
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100558 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 215

Object based Collective Communication in Java

 Dhruvika Sharma, Aastha Sharma

Student, Information Technology, Maharishi Dayanand University

New Delhi, Delhi, India

Abstract- CCJ is a communication library that adds

MPI-like collective operations to Java. Instead of

trying to use the precise MPI syntax, CCJ focus on

integrating Java’s object-oriented framework. For

example, CCJ uses thread groups to support Java’s

multithreading model and it allows any data structure

(not just arrays) to be communicated. CCJ is

implemented entirely in Java, so that it can be used

with any Java virtual machine. This paper discusses

three parallel Java applications that use collective

communication technique. It compares the

performance (on top of a Myrinet cluster) of CCJ,

RMI and mpiJava versions of these applications, and

also compares the code complexity of the CCJ and

RMI versions. The results show that the CCJ versions

are significantly simpler than the RMI versions and

obtain a good performance.

I. INTRODUCTION

Java a viable platform for high-performance

computing due to recent improvements in

compilers and communication mechanisms. As

Java support multithreading and Remote Method

Invocation (RMI) therefore it becomes suitable for

writing parallel programs.RMI uses a familiar

abstraction (object invocation), integrated in a

Java’s object-oriented programming model. For

example, almost any data structure can be passed as

argument or return value in an RMI. Also, RMI can

be implemented efficiently with support for object

replication.A disadvantage of RMI, however, is

that it only supports communication between two

parties, a client and a server. Experience with other

parallel languages has shown that many

applications also require communication between

multiple processes. The MPI message passing

standard defines collective communication

operations for this purpose. Several projects have

proposed to extendJava with MPI-like collective

operations. Unlike RMI, the MPI primitives are

biased towards array-based data structures.Some

existing Java systems already support MPI’s

collective operations, but often they invoke a C-

library from Java using the Java Native Interface,

which has a large runtime overhead.In this paper

we present the CCJ library (Collective

Communication in Java) which integrates the core

of MPI’s collective operations to Java’s object

model. CCJ maintains thread groups that can

collecively communicate by exchanging arbitrary

object data structures.For example, if one thread

needs to distribute a list data structure among other

threads, it can invoke an MPI-like scatter primitive

to do so. CCJ is implemented entirely in Java, on

top of RMI. Ittherefore does not suffer from JNI

overhead and it can be used with any Java virtual

machine. Performance measurements for CCJ’s

collective operations show that its runtime

overhead is almost negligible compared to the time

spent in the underlying (efficient) RMI mechanism.

 CCJ’s support for arbitrary data structures is useful

for example in implementing sparse matrices.

II. OBJECTBASED COLLECTIVE

COMMUNICATION

With Java’s multithreading support, individual

threads can be coordinated to operate under mutual

exclusion. However, with collective

communication, groups of threads cooperate to

perform a given operation collectively. This form

of cooperation, instead of mere concurrency, is

used frequently in parallel applications and also

enables efficient implementation of the collective

operations. In this section, we present and discuss

the approach taken in our CCJ library to integrate

collective communication, as inspired by the MPI

standard, into Java’s object-based model. CCJ

integrates MPI-like collective operations in a clean

way in Java, but without

trying to be compatible with the precise MPI

syntax. CCJ translates MPI processes into active

objects (threads) and thus preserves MPI’s implicit

group synchronization properties. In previous

work, we discussed the alternative approach of

using groups of passive objects [20].

2.1 Thread groups

With the MPI standard, processes perform

collective communication within the context of a

communicator object. The communicator defines

the group of participating processes which are

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100558 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 216

ordered by their rank. Each process can retrieve its

rank and the size of the process group from the

communicator object. MPI communicators can not

be changed at runtime, but new communicators can

be derived from existing ones.

In MPI, immutable process groups (enforced via

immutable communicator objects) are vital for

defining sound semantics of collective operations.

For example, a barrier operation performed on an

immutable group clearly defines which processes

are synchronized; for a broadcast operation, the set

of receivers can be clearly identified. The ranking

of processes is also necessary to define operations

like scatter/gather data re-distributions, where the

data sent or received by each individual process is

determined by its rank. Unlike MPI, the PVM

message passing system [12] allows mutable

process groups, trading clear semantics for

flexibility. The MPI process group model,

however, does not easily map onto Java’s

multithreading model. The units of execution in

Java are dynamically created threads rather than

heavy-weight processes. Also, the RMI mechanism

blurs the boundaries between individual Java

Virtual Machines (JVMs). Having more than one

thread per JVM participating in collective

communication can be useful, for example for

application structuring or for exploiting multiple

CPUs of a shared-memory machine. Although the

MPI standard requires

implementations to be thread-safe, dynamically

created threads can

not be addressed by MPI messages, excluding their

proper use in

collective communication.

CCJ maps MPI’s immutable process groups onto

Java’s multithreading

model by defining a model of thread groups that

constructs

immutable groups from dynamically created

threads. CCJ

uses a two-phase creation mechanism. In the first

phase, a group

is inactive and can be constructed by threads

willing to join. After

construction is completed, the group becomes

immutable (called

active) and can be used for collective

communication. For convenience,

inactive copies of active groups can be created and

subsequently

modified. Group management in CCJ uses the

following

three classes.

ColGroup Objects of this class define the thread

groups to be used

for collective operations. ColGroup provides

methods for

retrieving the rank of a given ColMember object

and the

size of the group.

ColMember Objects of this class can become

members of a given

group. Applications implement subclasses of

ColMember,

the instances of which will be associated with their

own thread

of control.

ColGroupMaster Each participating JVM has to

initialize one object

of this class acting as a central group manager. The

group

master also encapsulates the communication

establishment

like the interaction with the RMI registry.

For implementing the two-phase group creation,

ColGroupMaster

provides the following interface. Groups are

identified by String

objects with symbolic identifications.

void addMember(String groupName, ColMember

member)

Adds a member to a group. If the group does not

yet exist,

the group will be created. Otherwise, the group

must still

be inactive; the getGroup operation for this group

must not

have completed so far.

ColGroup getGroup(String groupName,

int numberOfMembers)

Activates a group. The operation waits until the

specified

number of members have been added to the group.

Finally,the activated group is returned. All

members of a group have to call this operation

prior to any collective communication.

2.2 Collective communication

As described above, CCJ’s group management

alleviates the restrictions

of MPI’s static, communicator-based group model.

For

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100558 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 217

defining an object-based framework, also the

collective communication

operations themselves have to be adapted. MPI

defines

a large set of collective operations, inspired by

parallel application

codes written in more traditional languages such as

Fortran

or C. Basically, MPI messages consist of arrays of

data items of

given data types. Although important for many

scientific codes, arrays

can not serve as general-purpose data structure in

Java’s object

model. Instead, collective operations should deal

with serializable

objects in the most general case.

The implementation of the collective operations

could either be

part of the group or of the members. For CCJ, we

decided for the

latter option as this is closer to the original MPI

specification and

more intuitive with the communication context (the

group) becoming

a parameter of the operation.

From MPI’s original set of collective operations,

CCJ currently

implements the most important ones, leaving out

those operations

that are either rarely used or strongly biased by

having arrays as

general parameter data structure. CCJ currently

implements Barrier,

Broadcast, Scatter, Gather, Allgather, Reduce, and

Allreduce.

We now present the interface of these operations in

detail. For

the reduce operations, we also present the use of

function objects

implementing the reduction operators themselves.

For scatter and

gather, we present the

DividableDataObjectInterface imposing a

notion of indexing for the elements of general (non-

array) objects.

CCJ uses Java’s exception handling mechanism for

catching error

conditions returned by the various primitives. For

brevity, however,

we do not show the exceptions in the primitives

discussed below.

Like MPI, CCJ requires all members of a group to

call collective

operations in the same order and with mutually

consistent parameter

objects.

void barrier(ColGroup group)

Waits until all members of the specified group have

called

the method.

Object broadcast(ColGroup group, Serializable obj,

int root)

One member of the group, the one whose rank

equals root,

provides an object obj to be broadcast to the group.

All members

(except the root) return a copy of the object; to the

root

member, a reference to obj is returned.

MPI defines a group of operations that perform

global reductions

such as summation or maximum on data items

distributed across a

communicator’s process group. MPI identifies the

reduction operators

either via predefined constants like “MPI MAX,”

or by userimplemented

functions. However, object-oriented reduction

operations

have to process objects of application-specific

classes; implementations

of reduction operators have to handle the correct

object

classes.

One implementation would be to let application

classes implement

a reduce method that can be called from within the

collective

reduction operations. However, this approach

restricts a class

to exactly one reduction operation and excludes the

basic (numeric)

data types from being used in reduction operations.

As a consequence, the reduction operators have to

be implemented

outside the objects to be reduced. Unfortunately,

unlike

in C, functions (or methods) can not be used as

first-class entities

in Java. Alternatively, Java’s reflection mechanism

could be usedto identify methods by their names

and defining class (specified

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100558 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 218

by String objects). Unfortunately, this approach is

unsuitable, because

reflection is done at runtime, causing prohibitive

costs for

use in parallel applications. Removing reflection

from object serialization

is one of the essential optimizations of our fast

RMI implementation

in the Manta system [21].

CCJ thus uses a different approach for

implementing reduction

operators: function objects [19]. CCJ’s function

objects implement

the specific ReductionObjectInterface containing a

single

method Serializable reduce(Serializable o1,

Serializable o2).

With this approach, all application specific classes

and the standard

data types can be used for data reduction. The

reduction operator

itself can be flexibly chosen on a per-operation

basis. Operations

implementing this interface are supposed to be

associative and

commutative. CCJ provides a set of function

objects for the most

important reduction operators on numerical data.

This leads to the

following interface for CCJ’s reduction operations

in the ColMember

class.

Serializable reduce(ColGroup group,

Serializable dataObject,

ReductionObjectInterface reductionObject, int root)

Performs a reduction operation on the dataObjects

provided

by the members of the group. The operation itself is

determined

by the reductionObject; each member has to

provide

a reductionObject of the same class. reduce returns

an object with the reduction result to the member

identified

as root. All other members get a null reference.

Serializable allReduce(ColGroup group,

Serializable dataObject,

ReductionObjectInterface reductionObject)

Like reduce but returns the resulting object to all

members.

The final group of collective operations that have

been translated

from MPI to CCJ is the one of scatter/gather data

re-distributions:

MPI’s scatter operation takes an array provided by

a root process

and distributes (“scatters”) it across all processes in

a communicator’s

group. MPI’s gather operation collects an array

from items

distributed across a communicator’s group and

returns it to a root

process. MPI’s allgather is similar, however

returning the gathered

array to all participating processes.

Although defined via arrays, these operations are

important for

many parallel applications. The problem to solve

for CCJ thus

is to find a similar notion of indexing for general

(non-array) objects.

Similar problems occur for implementing so-called

iterators

for container objects [11]. Here, traversing

(iterating) an object’s

data structure has to be independent of the object’s

implementation

in order to keep client classes immune to changes

of the container

object’s implementation. Iterators request the

individual items of a

complex object sequentially, one after the other.

Object serialization,

as used by Java RMI, is one example of iterating a

complex

object structure. Unlike iterators, however, CCJ

needs random access

to the individual parts of a dividable object based

on an index

mechanism.

For this purpose, objects to be used in

scatter/gather operations

have to implement the

DividableDataObjectInterface with the

following two methods:

Serializable elementAt(int index, int groupSize)

Returns the object with the given index in the range

from

to groupSize �

void setElementAt(int index, int groupSize,

Serializable object)

Conversely, sets the object at the given index.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100558 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 219

Based on this interface, the class ColMember

implements the

following three collective operations.

Serializable scatter(ColGroup group,

DividableDataObjectInterface rootObject, int root)

The root member provides a dividable object which

will be

scattered among the members of the given group.

Each member

returns the (sub-)object determined by the

elementAt

method for its own rank. The parameter rootObject

is ignored

for all other members.

DividableDataObjectInterface gather(ColGroup

group,

DividableDataObjectInterface rootObject,

Serializable dataObject, int root)

 The root member provides a dividable object

which will be

gathered from the dataObjects provided by the

members of

the group. The actual order of the gathering is

determined

by the rootObject’s setElementAt method,

according to the

rank of the members. The method returns the

gathered object

to the root member and a null reference to all other

members.

DividableDataObjectInterface allGather(ColGroup

group,

DividableDataObjectInterface resultObject,

Serializable dataObject)

Like gather, however the result is returned to all

members

and all members have to provide a resultObject.

2.3 Example application code

We will now illustrate how CCJ can be used for

application programming.

As our example, we show the code for the All-Pairs

Shortest Path application (ASP), the performance

of which will be

discussed in Section 4. Figure 1 shows the code of

the Asp class

that inherits from ColMember. Asp thus constitutes

the applicationspecific

member class for the ASP application. Its method

do asp

performs the computation itself and uses CCJ’s

collective broadcast

operation. Before doing so, Asp’s run method first

retrieves

rank and size from the group object. Finally, do asp

calls the done

method from the ColMember class in order to de-

register the member

object. The necessity of the done method is an

artifact of Java’s

thread model in combination with RMI; without

any assumptions

about the underlying JVMs, there is no fully

transparent way of terminating

an RMI-based, distributed application run. Thus,

CCJ’s

members have to de-register themselves prior to

termination to allow

the application to terminate gracefully.

Figure 2 shows the MainAsp class, implementing

the method

main. This method runs on all JVMs participating

in the parallel

computation. This class establishes the

communication context

before starting the computation itself. Therefore, a

ColGroupMaster

object is created (on all JVMs). Then, MainAsp

creates an Asp

member object, adds it to a group, and finally starts

the computation.

Our implementation of the ColGroupMaster also

provides

the number of available nodes, which is useful for

initializing the

application. On other platforms, however, this

information could

also be retrieved from different sources.

For comparison, Figure 3 shows some of the code

of the mpi-

Java version of ASP. We will use this mpiJava

program in Section

4 for a performance comparison with CCJ. A clear

difference between

the mpiJava and CCJ versions is that the

initialization code

of CCJ is more complicated. The reason is that

mpiJava offers

a simple model with one group member per

processor, using the

MPI.COMM WORLD communicator. CCJ on the

other hand is

more flexible and allows multiple active objects per

machine to join

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100558 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 220

a group, which requires more initialization code.

Also, the syntax

of mpiJava is more MPI-like than that of CCJ,

which tries to stay

closer to the Java syntax.

class Asp extends ColMember {

ColGroup group;

int n, rank, nodes;

int[][] tab; // the distance table.

Asp (int n) throws Exception {

super();

this.n = n;

}

void setGroup(ColGroup group) {

this.group = group;

}

void do_asp() throws Exception {

int k;

for (k = 0; k < n; k++) {

// send the row to all members:

tab[k] = (int[])

broadcast(group, tab[k], owner(k));

// do ASP computation...

}

}

public void run() {

try {

rank = group.getRank(this);

nodes = group.size();

// Initialize local data

do_asp();

done();

} catch (Exception e) {

// handle exception... Quit.

}

}

Figure 1: Java class Asp

class MainAsp {

int N;

void start(String args[]) {

ColGroup group = null;

int numberOfCpus;

Asp myMember;

try {

ColGroupMaster

groupMaster = new ColGroupMaster(args);

numberOfCpus =

groupMaster.getNumberOfCpus();

// get number of rows N from command line

myMember = new Asp(N);

groupMaster.addMember("myGroup",

myMember);

group = groupMaster.getGroup("myGroup",

numberOfCpus);

myMember.setGroup(group);

(new Thread(myMember)).start();

} catch (Exception e) {

// Handle exception... Quit.

}

}

public static void main (String args[]) {

new MainAsp().start(args);

}

}

Figure 2: Java class MainAsp

III. THE CCJ LIBRARY

The CCJ library has been implemented as a Java

package, containing

the necessary classes, interfaces, and exceptions.

CCJ is

implemented on top of RMI in order to run with

any given JVM.

We use RMI to build an internal message passing

layer between the

members of a given group. On top of this

messaging layer, the collective

operations are implemented using algorithms like

the ones

described in [15, 18]. This section describes both

the messaging

layer and the collective algorithms of CCJ.

CCJ has been implemented using the Manta high

performance

Java system [21]. Our experimentation platform,

called the Distributed

ASCI Supercomputer (DAS), consists of 200 MHz

Pentium

Pro nodes each with 128 MB memory, running

Linux 2.2.16.

The nodes are connected via Myrinet [5]. Manta’s

runtime system

has access to the network in user space via the

Panda communication

substrate [3] which uses the LFC [4] Myrinet

control program.

The system is more fully described in

http://www.cs.vu.nl/das/ . All

performance numbers reported in this work have

been achieved on

the DAS platform.

For comparison, we also provide completion times

using the

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100558 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 221

RMI implementation from Sun’s JDK 1.1.4. We

have ported this

to Manta by replacing all JNI calls with direct C

function calls.

By compiling Sun RMI using the Manta compiler,

all performance

differences can be attributed to the RMI

implementation and protocol,

as both the sequential execution and the network

(Myrinet) are

identical. We did not investigate the performance

impact of having

multiple group members per node because this is

only sensible on

shared-memory nodes (SMP) which are not

available to us.

3.1 Message passing subsystem

CCJ implements algorithms for collective

communication based

on individual messages between group members.

The messages

have to be simulated using the RMI mechanism.

The basic difference

between a message and an RMI is that the message

is asynchronous

(the sender does not wait for the receiver) while

RMIs are

synchronous (the client has to wait for the result

from the server before

it can proceed). Sending messages asynchronously

is crucial

for collective communication performance because

each operation

requires multiple messages to be sent or received

by a single group

member. CCJ simulates asynchronous messages

using multithreading:

send operations are performed by separate sending

threads. To

reduce thread creation overhead, each member

maintains a thread

pool of available sending threads.

Unfortunately, multiple sending threads are run

subject to the

scheduling policy of the given JVM. Thus,

messages may be received

in a different order than they were sent. To cope

with unordered

message receipt, each member object also

implements a

list of incoming messages, for faster lookup

implemented as a hash

table. For uniquely identifying messages, CCJ not

only uses the

group and a message tag (like MPI does), but also a

message counter

per group per collective operation.

We evaluated the performance of CCJ’s messaging

layer by a

simple ping-pong test, summarized in Table 1. For

CCJ, we measured

the completion time of a member performing a

send operation,

directly followed by a receive operation. On a

second machine,

another member performed the corresponding

receive and

send operations. The table reports half of this round

trip time as

the time needed to deliver a message. To compare,

we also let the

same two machines perform a RMI ping-pong test.

We performed the ping-pong tests for sending

arrays of integers

of various sizes. Table 1 shows that with short

messages (1 integer),

CCJ’s message startup cost (using Manta RMI)

causes an

overhead of 42 %. This is mainly caused by thread

switching. With

longer messages (16K integers, 64K bytes) the

overhead is only barrier implementation is

dominated by the cost of the underlying

RMI mechanism.

class Asp {

int n, rank, nodes;

int[][] tab;

Asp (int n) throws Exception

{

this.n = n;

}

void do_asp() throws

Exception {

int k;

for (k = 0; k < n; k++) {

// send the row to all other

members

if (tab[k] == null) tab[k] =

new int[n];

MPI.COMM_WORLD.Bcast(tab[k],

0, n,

MPI.INT, owner(k));

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100558 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 222

// do ASP computation...

}

}

public void run() {

rank =

MPI.COMM_WORLD.Rank();

nodes =

MPI.COMM_WORLD.Size();

// initialize local data

do_asp();

}

public static void

main(String args[]) {

int N;

try {

// get number of rows from

command line

MPI.Init(args);

MPI.Finalize();

System.exit(0);

} catch (MPIException e) {

// Handle exception... Quit.

}}

}

Figure 3: mpiJava code for ASP

3.2 Collective communication operations

We will now present the implementations of CCJ’s

collective

communication operations. CCJ implements well

known algorithms

like the ones used in MPI-based implementations

[15, 18]. The

performance numbers given have been obtained

using one member

object per node, forcing all communication to use

RMI.

3.2.1 Barrier

In CCJ’s barrier, the

�

participating members are arranged in

a hypercube structure, performing remote method

invocations in

_____ �

phases. The RMIs have a single object as

parameter. If

the number of members is not a power of 2, then

the remaining

members will be appended to the next smaller

hypercube, causing

one more RMI step. Table 2 shows the completion

time of CCJ’s

barrier, which scales well with the number of

member nodes. The barrier implementation is

dominated by the cost of the underlying

RMI mechanism.

3.2.2 Broadcast

CCJ’s broadcast arranges the group members in a

binomial tree.

This leads to a logarithmic number of

communication steps. Table

3 shows the completion times of CCJ’s broadcast

with a single

integer and with an array of 16K integers. Again,

the completion

time scales well with the number of member

objects. A comparison

with Table 1 shows that the completion times are

dominated by the

underlying RMI mechanism, as with the barrier

operation.

3.2.3 Reduce/Allreduce

CCJ’s reduce operation arranges the

�

participating members in

a binomial tree, resulting in ___ _ �

communication steps. In each

step, a member receives the data from one of its

peers and reduces

it with its own data. In the next step, the then

combined data is

forwarded further up the tree.

Table 4 shows the completion time for four

different test cases.

Reductions are performed with single integers, and

with arrays of

16K integers, both with two different reduce

operations. One operation,

labelled NOP, simply returns a reference to one of

the two

data items. With this non-operation, the reduction

takes almost as

long as the broadcast of the same size, caused by

both using binomial

communication trees. The second operation,

labelled MAX,

computes the maximum of the data items.

Comparing the completion

times for NOP and MAX shows the contribution of

the reduction

operator itself, especially with long messages.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100558 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 223

CCJ’s Allreduce is implemented in two steps, with

one of the

members acting as a root. In the first step, a Reduce

operation

is performed towards the root member. The second

step broadcasts

the result to all members. The completion times can

thus be derived

from adding the respective times for Reduce and

Broadcast.

3.2.4 Scatter

MPI-based implementations of Scatter typically let

the root member

send the respective messages directly to the other

members of

the group. This approach works well if messages

can be sent in

a truly asynchronous manner. However, as CCJ has

to perform a

thread switch per message sent, the related

overhead becomes prohibitive,

especially with large member groups. CCJ thus

follows a

different approach that limits the number of

messages sent by the

root member. This is achieved by using a binomial

tree as communication

graph. In the first message, the root member sends

the

data for the upper half of the group members to the

first member

in this half. Both members then recursively follow

this approach

in the remaining subgroups, letting further

members forward messages.

This approach sends more data than strictly

necessary, but

this overhead is almost completely hidden because

the additional

sending occurs in parallel by the different group

members.

Table 5 shows the completion time for the scatter

operation. Note

that, unlike with broadcast, the amount of data sent

increases with

the number of members in the thread group. For

example, with 64

members and 16K integers, the size of the scattered

rootObject is

4MB. But still, the completion time scales well

with the number of

group members. To compare CCJ’s scatter with an

upper bound,

the table also shows the completion time for

broadcasting the same

(increasing) amount of data to the same number of

members. The

scatter operation clearly stays far below the time

for broadcasting, except for the trivial case of a

single member where broadcast simply has to

return a reference to the given object.

3.2.5 Gather/Allgather

CCJ implements the gather operation as the inverse

of scatter,

using a binomial tree structure. With gather, the

messages are combined

by intermediate member nodes and sent further up

the tree.

Table 6 shows that the completion times are

comparable to the ones

of the scatter operation. However, times vary

because the sending

of the individual members towards the root

member happens in a

less synchronized fashion, allowing for more

overlap. In almost all

cases, gather performs slightly faster than scatter.

CCJ’s allgather

operation is implemented by a gather towards one

of the members,

followed by a broadcast. Like with allreduce, the

completion times

can be derived from adding the respective timings.

IV. APPLICATION PROGRAMS

In this section we discuss the implementation and

performance

of three applications of CCJ, running both over

Manta RMI and

Sun RMI. We also compare the code complexity

and performance

of these programs with RMI versions of the same

applications,

measured using Manta RMI. Furthermore, we

compare runtimes to

mpiJava versions of our applications. For this

purpose, we ported

the mpiJava library [2] to Manta. Originally,

mpiJava calls a Cbased

MPI library (in our case MPICH) via the Java

native interface

(JNI). We compiled mpiJava with the Manta

compiler after replacing

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100558 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 224

all JNI calls to direct C function calls, the latter to

eliminate the

high JNI overhead [13]. Unfortunately, mpiJava is

not thread safe;

so we had to disable Manta’s garbage collector to

avoid application

crashes. Taking these two changes (direct C calls

and no garbage

collection) into account, the given results are biased

in favour of

mpiJava. We report speedups relative to the

respectively fastest of

the four versions on one CPU.

4.1 Allpairs

Shortest Paths Problem

The All-pairs Shortest Paths (ASP) program finds

the shortest

path between any pair of nodes in a graph, using a

parallel version

of Floyd’s algorithm. The program uses a distance

matrix that is

divided row-wise among the available processors.

At the beginning

of iteration � , all processors need the value of the

� th row of the

matrix. The processor containing this row must

make it available

to the other processors by broadcasting it.

In the RMI version, we simulate this broadcast of a

row by using

a binary tree. When a new row is generated, it is

forwarded to two

other machines which store the row locally and

each forward it to

two other machines. As soon as a row is forwarded,

the machine

is able to receive a new row, thus allowing the

sending of multiple

rows to be pipelined. The forwarding continues

until all machines

have received a copy of the row. In the CCJ and

mpiJava versions,

the row can be broadcast by using collective

operations, as shown

in Figures 1 and 3.

Figure 9 shows the speedups for a 2000x2000

distance matrix.

The speedup values are computed relative to the

CCJ/Manta RMI

version on one node, which runs for 1074 seconds.

The fastest

parallel version is mpiJava with a speedup of 60.4

on 64 nodes,

followed by the RMI version (59.6), CCJ/Manta

RMI (57.3), and

finally CCJ/Sun RMI (30.1).

We have also calculated the code size of the CCJ

and RMI versions

of ASP, by stripping the source of comments and

whitespace,

and then counting the number of bytes required for

the entire program.

The RMI version of ASP is 32 % bigger than the

CCJ version.

This difference in size is caused by the

implementation of

the broadcast. In the RMI version, this has to be

written by the

application programmer and contributes 48 % of

the code. The

communication related code in the CCJ version is

used to partition

the data among the processors, and takes about 17

% of the code.

The broadcast itself is already implemented in the

library.

V. RELATED WORK

The driving force in high-performance Java is the

Java Grande

Forum (www.javagrande.org). There are also many

other research

projects for parallel programming in Java [1, 6, 7,

14, 16, 25]. Most

of these systems, however, do not support

collective communication.

Taco [24] is a C++ template library that

implements collective

operations, however without exploiting MPI’s

concept of collective

invocation by the participating processes.

JavaNOW [26] implements

some of MPI’s collective operations on top of a

Linda-like entity space; however, performance is

not an issue.

In our previous work on parallel Java, we

implemented several

applications based on RMI and RepMI (replicated

method invocation)

[20, 21, 27]. There, we identified several MPI-like

collective

operations as being important for parallel Java

applications.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100558 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 225

We found that collective operations both simplify

code and contribute

to application speed, if implemented well. CCJ

implements

efficient collective operations with an interface that

fits into Java’s

object-oriented framework.

An alternative for parallel programming in Java is

to use MPI instead

of RMI. MPJ [9] proposes MPI language bindings

to Java.

These bindings merge several earlier proposals [2,

10, 17, 23].

This approach has the advantage that many

programmers are familiar

with MPI and that MPI supports a richer set of

communication

styles than RMI, in particular collective

communication.

However, the current MPJ specification is intended

as “ _�_� initial

MPI-centric API” and as “ _�_� a first phase in a

broader program

to define a more Java-centric high performance

message-passing

environment.” [9] CCJ is intended as one step in

this direction.

VI. CONCLUSIONS

In this paper we discussed design and

implementation of CCJ, a library that integrates

MPI-like collective operations into Java. CCJ

allows Java applications to use collective

communication, in a similar way like RMI provides

two-party client/server communication. In

particular, any data structure (not just arrays) can

be communicated.. The issue of how to map MPI’s

communicator-based process group model onto

Java’s multithreading model is solved with a new

model that allows two-phase construction of

immutable thread-groups at runtime. Another issue

of how to express user-defined reduction operators,

given the lack of first-class functions in Java is

solved with the usage of function objects as a

general solution to this problem.CCJ is

implemented entirely in Java, using RMI for

interprocess communication. The library thus can

run on top of any JavaVirtual Machine. For our

performance measurements, we use an

implementation of CCJ on top of the Manta system,

which provides efficient RMI. We have

implemented three parallel applications with CCJ

and we have compared their performance to

mpiJava and hand-optimized RMI versions. For all

three applications,CCJ performs faster or equally

fast as RMI. Compared to mpiJava,CCJ performs

equally fast with ASP and significantly faster with

QR. For LEQ, the performance is worse than

mpiJava, which is caused by a less-efficient

allgather implementation. We have also compared

the code complexity of the CCJ and RMI versions

of the applications. The results show that the RMI

versions are significantly more complex, because

they have to set up spanning trees in the application

code to do collective communication efficiently. In

conclusion, we have shown that CCJ is an easy-to-

use library for adding MPI-like collective

operations to Java. With efficient RMI

implementation, CCJ results in application

runtimes that are competitive to other

implementations.

