OpenWindows, 

and a number of database servers) use server 

ports at or above 1024, and several vulnerable 

clients (such as the Berkeley r* programs) use 

client ports below 1024. These should be 

carefully excepted from the "allow all packets to 

destination ports at or above 1024" type of rules 

that allow return packets for outbound services. 

IV. PROBLEMS WITH CURRENT PACKET 

FILTERING IMPLEMENTATIONS 

IP packet filtering, while a useful network 

security tool, is not a panacea, particularly in the 

form in which it is currently implemented by 

many vendors. Problems with many current 

implementations include complexity of 

configuration and administration, omission of the 

source UDP/TCP port from the fields that 

filtering can be based on, unexpected interactions 

between "unrelated" parts of the filter rule set, 

cumbersome filter specifications forced by 

simple specification mechanisms, a lack of 

testing and debugging tools, and an inability to 

deal effectively with RPC-based protocols such 

as YP/NIS and NFS. 

IV.1. Filters are difficult to configure 

The first problem with many current IP 

packet filtering implementations as network 

security mechanisms is that the filtering is 

usually very difficult to configure, modify, 

maintain, and test, leaving the administrator with 

little confidence that the filters are correctly and 

completely specified. The simple syntax used in 

many filtering implementations makes life easy 

for the router (it’s easy for the router to parse the 

filter specifications, and fast for the router to 

apply them), but difficult for the administrator 

(it’s like programming in assembly language). 

Instead of being able to use high-level language 

abstractions ("if this and that and not something-

else then permit else deny"), the administrator is 

forced to produce a tabular representation of 

rules; the desired behavior may or may not map 

well on to such a representation. 

Administrators often consider networking 

activity in terms of "connections", while packet 

filtering, by definition, is concerned with the 

packets making up a connection. An 

administrator might think in terms of "an 

inbound SMTP connection", but this must be 

translated into at least two filtering rules (one for 

the inbound packets from the client to the server, 

and one for the outbound packets from the server 

back to the client) in a table-driven filtering 

implementation. The concept of a connection is 

applied even when considering a connectionless 

protocol such as UDP or ICMP; for instance, 

administrators speak of "NFS connections" and 

"DNS connections". This mismatch between the 

abstractions used by many administrators and the 

mechanisms provided by many filtering 

implementations contributes to the difficulty of 

correctly and completely specifying packet 

filters. 

  

4.2. Special handling of start-of-connection 

packets is impossible 

Note that the even the above filters with 

source port still don’t protect your servers living 

at or above port 1024 from an attack launched 

from port 25 on an external machine (which is 

certainly possible if the person making the attack 

controls the machine the attack is coming from); 

rules C and D will allow this. One way to defeat 

this type of attack is to suppress TCP start-of-

connection packets (packets with the TCP "SYN" 

flag set) in rule C; at least one filter 

implementation provides a mechanism for stating 

that rules apply only to packets in "established" 

connections (those packets without the SYN bit 

set) [Cisco90]. 

Unfortunately, UDP sessions are 

"connectionless", so there is never a "start-

ofconnection" packet that can be suppressed in a 

UDP session. A solution for UDP is often to 

disallow UDP entirely except for a specific 

exception for DNS. This exception for DNS can 

generally be made safely even with a filtering 

implementation that ignores source port, because 

of a quirk in the most common DNS 

implementation. The quirk causes DNS server-

to-server queries made over UDP to always use 

port 53 at both ends of the connection, rather 

than a random port at one end. Disallowing UDP 

except for DNS also allows you to avoid most of 

the problems with filtering RPC-based services 

(since most RPC services are UDP based) that 

are discussed in Section 4.6. 
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4.3. Tabular filtering rule structures are too 

cumbersome 

While tabular rule structures such as those 

shown above are relatively easy and thus 

efficient for the router to parse and apply, they 

rapidly become too cumbersome for the 

administrator to use to specify complex 

independent filtering requirements. Even simple 

applications of these cumbersome syntaxes are 

difficult, and often have unintended and 

undesired side effects, as demonstrated in 

Section 4.2. 

4.4. Testing and monitoring filters is difficult 

With many router products, the beleagured 

administrator’s life is further complicated by a 

lack of built-in mechanisms to test the filter set 

or to monitor its performance in action. This 

makes it very difficult to debug and validate 

filtering rule sets, or to modify existing rule sets; 

the administrator always has to wonder if the 

filtering rules are really accomplishing what was 

intended, or if the rule set has some inadvertent 

hole in it that the administrator has somehow 

overlooked. 

4.5. RPC is very difficult to filter effectively 

Finally, RPC-based protocols offer a 

special challenge, since they don’t reliably 

appear on a given UDP or TCP port number. The 

only RPC-related service that is guaranteed to be 

at a certain port is the "portmapper" service. 

Portmapper maps an RPC service number (which 

is a 32-bit number assigned by Sun 

Microsystems to each individual RPC service, 

including services created by users and other 

vendors) to the particular TCP or UDP port 

number (which are much smaller 16-bit numbers) 

that the service is currently using on the 

particular machine being queried. When an RPC-

based service starts up, it registers with the 

portmapper to announce what port it is living at; 

the portmapper then passes this info along to 

anyone who requests it. 

The portmapper isn’t required in order to 

establish an RPC connection, except to determine 

exactly which port to establish the connection to; 

if you know (or can guess) which port to 

establish the connection to, you can bypass the 

portmapper altogether. What port a given RPC 

protocol (such as YP/NIS, NFS, or any of a 

number of others) ends up using is random 

enough that the administrator can’t effectively 

specify filters for it (at least, not without risking 

the inadvertent filtering of something else that 

happened to end up on the same port the 

administrator thought an RPC-based service 

might end up at), but not so random that an 

attacker can’t easily "guess" where a given 

protocol lives. Even if they can’t or don’t guess, 

a systematic search of the entire port number 

space for the RPC service they’re interested in 

attacking is not that difficult. Since RPC-based 

services might be on any port, the filtering 

implementation has no sure way of recognizing 

what is and what isn’t RPC; as far as the router is 

concerned, it’s all just UDP or TCP traffic. 

Two fortuitous characteristics of most 

RPC-based services can be used to save us from 

this morass, however. First, most RPC-based 

services are offered as only on UDP ports; we 

can simply drop UDP packets altogether except 

for DNS, as described above. Second, almost all 

of those that are offered on TCP ports use ports 

below 1024, which can be protected by an "deny 

all ports below 1024 except specific services like 

SMTP" type of filter, such as shown in the 

example in Section 4.2. 

V. POSSIBLE SOLUTIONS FOR CURRENT 

PACKET FILTERING PROBLEMS 

V.1. Improve filter specification 

syntax 

The major improvement that could be 

made to many vendor packet filtering 

implementations would be to provide better filter 

specification mechanisms. The administrator 

should be able to specify rules in a form that 

makes sense to the administrator (such as a 

propositional logic syntax), not necessarily a 

form that is efficient for the router to process; the 

router can then convert the rules from the high-

level form to a form amenable to efficient 

processing. One possibility might be the creation 

of a "filter compiler" that accepts filters in a 

high-level syntax that was convenient for the 

administrator, and emits a "compiled" filter list 

that is acceptable to the router. 

Addressing the conceptual mismatch 

between administrators, who think in terms of 
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connections, and routers, which operate in terms 

of the packets making up those connections, as 

discussed in Section 4.1, might also prove 

valuable. 

V.2. Make all relevant header fields 

available as filtering criteria 

The administrator should be able to specify 

all relevant header fields, particularly including 

TCP/UDP source port (which is currently often 

omitted from many filtering implementations), as 

filter criteria. Until this key feature is provided, it 

will be difficult or impossible to effectively use 

filtering in certain common situations, as 

demonstrated in the example in Section 4.2. The 

administrator should also be able to specify 

whether a filter rule should apply only to 

established TCP connections. 

V.3. Allow inbound filters as well as 

outbound filters 

The administrator should be able to specify 

both inbound and outbound filters on each 

interface, rather than only outbound filters. This 

would allow the administrator to position the 

router either "inside" or "outside" the filtering 

"fence", as appropriate. It would also allow 

simpler specification of filters on routers with 

more than two interfaces by allowing some cases 

(such as a packet appearing from the outside 

world that purports to be both to and from 

internal hosts) to be handled by the inbound set 

of filters on the external interface, rather than 

having to duplicate these special cases into the 

outbound filter set on each internal interface. The 

desired functionality may not even be possible 

with only outbound filters; the case of a fake 

internal-to-internal packet showing up on the 

external interface, as discussed in Section 2.4.2, 

can’t be detected in an outbound filter set. 

V.4. Provide tools for developing, 

testing, and monitoring filters 

Better tools for developing, testing and 

validating rule sets, perhaps including test suites 

and automatic test probe generators, would make 

a big difference in the usability of packet filtering 

mechanisms. Such an automated test system 

might well be a part of the "filter compiler" 

described in Section 5.1. 

V.5. Simplify specification of 

common filters 

It would be useful if administrators could 

specify common filtering cases (for instance, 

"allow inbound SMTP to this single host") 

simply, without having to understand the details 

of the protocols or filtering mechanisms 

involved. 

VI. CONCLUSIONS 

Packet filtering is currently a viable and 

valuable network security tool, but some simple 

vendor improvements could have a big impact. 

There are several critical deficiencies that seem 

to be common to many vendors, such as the 

inability to consider source TCP/UDP port in 

filters, that need to be addressed. Other 

improvements to filter specification mechanisms 

could greatly simplify the lives of network 

administrators trying to use packet filtering 

capabilities, and increase their confidence that 

their filters are doing what they think they are. 
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Appendix A — Filtering Characteristics of 

Common IP Protocols 

A.1. SMTP 

SMTP is provided as a TCP service with 

the server end of the connection at port 25 and 

the client end at a random port. 

A.2. TELNET 

TELNET is provided as a TCP service 

with the server end of the connection at port 23, 

and the client end at a random port. 

A.3. FTP 

FTP is slightly tricky, in that an FTP 

conversation actually involves two TCP 

connections in typical UNIX implementations: 

one for connection for commands, and one for 

data. The command connection is at port 21 on 

the server, and the data connection is at port 20 

on the server; both connections use random ports 

on the client side. 

A.4. NNTP 

NNTP is provided as a TCP service with 

the server end at port 119, and the client end at a 

random port.  

  


