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Abstract- CCJ is a communication library that adds 

MPI-like collective operations to Java. Instead of 

trying to use the precise MPI syntax, CCJ focus on 

integrating Java’s object-oriented framework. For 

example, CCJ uses thread groups to support Java’s 

multithreading model and it allows any data structure 

(not just arrays) to be communicated. CCJ is 

implemented entirely in Java, so that  it can be used 

with any Java virtual machine. This paper discusses 

three parallel Java applications that use collective 

communication technique. It compares the 

performance (on top of a Myrinet cluster) of CCJ, 

RMI and mpiJava versions of these applications, and 

also compares the code complexity of the CCJ and 

RMI versions. The results show that the CCJ versions 

are significantly simpler than the RMI versions and 

obtain a good performance. 

I. INTRODUCTION 

Java a viable platform for high-performance 

computing due to recent improvements in 

compilers and communication mechanisms. As 

Java support multithreading and Remote Method 

Invocation (RMI) therefore it becomes suitable for 

writing parallel programs.RMI uses a familiar 

abstraction (object invocation), integrated in a  

Java’s object-oriented programming model. For 

example, almost any data structure can be passed as 

argument or return value in an RMI. Also, RMI can 

be implemented efficiently with support for object 

replication.A disadvantage of RMI, however, is 

that it only supports communication between two 

parties, a client and a server. Experience with other 

parallel languages has shown that many 

applications also require communication between 

multiple processes. The MPI message passing 

standard defines collective communication 

operations for this purpose. Several projects have 

proposed to extendJava with MPI-like collective 

operations. Unlike RMI, the MPI primitives are 

biased towards array-based data structures.Some 

existing Java systems already support MPI’s 

collective operations, but often they invoke a C-

library from Java using the Java Native Interface, 

which has a large runtime overhead.In this paper 

we present the CCJ library (Collective 

Communication in Java) which integrates the core 

of MPI’s collective operations to Java’s object 

model. CCJ maintains thread groups that can 

collecively communicate by exchanging arbitrary 

object data structures.For example, if one thread 

needs to distribute a list data structure among other 

threads, it can invoke an MPI-like scatter primitive 

to do so. CCJ is implemented entirely in Java, on 

top of RMI. Ittherefore does not suffer from JNI 

overhead and it can be used with any Java virtual 

machine. Performance measurements for CCJ’s 

collective operations show that its runtime 

overhead is almost negligible compared to the time 

spent in the underlying (efficient) RMI mechanism.  

 CCJ’s support for arbitrary data structures is useful 

for example in implementing sparse matrices. 

II. OBJECTBASED COLLECTIVE 

COMMUNICATION 

With Java’s multithreading support, individual 

threads can be coordinated to operate under mutual 

exclusion. However, with collective 

communication, groups of threads cooperate to 

perform a given operation collectively. This form 

of cooperation, instead of mere concurrency, is 

used frequently in parallel applications and also 

enables efficient implementation of the collective 

operations. In this section, we present and discuss 

the approach taken in our CCJ library to integrate 

collective communication, as inspired by the MPI 

standard, into Java’s object-based model. CCJ 

integrates MPI-like collective operations in a clean 

way in Java, but without 

trying to be compatible with the precise MPI 

syntax. CCJ translates MPI processes into active 

objects (threads) and thus preserves MPI’s implicit 

group synchronization properties. In previous 

work, we discussed the alternative approach of 

using groups of passive objects [20]. 

2.1 Thread groups 

With the MPI standard, processes perform 

collective communication within the context of a 

communicator object. The communicator defines 

the group of participating processes which are 
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ordered by their rank. Each process can retrieve its 

rank and the size of the process group from the 

communicator object. MPI communicators can not 

be changed at runtime, but new communicators can 

be derived from existing ones. 

In MPI, immutable process groups (enforced via 

immutable communicator objects) are vital for 

defining sound semantics of collective operations. 

For example, a barrier operation performed on an 

immutable group clearly defines which processes 

are synchronized; for a broadcast operation, the set 

of receivers can be clearly identified. The ranking 

of processes is also necessary to define operations 

like scatter/gather data re-distributions, where the 

data sent or received by each individual process is 

determined by its rank. Unlike MPI, the PVM 

message passing system [12] allows mutable 

process groups, trading clear semantics for 

flexibility. The MPI process group model, 

however, does not easily map onto Java’s 

multithreading model. The units of execution in 

Java are dynamically created threads rather than 

heavy-weight processes. Also, the RMI mechanism 

blurs the boundaries between individual Java 

Virtual Machines (JVMs). Having more than one 

thread per JVM participating in collective 

communication can be useful, for example for 

application structuring or for exploiting multiple 

CPUs  of a shared-memory machine. Although the 

MPI standard requires 

implementations to be thread-safe, dynamically 

created threads can 

not be addressed by MPI messages, excluding their 

proper use in 

collective communication. 

CCJ maps MPI’s immutable process groups onto 

Java’s multithreading 

model by defining a model of thread groups that 

constructs 

immutable groups from dynamically created 

threads. CCJ 

uses a two-phase creation mechanism. In the first 

phase, a group 

is inactive and can be constructed by threads 

willing to join. After 

construction is completed, the group becomes 

immutable (called 

active) and can be used for collective 

communication. For convenience, 

inactive copies of active groups can be created and 

subsequently 

modified. Group management in CCJ uses the 

following 

three classes. 

ColGroup Objects of this class define the thread 

groups to be used 

for collective operations. ColGroup provides 

methods for 

retrieving the rank of a given ColMember object 

and the 

size of the group. 

ColMember Objects of this class can become 

members of a given 

group. Applications implement subclasses of 

ColMember, 

the instances of which will be associated with their 

own thread 

of control. 

ColGroupMaster Each participating JVM has to 

initialize one object 

of this class acting as a central group manager. The 

group 

master also encapsulates the communication 

establishment 

like the interaction with the RMI registry. 

For implementing the two-phase group creation, 

ColGroupMaster 

provides the following interface. Groups are 

identified by String 

objects with symbolic identifications. 

void addMember(String groupName, ColMember 

member) 

Adds a member to a group. If the group does not 

yet exist, 

the group will be created. Otherwise, the group 

must still 

be inactive; the getGroup operation for this group 

must not 

have completed so far. 

ColGroup getGroup(String groupName, 

int numberOfMembers) 

Activates a group. The operation waits until the 

specified 

number of members have been added to the group. 

Finally,the activated group is returned. All 

members of a group have to call this operation 

prior to any collective communication. 

2.2 Collective communication 

As described above, CCJ’s group management 

alleviates the restrictions 

of MPI’s static, communicator-based group model. 

For 
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defining an object-based framework, also the 

collective communication 

operations themselves have to be adapted. MPI 

defines 

a large set of collective operations, inspired by 

parallel application 

codes written in more traditional languages such as 

Fortran 

or C. Basically, MPI messages consist of arrays of 

data items of 

given data types. Although important for many 

scientific codes, arrays 

can not serve as general-purpose data structure in 

Java’s object 

model. Instead, collective operations should deal 

with serializable 

objects in the most general case. 

The implementation of the collective operations 

could either be 

part of the group or of the members. For CCJ, we 

decided for the 

latter option as this is closer to the original MPI 

specification and 

more intuitive with the communication context (the 

group) becoming 

a parameter of the operation. 

From MPI’s original set of collective operations, 

CCJ currently 

implements the most important ones, leaving out 

those operations 

that are either rarely used or strongly biased by 

having arrays as 

general parameter data structure. CCJ currently 

implements Barrier, 

Broadcast, Scatter, Gather, Allgather, Reduce, and 

Allreduce. 

We now present the interface of these operations in 

detail. For 

the reduce operations, we also present the use of 

function objects 

implementing the reduction operators themselves. 

For scatter and 

gather, we present the 

DividableDataObjectInterface imposing a 

notion of indexing for the elements of general (non-

array) objects. 

CCJ uses Java’s exception handling mechanism for 

catching error 

conditions returned by the various primitives. For 

brevity, however, 

we do not show the exceptions in the primitives 

discussed below. 

Like MPI, CCJ requires all members of a group to 

call collective 

operations in the same order and with mutually 

consistent parameter 

objects.  

void barrier(ColGroup group) 

Waits until all members of the specified group have 

called 

the method. 

Object broadcast(ColGroup group, Serializable obj, 

int root) 

One member of the group, the one whose rank 

equals root, 

provides an object obj to be broadcast to the group. 

All members 

(except the root) return a copy of the object; to the 

root 

member, a reference to obj is returned. 

MPI defines a group of operations that perform 

global reductions 

such as summation or maximum on data items 

distributed across a 

communicator’s process group. MPI identifies the 

reduction operators 

either via predefined constants like “MPI MAX,” 

or by userimplemented 

functions. However, object-oriented reduction 

operations 

have to process objects of application-specific 

classes; implementations 

of reduction operators have to handle the correct 

object 

classes. 

One implementation would be to let application 

classes implement 

a reduce method that can be called from within the 

collective 

reduction operations. However, this approach 

restricts a class 

to exactly one reduction operation and excludes the 

basic (numeric) 

data types from being used in reduction operations. 

As a consequence, the reduction operators have to 

be implemented 

outside the objects to be reduced. Unfortunately, 

unlike 

in C, functions (or methods) can not be used as 

first-class entities 

in Java. Alternatively, Java’s reflection mechanism 

could be usedto identify methods by their names 

and defining class (specified 
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by String objects). Unfortunately, this approach is 

unsuitable, because 

reflection is done at runtime, causing prohibitive 

costs for 

use in parallel applications. Removing reflection 

from object serialization 

is one of the essential optimizations of our fast 

RMI implementation 

in the Manta system [21]. 

CCJ thus uses a different approach for 

implementing reduction 

operators: function objects [19]. CCJ’s function 

objects implement 

the specific ReductionObjectInterface containing a 

single 

method Serializable reduce(Serializable o1, 

Serializable o2). 

With this approach, all application specific classes 

and the standard 

data types can be used for data reduction. The 

reduction operator 

itself can be flexibly chosen on a per-operation 

basis. Operations 

implementing this interface are supposed to be 

associative and 

commutative. CCJ provides a set of function 

objects for the most 

important reduction operators on numerical data. 

This leads to the 

following interface for CCJ’s reduction operations 

in the ColMember 

class. 

Serializable reduce(ColGroup group, 

Serializable dataObject, 

ReductionObjectInterface reductionObject, int root) 

Performs a reduction operation on the dataObjects 

provided 

by the members of the group. The operation itself is 

determined 

by the reductionObject; each member has to 

provide 

a reductionObject of the same class. reduce returns 

an object with the reduction result to the member 

identified 

as root. All other members get a null reference. 

Serializable allReduce(ColGroup group, 

Serializable dataObject, 

ReductionObjectInterface reductionObject) 

Like reduce but returns the resulting object to all 

members. 

The final group of collective operations that have 

been translated 

from MPI to CCJ is the one of scatter/gather data 

re-distributions: 

MPI’s scatter operation takes an array provided by 

a root process 

and distributes (“scatters”) it across all processes in 

a communicator’s 

group. MPI’s gather operation collects an array 

from items 

distributed across a communicator’s group and 

returns it to a root 

process. MPI’s allgather is similar, however 

returning the gathered 

array to all participating processes. 

Although defined via arrays, these operations are 

important for 

many parallel applications. The problem to solve 

for CCJ thus 

is to find a similar notion of indexing for general 

(non-array) objects. 

Similar problems occur for implementing so-called 

iterators 

for container objects [11]. Here, traversing 

(iterating) an object’s 

data structure has to be independent of the object’s 

implementation 

in order to keep client classes immune to changes 

of the container 

object’s implementation. Iterators request the 

individual items of a 

complex object sequentially, one after the other. 

Object serialization, 

as used by Java RMI, is one example of iterating a 

complex 

object structure. Unlike iterators, however, CCJ 

needs random access 

to the individual parts of a dividable object based 

on an index 

mechanism. 

For this purpose, objects to be used in 

scatter/gather operations 

have to implement the 

DividableDataObjectInterface with the 

following two methods: 

Serializable elementAt(int index, int groupSize) 

Returns the object with the given index in the range 

from 

to groupSize � 

___ 

void setElementAt(int index, int groupSize, 

Serializable object) 

Conversely, sets the object at the given index. 
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Based on this interface, the class ColMember 

implements the 

following three collective operations. 

Serializable scatter(ColGroup group, 

DividableDataObjectInterface rootObject, int root) 

The root member provides a dividable object which 

will be 

scattered among the members of the given group. 

Each member 

returns the (sub-)object determined by the 

elementAt 

method for its own rank. The parameter rootObject 

is ignored 

for all other members. 

DividableDataObjectInterface gather(ColGroup 

group, 

DividableDataObjectInterface rootObject, 

Serializable dataObject, int root) 

 The root member provides a dividable object 

which will be 

gathered from the dataObjects provided by the 

members of 

the group. The actual order of the gathering is 

determined 

by the rootObject’s setElementAt method, 

according to the 

rank of the members. The method returns the 

gathered object 

to the root member and a null reference to all other 

members. 

DividableDataObjectInterface allGather(ColGroup 

group, 

DividableDataObjectInterface resultObject, 

Serializable dataObject) 

Like gather, however the result is returned to all 

members 

and all members have to provide a resultObject. 

2.3 Example application code 

We will now illustrate how CCJ can be used for 

application programming. 

As our example, we show the code for the All-Pairs 

Shortest Path application (ASP), the performance 

of which will be 

discussed in Section 4. Figure 1 shows the code of 

the Asp class 

that inherits from ColMember. Asp thus constitutes 

the applicationspecific 

member class for the ASP application. Its method 

do asp 

performs the computation itself and uses CCJ’s 

collective broadcast 

operation. Before doing so, Asp’s run method first 

retrieves 

rank and size from the group object. Finally, do asp 

calls the done 

method from the ColMember class in order to de-

register the member 

object. The necessity of the done method is an 

artifact of Java’s 

thread model in combination with RMI; without 

any assumptions 

about the underlying JVMs, there is no fully 

transparent way of terminating 

an RMI-based, distributed application run. Thus, 

CCJ’s 

members have to de-register themselves prior to 

termination to allow 

the application to terminate gracefully. 

Figure 2 shows the MainAsp class, implementing 

the method 

main. This method runs on all JVMs participating 

in the parallel 

computation. This class establishes the 

communication context 

before starting the computation itself. Therefore, a 

ColGroupMaster 

object is created (on all JVMs). Then, MainAsp 

creates an Asp 

member object, adds it to a group, and finally starts 

the computation. 

Our implementation of the ColGroupMaster also 

provides 

the number of available nodes, which is useful for 

initializing the 

application. On other platforms, however, this 

information could 

also be retrieved from different sources. 

For comparison, Figure 3 shows some of the code 

of the mpi- 

Java version of ASP. We will use this mpiJava 

program in Section 

4 for a performance comparison with CCJ. A clear 

difference between 

the mpiJava and CCJ versions is that the 

initialization code 

of CCJ is more complicated. The reason is that 

mpiJava offers 

a simple model with one group member per 

processor, using the 

MPI.COMM WORLD communicator. CCJ on the 

other hand is 

more flexible and allows multiple active objects per 

machine to join 
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a group, which requires more initialization code. 

Also, the syntax 

of mpiJava is more MPI-like than that of CCJ, 

which tries to stay 

closer to the Java syntax. 

class Asp extends ColMember { 

ColGroup group; 

int n, rank, nodes; 

int[][] tab; // the distance table. 

Asp (int n) throws Exception { 

super(); 

this.n = n; 

} 

void setGroup(ColGroup group) { 

this.group = group; 

} 

void do_asp() throws Exception { 

int k; 

for (k = 0; k < n; k++) { 

// send the row to all members: 

tab[k] = (int[]) 

broadcast(group, tab[k], owner(k)); 

// do ASP computation... 

} 

} 

public void run() { 

try { 

rank = group.getRank(this); 

nodes = group.size(); 

// Initialize local data 

do_asp(); 

done(); 

} catch (Exception e) { 

// handle exception... Quit. 

} 

} 

Figure 1: Java class Asp 

class MainAsp { 

int N; 

void start(String args[]) { 

ColGroup group = null; 

int numberOfCpus; 

Asp myMember; 

try { 

ColGroupMaster 

groupMaster = new ColGroupMaster(args); 

numberOfCpus = 

groupMaster.getNumberOfCpus(); 

// get number of rows N from command line 

myMember = new Asp(N); 

groupMaster.addMember("myGroup", 

myMember); 

group = groupMaster.getGroup("myGroup", 

numberOfCpus); 

myMember.setGroup(group); 

(new Thread(myMember)).start(); 

} catch (Exception e) { 

// Handle exception... Quit. 

} 

} 

public static void main (String args[]) { 

new MainAsp().start(args); 

} 

} 

Figure 2: Java class MainAsp 

III. THE CCJ LIBRARY 

The CCJ library has been implemented as a Java 

package, containing 

the necessary classes, interfaces, and exceptions. 

CCJ is 

implemented on top of RMI in order to run with 

any given JVM. 

We use RMI to build an internal message passing 

layer between the 

members of a given group. On top of this 

messaging layer, the collective 

operations are implemented using algorithms like 

the ones 

described in [15, 18]. This section describes both 

the messaging 

layer and the collective algorithms of CCJ. 

CCJ has been implemented using the Manta high 

performance 

Java system [21]. Our experimentation platform, 

called the Distributed 

ASCI Supercomputer (DAS), consists of 200 MHz 

Pentium 

Pro nodes each with 128 MB memory, running 

Linux 2.2.16. 

The nodes are connected via Myrinet [5]. Manta’s 

runtime system 

has access to the network in user space via the 

Panda communication 

substrate [3] which uses the LFC [4] Myrinet 

control program. 

The system is more fully described in 

http://www.cs.vu.nl/das/ . All 

performance numbers reported in this work have 

been achieved on 

the DAS platform. 

For comparison, we also provide completion times 

using the 
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RMI implementation from Sun’s JDK 1.1.4. We 

have ported this 

to Manta by replacing all JNI calls with direct C 

function calls. 

By compiling Sun RMI using the Manta compiler, 

all performance 

differences can be attributed to the RMI 

implementation and protocol, 

as both the sequential execution and the network 

(Myrinet) are 

identical. We did not investigate the performance 

impact of having 

multiple group members per node because this is 

only sensible on 

shared-memory nodes (SMP) which are not 

available to us. 

3.1 Message passing subsystem 

 

CCJ implements algorithms for collective 

communication based 

on individual messages between group members. 

The messages 

have to be simulated using the RMI mechanism. 

The basic difference 

between a message and an RMI is that the message 

is asynchronous 

(the sender does not wait for the receiver) while 

RMIs are 

synchronous (the client has to wait for the result 

from the server before 

it can proceed). Sending messages asynchronously 

is crucial 

for collective communication performance because 

each operation 

requires multiple messages to be sent or received 

by a single group 

member. CCJ simulates asynchronous messages 

using multithreading: 

send operations are performed by separate sending 

threads. To 

reduce thread creation overhead, each member 

maintains a thread 

pool of available sending threads. 

Unfortunately, multiple sending threads are run 

subject to the 

scheduling policy of the given JVM. Thus, 

messages may be received 

in a different order than they were sent. To cope 

with unordered 

message receipt, each member object also 

implements a 

list of incoming messages, for faster lookup 

implemented as a hash 

table. For uniquely identifying messages, CCJ not 

only uses the 

group and a message tag (like MPI does), but also a 

message counter 

per group per collective operation. 

We evaluated the performance of CCJ’s messaging 

layer by a 

simple ping-pong test, summarized in Table 1. For 

CCJ, we measured 

the completion time of a member performing a 

send operation, 

directly followed by a receive operation. On a 

second machine, 

another member performed the corresponding 

receive and 

send operations. The table reports half of this round 

trip time as 

the time needed to deliver a message. To compare, 

we also let the 

same two machines perform a RMI ping-pong test. 

We performed the ping-pong tests for sending 

arrays of integers 

of various sizes. Table 1 shows that with short 

messages (1 integer), 

CCJ’s message startup cost (using Manta RMI) 

causes an 

overhead of 42 %. This is mainly caused by thread 

switching. With 

longer messages (16K integers, 64K bytes) the 

overhead is only barrier implementation is 

dominated by the cost of the underlying 

RMI mechanism. 

class Asp { 

int n, rank, nodes; 

int[][] tab; 

Asp (int n) throws Exception 

{ 

this.n = n; 

} 

void do_asp() throws 

Exception { 

int k; 

for (k = 0; k < n; k++) { 

// send the row to all other 

members 

if (tab[k] == null) tab[k] = 

new int[n]; 

MPI.COMM_WORLD.Bcast(tab[k], 

0, n, 

MPI.INT, owner(k)); 
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// do ASP computation... 

} 

} 

public void run() { 

rank = 

MPI.COMM_WORLD.Rank(); 

nodes = 

MPI.COMM_WORLD.Size(); 

// initialize local data 

do_asp(); 

} 

public static void 

main(String args[]) { 

int N; 

try { 

// get number of rows from 

command line 

MPI.Init(args); 

MPI.Finalize(); 

System.exit(0); 

} catch (MPIException e) { 

// Handle exception... Quit. 

}} 

} 

Figure 3: mpiJava code for ASP 

3.2 Collective communication operations 

We will now present the implementations of CCJ’s 

collective 

communication operations. CCJ implements well 

known algorithms 

like the ones used in MPI-based implementations 

[15, 18]. The 

performance numbers given have been obtained 

using one member 

object per node, forcing all communication to use 

RMI. 

3.2.1 Barrier 

In CCJ’s barrier, the 

� 

participating members are arranged in 

a hypercube structure, performing remote method 

invocations in 

_____ � 

phases. The RMIs have a single object as 

parameter. If 

the number of members is not a power of 2, then 

the remaining 

members will be appended to the next smaller 

hypercube, causing 

one more RMI step. Table 2 shows the completion 

time of CCJ’s 

barrier, which scales well with the number of 

member nodes. The barrier implementation is 

dominated by the cost of the underlying 

RMI mechanism. 

3.2.2 Broadcast 

CCJ’s broadcast arranges the group members in a 

binomial tree. 

This leads to a logarithmic number of 

communication steps. Table 

3 shows the completion times of CCJ’s broadcast 

with a single 

integer and with an array of 16K integers. Again, 

the completion 

time scales well with the number of member 

objects. A comparison 

with Table 1 shows that the completion times are 

dominated by the 

underlying RMI mechanism, as with the barrier 

operation. 

3.2.3 Reduce/Allreduce 

CCJ’s reduce operation arranges the 

� 

participating members in 

a binomial tree, resulting in ___ _ � 

communication steps. In each 

step, a member receives the data from one of its 

peers and reduces 

it with its own data. In the next step, the then 

combined data is 

forwarded further up the tree. 

Table 4 shows the completion time for four 

different test cases. 

Reductions are performed with single integers, and 

with arrays of 

16K integers, both with two different reduce 

operations. One operation, 

labelled NOP, simply returns a reference to one of 

the two 

data items. With this non-operation, the reduction 

takes almost as 

long as the broadcast of the same size, caused by 

both using binomial 

communication trees. The second operation, 

labelled MAX, 

computes the maximum of the data items. 

Comparing the completion 

times for NOP and MAX shows the contribution of 

the reduction 

operator itself, especially with long messages. 
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CCJ’s Allreduce is implemented in two steps, with 

one of the 

members acting as a root. In the first step, a Reduce 

operation 

is performed towards the root member. The second 

step broadcasts 

the result to all members. The completion times can 

thus be derived 

from adding the respective times for Reduce and 

Broadcast. 

3.2.4 Scatter 

MPI-based implementations of Scatter typically let 

the root member 

send the respective messages directly to the other 

members of 

the group. This approach works well if messages 

can be sent in 

a truly asynchronous manner. However, as CCJ has 

to perform a 

thread switch per message sent, the related 

overhead becomes prohibitive, 

especially with large member groups. CCJ thus 

follows a 

different approach that limits the number of 

messages sent by the 

root member. This is achieved by using a binomial 

tree as communication 

graph. In the first message, the root member sends 

the 

data for the upper half of the group members to the 

first member 

in this half. Both members then recursively follow 

this approach 

in the remaining subgroups, letting further 

members forward messages. 

This approach sends more data than strictly 

necessary, but 

this overhead is almost completely hidden because 

the additional 

sending occurs in parallel by the different group 

members. 

Table 5 shows the completion time for the scatter 

operation. Note 

that, unlike with broadcast, the amount of data sent 

increases with 

the number of members in the thread group. For 

example, with 64 

members and 16K integers, the size of the scattered 

rootObject is 

4MB. But still, the completion time scales well 

with the number of 

group members. To compare CCJ’s scatter with an 

upper bound, 

the table also shows the completion time for 

broadcasting the same 

(increasing) amount of data to the same number of 

members. The 

scatter operation clearly stays far below the time 

for broadcasting, except for the trivial case of a 

single member where broadcast simply has to 

return a reference to the given object. 

3.2.5 Gather/Allgather 

CCJ implements the gather operation as the inverse 

of scatter, 

using a binomial tree structure. With gather, the 

messages are combined 

by intermediate member nodes and sent further up 

the tree. 

Table 6 shows that the completion times are 

comparable to the ones 

of the scatter operation. However, times vary 

because the sending 

of the individual members towards the root 

member happens in a 

less synchronized fashion, allowing for more 

overlap. In almost all 

cases, gather performs slightly faster than scatter. 

CCJ’s allgather 

operation is implemented by a gather towards one 

of the members, 

followed by a broadcast. Like with allreduce, the 

completion times 

can be derived from adding the respective timings. 

IV. APPLICATION PROGRAMS 

In this section we discuss the implementation and 

performance 

of three applications of CCJ, running both over 

Manta RMI and 

Sun RMI. We also compare the code complexity 

and performance 

of these programs with RMI versions of the same 

applications, 

measured using Manta RMI. Furthermore, we 

compare runtimes to 

mpiJava versions of our applications. For this 

purpose, we ported 

the mpiJava library [2] to Manta. Originally, 

mpiJava calls a Cbased 

MPI library (in our case MPICH) via the Java 

native interface 

(JNI). We compiled mpiJava with the Manta 

compiler after replacing 
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all JNI calls to direct C function calls, the latter to 

eliminate the 

high JNI overhead [13]. Unfortunately, mpiJava is 

not thread safe; 

so we had to disable Manta’s garbage collector to 

avoid application 

crashes. Taking these two changes (direct C calls 

and no garbage 

collection) into account, the given results are biased 

in favour of 

mpiJava. We report speedups relative to the 

respectively fastest of 

the four versions on one CPU. 

4.1 Allpairs 

Shortest Paths Problem 

 

The All-pairs Shortest Paths (ASP) program finds 

the shortest 

path between any pair of nodes in a graph, using a 

parallel version 

of Floyd’s algorithm. The program uses a distance 

matrix that is 

divided row-wise among the available processors. 

At the beginning 

of iteration � , all processors need the value of the 

� th row of the 

matrix. The processor containing this row must 

make it available 

to the other processors by broadcasting it. 

In the RMI version, we simulate this broadcast of a 

row by using 

a binary tree. When a new row is generated, it is 

forwarded to two 

other machines which store the row locally and 

each forward it to 

two other machines. As soon as a row is forwarded, 

the machine 

is able to receive a new row, thus allowing the 

sending of multiple 

rows to be pipelined. The forwarding continues 

until all machines 

have received a copy of the row. In the CCJ and 

mpiJava versions, 

the row can be broadcast by using collective 

operations, as shown 

in Figures 1 and 3. 

Figure 9 shows the speedups for a 2000x2000 

distance matrix. 

The speedup values are computed relative to the 

CCJ/Manta RMI 

version on one node, which runs for 1074 seconds. 

The fastest 

parallel version is mpiJava with a speedup of 60.4 

on 64 nodes, 

followed by the RMI version (59.6), CCJ/Manta 

RMI (57.3), and 

finally CCJ/Sun RMI (30.1). 

We have also calculated the code size of the CCJ 

and RMI versions 

of ASP, by stripping the source of comments and 

whitespace, 

and then counting the number of bytes required for 

the entire program. 

The RMI version of ASP is 32 % bigger than the 

CCJ version. 

This difference in size is caused by the 

implementation of 

the broadcast. In the RMI version, this has to be 

written by the 

application programmer and contributes 48 % of 

the code. The 

communication related code in the CCJ version is 

used to partition 

the data among the processors, and takes about 17 

% of the code. 

The broadcast itself is already implemented in the 

library. 

V. RELATED WORK 

The driving force in high-performance Java is the 

Java Grande 

Forum (www.javagrande.org). There are also many 

other research 

projects for parallel programming in Java [1, 6, 7, 

14, 16, 25]. Most 

of these systems, however, do not support 

collective communication. 

Taco [24] is a C++ template library that 

implements collective 

operations, however without exploiting MPI’s 

concept of collective 

invocation by the participating processes. 

JavaNOW [26] implements 

some of MPI’s collective operations on top of a 

Linda-like entity space; however, performance is 

not an issue. 

In our previous work on parallel Java, we 

implemented several 

applications based on RMI and RepMI (replicated 

method invocation) 

[20, 21, 27]. There, we identified several MPI-like 

collective 

operations as being important for parallel Java 

applications. 
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We found that collective operations both simplify 

code and contribute 

to application speed, if implemented well. CCJ 

implements 

efficient collective operations with an interface that 

fits into Java’s 

object-oriented framework. 

An alternative for parallel programming in Java is 

to use MPI instead 

of RMI. MPJ [9] proposes MPI language bindings 

to Java. 

These bindings merge several earlier proposals [2, 

10, 17, 23]. 

This approach has the advantage that many 

programmers are familiar 

with MPI and that MPI supports a richer set of 

communication 

styles than RMI, in particular collective 

communication. 

However, the current MPJ specification is intended 

as “ _�_� initial 

MPI-centric API” and as “ _�_� a first phase in a 

broader program 

to define a more Java-centric high performance 

message-passing 

environment.” [9] CCJ is intended as one step in 

this direction. 

VI. CONCLUSIONS 

In this paper we discussed design and 

implementation of CCJ, a library that integrates 

MPI-like collective operations into Java. CCJ 

allows Java applications to use collective 

communication, in a similar way like RMI provides 

two-party client/server communication. In 

particular, any data structure (not just arrays) can 

be communicated.. The  issue of how to map MPI’s 

communicator-based process group model onto 

Java’s multithreading model is solved with a new 

model that allows two-phase construction of 

immutable thread-groups at runtime. Another issue 

of how to express user-defined reduction operators, 

given the lack of first-class functions in Java is 

solved with the usage of function objects as a 

general solution to this problem.CCJ is 

implemented entirely in Java, using RMI for 

interprocess communication. The library thus can 

run on top of any JavaVirtual Machine. For our 

performance measurements, we use an 

implementation of CCJ on top of the Manta system, 

which provides efficient RMI. We have 

implemented three parallel applications with CCJ 

and we have compared their performance to 

mpiJava and hand-optimized RMI versions. For all 

three applications,CCJ performs faster or equally 

fast as RMI. Compared to mpiJava,CCJ performs 

equally fast with ASP and significantly faster with 

QR. For LEQ, the performance is worse than 

mpiJava, which is caused by a less-efficient 

allgather implementation. We have also compared 

the code complexity of the CCJ and RMI versions 

of the applications. The results show that the RMI 

versions are significantly more complex, because 

they have to set up spanning trees in the application 

code to do collective communication efficiently. In 

conclusion, we have shown that CCJ is an easy-to-

use library for adding MPI-like collective 

operations to Java. With  efficient RMI 

implementation, CCJ results in application 

runtimes that are competitive to other 

implementations. 

 


