
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100549 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 190

PHP SECURITY AND CONCERNS

A. Yeshvini, Kanika Arora

Btech, Dronacharya College Of Engineering ,Gurgaon, India

Abstract- About 30% of all vulnerabilities listed on

the Vulnerability information are coupled to PHP

vulnerabilities are caused principally by not

following best-practice programming rules.

Technical security flaws of the language itself or of

its core libraries don't seem to be frequent (23 in

2008, regarding one hundred and twenty fifth of

the total). Recognizing that it is usual that

programmers build mistakes, some of the

languages embrace taint checking

to mechanically notice the shortage of input

validation that induces several problems. Such a

feature is being developed for PHP, however its

inclusion during a unleash has been

rejected many times within the past. There are

advanced protection patches such as

Suhosin and Hardening-Patch, especially designed

for web hosting environments. Some of the

vulnerabilities are iatrogenic by improper PHP's

runtime configuration. as an example, failing to

disable PHP execution for the

directory wherever uploaded pictures are hold on,

may end up in execution of malicious PHP

embedded inside uploaded pictures. Another

standare example is departure enabled the

dynamic loading of PHP extensions, during

a shared hosting atmosphere.In this paper we've

got represented all the aspects and usage of

php together with its linking ability to the remote

sites and servers and conjointly in networking and

security.

1. INTRODUCTION

This document describes the functionality and

statistics related to php language and security

aspects of it.

PHP is a powerful language and the interpreter,

whether included in a web server as a module or

executed as a separate CGI binary, is able to

access files, execute commands and open

network connections on the server. These

properties make anything run on a web server

insecure by default. PHP is designed specifically

to be a more secure language for

writing CGI programs than Perl or C, and with

correct selection of compile-time and runtime

configuration options, and proper coding

practices, it can give you exactly the

combination of freedom and security you need.

As there are many different ways of utilizing

PHP, there are many configuration options

controlling its behaviour. A large selection of

options guarantees you can use PHP for a lot of

purposes, but it also means there are

combinations of these options and server

configurations that result in an insecure setup.

The configuration flexibility of PHP is equally

rivalled by the code flexibility. PHP are

often accustomedbuild complete server

applications, with all the facility of a shell user,

or it are often used for easyserver-side includes

with very little risk in a very tightly

controlled setting. however you build

thatsetting, and the way secure it's, is

essentially up to the PHP developer.

This chapter starts with some general security

advice, explains the different configuration

option combinations and the situations they can

be safely used, and describes different

considerations in coding for different levels of

security

General considerations

A completely secure system is a virtual

impossibility, so an approach often used in the

security profession is one of balancing risk and

usability. If every variable submitted by a user

required two forms of biometric validation (such

as a retinal scan and a fingerprint), you would

have an extremely high level of accountability. It

would also take half an hour to fill out a fairly

complex form, which would tend to encourage

users to find ways of bypassing the security.

The best security is often unobtrusive enough to

suit the requirements without the user being

prevented from accomplishing their work, or

over-burdening the code author with excessive

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100549 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 191

complexity. Indeed, some security attacks are

merely exploits of this kind of overly built

security, which tends to erode over time.

A phrase worth remembering: A system is only

as good as the weakest link in a chain. If all

transactions are heavily logged based on time,

location, transaction type, etc. but the user is

only verified based on a single cookie, the

validity of tying the users to the transaction log

is severely weakened.

When testing, keep in mind that you will not be

able to test all possibilities for even the simplest

of pages. The input you may expect will be

completely unrelated to the input given by a

disgruntled employee, a cracker with months of

time on their hands, or a housecat walking across

the keyboard. This is why it's best to look at the

code from a logical perspective, to discern where

unexpected data can be introduced, and then

follow how it is modified, reduced, or amplified.

The Internet is filled with people trying to make

a name for themselves by breaking your code,

crashing your site, posting inappropriate content,

and otherwise making your day interesting. It

doesn't matter if you have a small or large site,

you are a target by simply being online, by

having a server that can be connected to. Many

cracking programs do not discern by size, they

simply trawl massive IP blocks looking for

victims. Try not to become one.

II. TYPES OF SECURITY UNDERTAKEN

Making the system, files ANd services

is nowadays a chiefly followed facet whereas e b

eneathparturition the standards for

development beneath an atmosphere. Php on the

opposite hand employs varied commands and

languages with it to prove it for the

protection functions. though theoperating conditi

ons deployed and standards beside the

definitions varies it's has the power to

indicate its practicality for the sectors as listed

below

.2.1File System Security

PHP is subject to the security built into most

server systems with respect to permissions on a

file and directory basis. This allows you to

control which files in the filesystem may be read.

Care should be taken with any files which are

world readable to ensure that they are safe for

reading by all users who have access to that

filesystem.

Since PHP was designed to permit user level

access to the filesystem, it's entirely attainable to

jot down a PHP script that may permit you

to scan system files like /etc/passwd, modify

your LAN connections, sendlarge printer jobs

out, etc. This has some obvious

implications, therein you would like to

confirm that the files that you simply scan from

and write to area unit the acceptable ones

.2.2Database Security

Nowadays,databases are cardinal parts of

any net based mostly application

by sanctionativewebsites tosupply variable dyna

mic content. Since terribly sensitive or

secret data will be keepduring a info, you

must powerfully take into

account protective databases.

To retrieve or to store any data you wish to

attach to the info, send a legitimate question,

fetch the result, and shut the affiliation.

Nowadays,the usually used search

language during,thtis interaction is that

the Structured Query language (SQL).

See however associate offender will tamper

withassociate SQL question.As you can

surmise, PHP cannot protect your database by

itself. The following sections aim to be an

introduction into the very basics of how to access

and manipulate databases within PHP scripts.

Keep in mind this simple rule: defense in depth.

The more places you take action to increase the

protection of your database, the less probability

of an attacker succeeding in exposing or abusing

any stored information. Good design of the

database schema and the application deals with

your greatest fears.

III. SETTING SECURE PHP AND

CONFIGURATION SETTINGS

PHP code can be embedded in your Web pages

along with HTML code. When your Web server

receives a request for a page, the page is first

given to the PHP handler. The PHP handler

outputs HTML code without modification and

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100549 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 192

executes any PHP commands. Any HTML code

generated by the PHP commands is also output.

This results in a Web page with content that has

been customized on the server before being sent

to the requestor.

The capabilities of PHP also make it a potential

security risk because data is actively fetched,

received, and processed from anywhere on the

Internet. Attackers may attempt to send in

malicious data and scripts and trick your server

into fetching malicious scripts and running them.

Attackers may also attempt to read and write

files on your server to take control of the Web

site and use it for their own purposes.

You can configure PHP settings to tighten the

security of a PHP installation and help protect

the Web site from malicious attacks. The Php.ini

file specifies the configuration settings PHP uses

when it is running on your Web site. The Php.ini

file determines what things PHP scripts are

allowed to do and what the scripts are prohibited

from doing. Table 1 summarizes settings that

affect security. More detailed explanations of the

setting follow.

Setting Description

allow_url_fopen=Off

allow_url_include=Off

Disable remote URLs

(which may cause code

injection vulnerabilities)

for file handling functions.

register_globals=Off Disable register_globals.

open_basedir="c:\inetpu

b\"

Restrict where PHP

processes can read and

write on a file system.

safe_mode=Off

safe_mode_gid=Off

Disable safe mode.

max_execution_time=3

0

max_input_time=60

Limit script execution

time.

memory_limit=16M

upload_max_filesize=2

M

post_max_size=8M

max_input_nesting_lev

els=64

Limit memory usage and

file sizes.

display_errors=Off

log_errors=On

error_log="C:\path\of\y

Configure error messages

and logging.

our\choice"

fastcgi.logging=0 Internet info Services

(IIS) Fast CGI

module can fail the

request once PHP sends

any information on stderr

by exploitation FastCGI

protocol. Disabling

FastCGI work can forestal

l PHP from causing

error info over stderr, and

generating five

hundred response codes

for the shopper.

expose_php=Off Hide presence of PHP.

IV. ERROR REPORTING

With PHP security, there are two sides to error

reporting. One is beneficial to increasing

security, the other is detrimental.

A standard attack tactic involves profiling a

system by feeding it improper data, and checking

for the kinds, and contexts, of the errors which

are returned. This allows the system cracker to

probe for information about the server, to

determine possible weaknesses

The PHP errors which are normally returned can

be quite helpful to a developer who is trying to

debug a script, indicating such things as the

function or file that failed, the PHP file it failed

in, and the line number which the failure

occurred in. This is all information that can be

exploited. It is not uncommon for a php

developer to

use show_source(), highlight_string(),

or highlight_file() as a debugging measure, but

in a live site, this can expose hidden variables,

unchecked syntax, and other dangerous

information. Especially dangerous is running

code from known sources with built-in

debugging handlers, or using common

debugging techniques.

4.1 Issues

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100549 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 193

If you are a "connected" developer, you are

probably aware of the major vulnerabilities

found in Ruby on Rails recently. To be fair,

we've also found some serious issues in the

Symfony code during the last few months.

As security management ought to be a high most

priority for United States of America and our

customers, security management additionally| a

really vital topic on behalf of me as a result

of Symfony is quickly growing in quality end

user comes and ASCII additional exposure

also means that additional interest from the "bad

guys"

One of the goal of good security issues

management is transparency. That's why the

Symfony project has a simple way of reporting

security issues (via the security [at]

symfony.com email address), an easily

accessible list of security advisories , and a well

defined blog post template to announce security

issues. Recently, we have also enforced the need

to have a CVE identifier for all security issues to

help the broader community to be aware of

Symfony security issues.

V. CONTROLLING PHP

In general, security by obscurity is one of the

weakest forms of security. But in some cases,

every little bit of extra security is desirable.

A few simple techniques can help to hide PHP,

possibly slowing down an attacker who is

attempting to discover weaknesses in your

system. By setting expose_php to off in

your php.ini file, you reduce the amount of

information available to them.

Another tactic is to configure web servers such

as apache to parse different filetypes

through PHP, either with an .htaccess directive,

or in the apache configuration file itself. You can

then use misleading file extensions.

VI. CONCLUSION

This research paper underlines the requirement

and various features of php language and its

significance in security. In the past PHP open

source principles have put greater overhead on

individual developer choices. Unlike Java, every

developer had the possibility to do as they

pleased since there was little language and

systems standardization. Over the past 18

months this gap has been minimized by the

introduction of a set of best practices and

standardizations and will continue this

orientation in future with the growth of PHP

frameworks. It had work for the development

and welfare of the IT world. The ways of it

implementation in services and remote

applications being developed at a large scale thus

increasing the demand of developers made it

more strong with the problems and frequent

queries. We have also listed its large scale

implementations along with the issues overcome

with time. Also we tried to give a good overview

over the different security hardening features an

attacker will have to deal with once he

succeeded in executing arbitrary PHP code.

However this is only the beginning of our

research, because valid countermeasures against

this attack have yet to be developed. The first

ideas to stop this kind of attack were all not

sufficient to really solve the problem. Delaying

the execution of user-space error handlers until

internal functions have ended does only solve a

part of the problem, the same is true for

removing the calltime-passby-reference feature

once and for all. There are still exploitation path

that are not covered by this, like the usort()

vulnerability. Fixing the PHP code to not have

interruption vulnerabilities is also no short time

solution, because many areas of the code would

have to be checked. Aside from that there are

only hacks that try to hinder the described

exploitation paths by changing structures

REFRENCES

[1] PHP Documentation Team, ”PHP: Safe

Mode - Manual”, PHP Documentation,

http://www.php.net/manual/en/features.safe-

mode.php

[2] PHP Documentation Team, ”PHP: Security

and Safe Mode - Manual”, PHP Documentation,

http://de.php.net/manual/en/ini.sect.safe-

mode.php#ini.open-basedir

[3] Secunia, ”Secunia Advisory Search for PHP

+ Safe Mode”, Secunia Advisories,

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100549 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 194

http://secunia.com/advisories/search/?search=PH

P+safe+mode

[4] Secunia, ”Secunia Advisory Search for PHP

+ Safe Mode + Curl”, Secunia Advisories,

http://secunia.com/advisories/search/?search=PH

P+safe+mode+curl

[5] J. Dahse, ”Safe mode bypass”,

http://bugs.php.net/bug.php?id=45997

[6] M. Arciemowicz, ”tempnam() open basedir

bypass PHP 4.4.2 and 5.1.2”,

http://securityreason.com/achievement

securityalert/36

[7] M. Arciemowicz, ”PHP 5.2.3, htaccess

safemode and open basedir Bypass”,

http://securityreason.com/achievement

securityalert/9

[8] S. Esser, ”Month of PHP Bugs”,

http://www.php-security.org

[9] S. Esser, ”PHP memory limit remote

vulnerability”, e-matters Advisory 11/2004,

http://www.hardened-php.net/advisory

em112004.100.html

[10] S. Esser, ”PHP register globals Activation

Vulnerability in parse str()”, Hardened-PHP

Advisory 19/2005, http://www.hardened-

php.net/advisory 192005.78.html

[11] S. Esser, ”What is Suhosin?”, Suhosin

Website, http://www.suhosin.org

[12] H. Etoh, ”GCC extension for protecting

applications from stack-smashing attacks”,

http://www.trl.ibm.com/projects/security/ssp/

[13] U. Drepper, ”Security Enhancements in

Redhat Enterprise Linux (beside SELinux)”,

12/2005,

http://people.redhat.com/drepper/nonselsec.pdf

[14] S. Esser, ”E-mail introducing the safe

unlink concept”, 12/2003,

http://archives.neohapsis.com/archives/bugtraq/2

003-12/0014.html

[15] huku, ”Yet another free() exploitation

technique”, Issue 66, Article 6,

http://www.phrack.org/issues.html?issue=66&id

=6

[16] blackngel, ”MALLOC DES-

MALEFICARUM”, Issue 66, Article 10,

http://www.phrack.org/issues.html?issue=66&id

=10

[17] N. Provos, ”Systrace - Interactive Police

Generation for System Calls”,

http://www.citi.umich.edu/u/provos/systrace/

[18] Various Authors, ”AppArmor Detail”, 2009,

http://en.opensuse.org/AppArmor Detail

27

[19] B. Spengler, ”PaX: The Guaranteed End of

Arbitrary Code Execution”, 2003,

http://www.grsecurity.net/PaX-presentation

files/frame.htm

[20] The PaX Team, ”PaX Documentation”,

2003, http://pax.grsecurity.net/docs/pax.txt

[21] B. Spengler, ”Grsecurity”,

http://www.grsecurity.net

[22] M. T. Jones, ”Anatomy of Security-

Enhanced Linux (SELinux) - Architecture and

Implementation”, 2008,

http://www.ibm.com/developerworks/linux/librar

y/l-selinux/

[23] The PaX Team, ”PaX Documentation:

ASLR”, 2003,

http://pax.grsecurity.net/docs/aslr.txt

[24] The PaX Team, ”PaX Documentation:

NOEXEC”, 2003,

http://pax.grsecurity.net/docs/noexec.txt

[25] Microsoft, ”A detailed description of the

Data Execution Prevention (DEP) feature in

Windows XP Service Pack 2, Windows XP

Tablet PC Edition 2005, and Windows Server

2003”,

2006, http://support.microsoft.com/kb/875352

[26] H. Shacham, ”The Geometry of Innocent

Flesh on the Bone: Return-into-libc without

Function Calls (on the x86)”, In Proceedings of

CCS 2007, pages 552561, ACM Press, Oct.

2007,

http://cseweb.ucsd.edu/ hovav/dist/geometry.pdf

[27] The PaX Team, ”PaX Documentation:

MPROTECT”, 2003,

http://pax.grsecurity.net/docs/mprotect.txt

[28] S. Krahmer, ”x86-64 buffer overow exploits

and the borrowed code chunks exploitation

technique”, 2005, http://www.suse.de/

krahmer/no-nx.pdf

