
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100560 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 226

COMPILERS-STUDY FROM ZERO

Vishal Sharma, Priyanka Yadav, Priti Yadav

Computer Science Department, Dronacharya College of Engineering/ Maharishi Dayanand

University, India

Abstract- This paper gives the basic understanding of

compilers. The beginning of paper explain the term

compiler followed by its working, need and

knowledge required in building compilers. Further

we have explained the different types of compiler and

the application of compilers. The paper shows the

study of different types of compilers.Thus, going

through this paper one will end up with a good

understanding of compilers and their future aspect. .

Index Terms- Analyser, Compilers, FORTRAN, LISP,

UNIVAC.

I. INTRODUCTION

Compilers are fundamental to modern computing.

They act as translators, transforming human-

oriented programming languages into computer-

oriented machine languages.

A compiler allows programmers to ignore the

machine-dependent details of programming.

Compilers allow programs and programming skills

to be machine-independent.

Compilers also aid in detecting programming errors

(which are all too common).

Compiler techniques also help to improve computer

security.

For example, the Java Byte code Verifier helps to

guarantee that Java security rules are satisfied.

II. HOW DOES A COMPILER WORK?

A compiler can be viewed in two parts:

1. Source Code Analyser: which takes as input

source code as a sequence of characters, and

interprets it as a structure of symbols (vars, values,

operators, etc.)

2. Object Code Generator: which takes the

structural analysis from (1) and produces runnable

code as output?

The Code Analyser typically has three stages:

• Lexical Analysis: accepts the source code as a

sequence of chars, outputs the code as a sequence

of tokens.

• Syntax Analyser: interprets the program tokens as

a structured program.

• Semantic Analyser: checks that variables are

instantiated before use, etc.

What is the Challenge?

Many variations:

Source

Code

Object

Code

Code

generator

Code

analyser

IJIRT 100560 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 227

 many programming languages (eg,

FORTRAN, C++, Java)

 many programming paradigms (eg, object-

oriented, functional, logic)

 many computer architectures (eg, MIPS,

SPARC, Intel, alpha)

 many operating systems (eg, Linux,

Solaris, Windows)

Qualities of a compiler (in order of importance):

1. the compiler itself must be bug-free

2. it must generate correct machine code

3. the generated machine code must run fast

4. the compiler itself must run fast

(compilation time must be proportional to

program size)

5. the compiler must be portable (ie,

modular, supporting separate compilation)

6. it must print good diagnostics and error

messages

7. the generated code must work well with

existing debuggers

8. must have consistent and predictable

optimization.

Building a compiler requires knowledge of

 programming languages (parameter

passing, variable scoping, memory

allocation, etc)

 theory (automata, context-free languages,

etc)

 algorithms and data structures (hash

tables, graph algorithms, dynamic

programming, etc)

 computer architecture (assembly

programming)

 software engineering.

A compiler can be viewed as a program that

accepts a source code (such as a Java program) and

generates machine code for some computer

architecture. Suppose that you want to build

compilers for n programming languages (eg,

FORTRAN, C, C++, Java, BASIC, etc) and you

want these compilers to run on m different

architectures (eg, MIPS, SPARC, Intel, alpha, etc).

If you do that naively, you need to

write n*m compilers, one for each language-

architecture combination.

A typical real-world compiler usually has multiple

phases. This increases the compiler's portability

and simplifies retargeting. The front end consists of

the following phases:

1. scanning: a scanner groups input

characters into tokens;

2. parsing: a parser recognizes sequences of

tokens according to some grammar and

generates Abstract Syntax Trees (ASTs);

3. Semantic analysis: performs type

checking (ie, checking whether the

variables, functions etc in the source

program are used consistently with their

definitions and with the language

semantics) and translates ASTs into IRs;

4. optimization:

5. Optimizes IRs.

The back end consists of the following phases:

1. instruction selection: maps IRs into

assembly code;

2. code optimization: optimizes the assembly

code using control-flow and data-flow

analyses, register allocation, etc;

3. code emission: generates machine code

from assembly code.

The generated machine code is written in an object

file. This file is not executable since it may refer to

external symbols (such as system calls). The

operating system provides the following utilities to

execute the code:

linking:

A linker takes several object files and libraries

as input and produces one executable object

file. It retrieves from the input files (and puts

them together in the executable object file) the

code of all the referenced functions/procedures

and it resolves all external references to real

addresses. The libraries include the operating

sytem libraries, the language-specific libraries,

and, maybe, user-created libraries.

loading:

 A loader loads an executable object file into

memory, initializes the registers, heap, data,

etc and starts the execution of the program.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100560 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 228

In computer science, bootstrapping is the process

of writing a compiler (or assembler) in the

target programming language which it is intended

to compile. Applying this technique leads to a self-

hosting compiler.

Many compilers for many programming languages

are bootstrapped, including compilers

for BASIC, ALGOL, C, Pascal, PL/I, Factor, Hask

ell, Modula-2, Oberon, OCaml, Common

Lisp, Scheme, Java, Python, Scala, Nimrod and

more.

NELIAC

The Navy Electronics Laboratory International

ALGOL Compiler or NELIAC was a dialect and

compiler implementation of the ALGOL 58

programming language developed by the Naval

Electronics Laboratory in 1958.

NELIAC was the brainchild of Harry Huskey —

then Chairman of the ACM and a well known

computer scientist, and supported by Maury

Halstead, the head of the computational centre at

NEL. The earliest version was implemented on the

prototype USQ-17 computer (called the Countess)

at the laboratory. It was the world's first self-

compiling compiler. This means that the compiler

was first coded in simplified form in assembly

language (the bootstrap), and then re-written in its

own language, compiled by this bootstrap compiler,

and re-compiled by itself, making the bootstrap

obsolete.

Lisp

IJIRT 100560 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 229

The first self-hosting compiler (excluding

assemblers) was written for Lisp by Tim Hart and

Mike Levin at MIT in 1962.[4] They wrote a Lisp

compiler in Lisp, testing it inside an existing Lisp

interpreter. Once they had improved the compiler

to the point where it could compile its own source

code, it was self-hosting.

The compiler as it exists on the standard compiler

tape is a machine language program that was

obtained by having the S-expression definition of

the compiler work on itself through the interpreter.

(AI Memo 39)

This technique is only possible when an interpreter

already exists for the very same language that is to

be compiled. It borrows directly from the notion of

running a program on itself as input, which is also

used in various proofs in theoretical computer

science, such as the proof that the halting problem

is undecidable.

XPL

XPL is a dialect of the PL/I programming

language, developed in 1967, used for the

development of compilers for computer languages.

It was designed and implemented by a team with

William McKeeman, James J. Horning, and David

B. Wortman at Stanford University and the

University of California, Santa Cruz. It was first

announced at the 1968 Fall Joint Computer

Conference in San Francisco.

It is the name of both the programming language

and the LALR parser generator system (or TWS:

translator writing system) based on the language.

XPL featured a relatively simple bottom-up

compiler system dubbed MSP (mixed strategy

precedence) by its authors. It was bootstrapped

through Burroughs Algol onto the IBM System/360

computer. Subsequent implementations of XPL

featured an SLR(1) parser.

XCOM

The XPL compiler, called XCOM, is a one-pass

compiler using a table-driven parser and simple

code generation techniques. Versions of XCOM

exist for different machine architectures, using

different hand-written code generation modules for

those targets. The original target was IBM

System/360.

XCOM compiles from XPL source code, but since

XCOM itself is written in XPL it can compile itself

– it is a self-compiling compiler, not reliant on

anyone else's compilers. Several famous languages

have self-compiling compilers, including

Burroughs B5000 Algol, PL/I, C, LISP, and Java.

Creating such compilers is a chicken-and-egg

conundrum. The language is first implemented by a

temporary compiler written in some other

language, or even by an interpreter (often an

interpreter for an intermediate code, as BCPL can

do with intcode or O-code). XCOM began as an

Algol program running on Burroughs machines,

translating XPL source code into System/360

machine code. Someone manually turned its Algol

source code into XPL source code. That XPL

version of XCOM was then compiled on

Burroughs, creating a self-compiling XCOM for

System/360 machines. The Algol version was then

thrown away, and all further improvements

happened in the XPL version only. This is called

bootstrapping the compiler. Retargeting the

compiler for a new machine architecture is a

similar exercise, except only the code generation

modules need to be changed.

XCOM is a one-pass compiler (but with an emitted

code fix-up process for forward branches, loops

and other defined situations). It emits machine code

for each statement as each grammar rule within a

statement is recognized, rather than waiting until it

has parsed the entire procedure or entire program.

There are no parse trees or other required

intermediate program forms, and no loop-wide or

procedure-wide optimizations. XCOM does,

however, perform peephole optimization. The code

generation response to each grammar rule is

attached to that rule. This immediate approach can

result in inefficient code and inefficient use of

machine registers. Such are offset by the efficiency

of implementation, namely, the use of dynamic

strings mentioned earlier: in processing text during

compilation, substring operations are frequently

performed. These are as fast as an assignment to an

integer; the actual substring is not moved. In short,

it is quick, easy to teach in a short course, fits into

modest-sized memories, and is easy to change for

different languages or different target machines.

 Who developed the first language compiler and

when?

Rear Admiral Dr. Grace Murray Hopper, in

1949. The compiler, written in assembly language,

IJIRT 100560 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 230

converted symbolic mathematical code into

machine code.

By 1949 programs contained mnemonics that were

transformed into binary code instructions

executable by the computer. Admiral Hopper and

her team extended this improvement on binary

code with the development of her first compiler,

the A-O. The A-O series of compilers translated

symbolic mathematical code into machine code,

and allowed the specification of call numbers

assigned to the collected programming routines

stored on magnetic tape. One could then simply

specify the call numbers of the desired routines and

the computer would “find them on the tape, bring

them over and do the additions. This was the first

compiler,” she declared.

III. DIFFERENT TYPES OF COMPILERS

One-pass compiler

A one-pass compiler (also known as "narrow

compiler") is a compiler that passes

through the source code of each compilation unit

only once. Due to this reason it is very fast. But the

down-side of this is that mostly, it can only be used

in simple programs.

Threaded code compiler

This type of compiler replaces given strings in the

source with given binary code. Many FORTH

implementations use threaded code and some use

the term threading for almost any technique used to

implement Forth's virtual machine.

Incremental compiler

This type of compiler was used in Lisp systems. It

continued to be developed for imperative

and interactive programming.

Stage compiler

This is used in Prolog machines for instance. The

process involves compiling to assembly language.

Just-in-time compiler

Starting off in bytecode, and then compiling it into

machine code just in time before the execution

starts off.

Retargetable compiler

This type of compiler is used to produce code from

various CPUs. However it is worth noting that the

object code in this case is sometimes of a lower

quality. This is due to the fact that this type of

compiler is quite generic, as opposed to a compiler

that was designed specifically for a particular

processor.

Parallelizing compiler

This kind of compiler is used in systems composed

of what is known as a parallel architecture. The

serial input program is converted in such a way that

it can be processed efficiently by the system.

There are several types of compilers, each having

their particular characteristics to suit varying needs

and systems. An overview can be found in

the Cambridge encyclopaedia volumes and other

sites, which describe their structure,

techniques, possible errors and uses.

IV. APPLICATIONS OF COMPILER

TECHNOLOGY

1: Implementation of High-Level Programming

Languages

 Abstraction: All modern languages

support abstraction. Data-flow analysis

permits optimizations that significantly

reduce the execution time cost of

abstractions.

 Inheritance: The increasing use of smaller,

but more numerous, methods has made

interprocedural analysis important. Also

optimizations have improved virtual

method dispatch.

 Array bounds checking in Java and Ada:

Optimizations have been produced that

eliminate many checks.

 Garbage collection in Java: Improved

algorithms.

 Dynamic compilation in Java:

Optimizations to predict/determine parts

of the program that will be heavily

executed and thus should be the first/only

parts dynamically compiled into native

code.

2: Optimization for Computer Architectures

Parallelism

Major research efforts had lead to improvements in

 Automatic parallelization: Examine serial

programs to determine and expose

potential parallelism.

 Compilation of explicitly parallel

languages.

IJIRT 100560 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 231

Memory Hierarchies

All machines have a limited number of registers,

which can be accessed much faster than central

memory. All but the simplest compilers devote

effort to using this scarce resource effectively.

Modern processors have several levels of caches

and advanced compilers produce code designed to

utilize the caches well.

3: Design of New Computer Architectures

RISC (Reduced Instruction Set Computer)

RISC computers have comparatively simple

instructions, complicated instructions require

several RISC instructions. A CISC, Complex

Instruction Set Computer, contains both complex

and simple instructions. A sequence of CISC

instructions would be a larger sequence of RISC

instructions. Advanced optimizations are able to

find commonality in this larger sequence and lower

the total number of instructions. The CISC Intel

x86 processor line 8086/80286/80386/... had a

major change with the 686 (a.k.a. pentium pro). In

this processor, the CISC instructions were

decomposed into RISC instructions by the

processor itself. Currently, code for x86 processors

normally achieves highest performance when the

(optimizing) compiler emits primarily simple

instructions.

Specialized Architectures

A great variety has emerged. Compilers are

produced before the processors are fabricated.

Indeed, compilation plus simulated execution of the

generated machine code is used to evaluate

proposed designs.

4: Program Translations

Binary Translation

This means translating from one machine language

to another. Companies changing processors

sometimes use binary translation to execute legacy

code on new machines. Apple did this when

converting from Motorola CISC processors to the

PowerPC. An alternative is to have the new

processor execute programs in both the new and

old instruction set. Intel had the Itanium processor

also execute x86 code. Apple, however, did not

produce their own processors.

With the recent dominance of x86 processors,

binary translators from x86 have been developed so

that other microprocessors can be used to execute

x86 software.

Hardware Synthesis

In the old days integrated circuits were designed by

hand. For example, the NYU Ultracomputer

research group in the 1980s designed a VLSI chip

for rapid interprocessor coordination. The design

software we used essentially let you paint. You

painted blue lines where you wanted metal, green

for polysilicon, etc. Where certain colors crossed, a

transistor appeared.

Current microprocessors are much too complicated

to permit such a low-level approach. Instead,

designers write in a high level description language

which is compiled down the specific layout.

Database Query Interpreters

The optimization of database queries and

transactions is quite a serious subject.

Compiled Simulation

5: Software Productivity Tools

Dataflow techniques developed for optimizing code

are also useful for finding errors. Here correctness

is not an absolute requirement, a good thing since

finding all errors in undecidable.

Type Checking

Techniques developed to check for type correctness

(we will see some of these) can be extended to find

other errors such as using an uninitialized variable.

Bounds Checking

As mentioned above optimizations have been

developed to eliminate unnecessary bounds

checking for languages like Ada and Java that

perform the checks automatically. Similar

techniques can help find potential buffer

overflow errors that can be a serious security threat.

Memory-Management Tools

Languages (e.g., Java) with garbage collection

cannot have memory leaks (failure to free no longer

accessible memory). Compilation techniques can

help to find these leaks in languages like C that do

not have garbage collection.

V. Study of Different Compilers and Their

Properties:

Common Lisp Compiler

Common Lisp (CL) is a dialect of the Lisp

programming language, published in ANSI

standard document "ANSI INCITS 226-1994

(R2004), (formerly X3.226-1994 (R1999))".[1]

From the ANSI Common Lisp standard the

Common Lisp HyperSpec has been derived[2] for

use with web browsers. Common Lisp was

developed to standardize the divergent variants of

Lisp (though mainly the MacLisp variants) which

predated it, thus it is not an implementation but

rather a language specification. Several

implementations of the Common Lisp standard are

IJIRT 100560 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 232

available, including free and open source software

and proprietary products.

Common Lisp is a general-purpose, multi-paradigm

programming language. It supports a combination

of procedural, functional, and object-oriented

programming paradigms. As a dynamic

programming language, it facilitates evolutionary

and incremental software development, with

iterative compilation into efficient run-time

programs.

Compiler Author Target Windows
Unix-

like

Other

OSs

License

type
IDE?

Allegro Common

Lisp
Franz, Inc. Native code Yes Yes Yes Proprietary Yes

Armed Bear

Common Lisp
JVM Yes Yes Yes GPL Yes

CLISP

Bytecode Yes Yes Yes GPL No

Clozure CL
Clozure

Associates
Native code Yes Yes No LGPL Yes

CMU Common

Lisp

Native code,

Bytecode
No Yes No

Public

Domain
Yes

Corman Common

Lisp
Native code Yes No No Proprietary Yes

Embeddable

Common Lisp
Bytecode, C Yes Yes Yes LGPL Yes

GNU Common

Lisp
C Yes Yes No GPL No

LispWorks
LispWorks

Ltd
Native code Yes Yes No Proprietary Yes

Open Genera Symbolics Ivory emulator No Yes No Proprietary Yes

Scieneer Common

Lisp

Scieneer Pty

Ltd
Native code No Yes No Proprietary No

Steel Bank

Common Lisp
Native code Yes Yes Yes

Public

Domain

Yes

D- COMPILERS

The D programming language is an object-oriented, imperative, multi-paradigm system programming language

created by Walter Bright of Digital Mars. Though it originated as a re-engineering of C++, D is a distinct

language, having redesigned some core C++ features while also taking inspiration from other languages, notably

Java, Python, Ruby, C#, and Eiffel.

D's design goals attempt to combine the performance of compiled languages with the safety and expressive

power of modern dynamic languages. Idiomatic D code is commonly as fast as equivalent C++ code, while

being shorter and memory-safe.

Compiler Author Windows Unix-like
Other

OSs
License type IDE?

Digital Mars D Digital Mars and Yes 32-bit Linux, Mac No GPL and Artistic No

IJIRT 100560 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 233

Compiler Author Windows Unix-like
Other

OSs
License type IDE?

(DMD) others OS X, FreeBSD

D Compiler for

.Net
 ? Yes Yes ? ? ?

GDC GCC Yes Yes No GPL No

LDC LLVM Yes Yes No Open Source
No

DiBOL – COMPILERS

DiBOL or Digital's Business Oriented Language is a general-purpose, procedural, imperative programming

language, which is well-suited for Management Information Systems (MIS) software development. It has a

syntax similar to FORTRAN and BASIC, along with BCD arithmetic. It shares the COBOL program structure

of data and procedure divisions.

Compiler Author Windows Unix-like Other OSs License type IDE?

Synergy DBL
[2][3][4]

 Synergex Yes Yes Yes Proprietary
Yes

EIFFEL

Eiffel is an ISO-standardized, object-oriented programming language designed by Bertrand Meyer (an object-

orientation proponent and author ofObject-Oriented Software Construction) and Eiffel Software. The design of

the language is closely connected with the Eiffel programming method. Both are based on a set of principles,

including design by contract, command-query separation, the uniform-access principle, the single-choice

principle, the open-closed principle, and option-operand separation.

Many concepts initially introduced by Eiffel later found their way into Java, C#, and other languages. New

language design ideas, particularly through the Ecma/ISO standardization process, continue to be incorporated

into the Eiffel language.

Compiler Author Windows
Unix-

like

Other

OSs
License type IDE?

EiffelStudio
Eiffel Software / Community

developed (sourceforge)
Yes Yes Yes

Dual GPL /

Proprietary

Yes

Java compilers

Compiler Author Windows
Unix-

like

Other

OSs

License

type
IDE?

GNU Java GNU Project No Yes No GPL No

Javac
Sun Microsystems (Owned

by Oracle)
Yes Yes Yes GPL No

S.N Java Compiler SN Ink. (Owned by S.N) Yes No No Free No

ECJ (Eclipse

Compiler for Java)
Eclipse project Yes Yes Yes EPL

Yes

IJIRT 100560 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 234

Pascal compilers

Compiler Author
Windo

ws

Unix

-like
Other OSs

Licens

e type
IDE?

Amsterdam

Compiler Kit

Andrew

Tanenbaum and Ceriel

Jacobs

No Yes Yes BSD No

Embarcadero

Delphi

Embarcadero (CodeG

ear)
Yes No ?

Proprietar

y
Yes

Delphi Prism RemObjects Yes Yes Yes
Proprietar

y
Yes

FrameworkPas

cal

Framework

Computers, Inc.
Yes No Yes (MS-DOS)

Proprietar

y
Yes

Free Pascal Florian Paul Klämpfl Yes Yes

Yes

(OS/2, FreeBSD, Solaris, H

aiku, etc.)

GPL

FPIDE

& Lazaru

s

Irie Pascal Irie Tools Limited Yes Yes No
Proprietar

y
Yes

GNU Pascal GNU Project Yes Yes Yes GPL No

Kylix Borland (CodeGear) No
Yes

(Linux)
No

Proprietar

y
Yes

Turbo Pascal

for Windows
Borland (CodeGear) Yes (3.x) No No

Proprietar

y
Yes

Microsoft

Pascal
Microsoft No No Yes (MS-DOS)

Proprietar

y
Yes

Neuron Pascal

Compiler
Salah IBN AMAR Yes Yes Yes GPL Yes

HP Pascal Hewlett-Packard No No Yes (OpenVMS)
Proprietar

y

Unknow

n

Turbo Pascal CodeGear (Borland) No No Yes Freeware Yes

Vector Pascal Glasgow University Yes Yes No
OpenSour

ce
No

Virtual Pascal
Vitaly Miryanov and

Allan Mertner
Yes

Yes

(Linux)
Yes (OS/2) Freeware Yes

WDSibyl
Wolfgang Draxler and

Speed-Soft
Yes No Yes (OS/2) GPL

Yes

VI. CONCLUSION

Thus, we get an introduction about the compilers

and their working. The modern world is changing

very fast and hence this change is also taking place

in the development of compilers. From the very

first COMPILER for UNIVAC and FORTRAN to

various latest compilers for each and every

computer language, there has been significant

growth in them. The compiler field must develop

the technologies that enable more of the progress

the field has experienced over the past 50 years.

IJIRT 100560 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 235

Computer science educators must attract some of

the brightest students to the compiler field by

showing them its deep intellectual foundations,

highlighting the broad applicability of compiler

technology to many areas of computer science.

Today, compilers are fast, accurate and more

precise to their working. With the upcoming

technology the compiler growth will enhance and

we can see the future of compilers as bright era.

REFERENCES

[1] Compiler Research: The Next 50 Years BY

MARY HALL, DAVID PADUA, AND

KESHAV PINGALI

[2] Compilers Spring term Mick O’Donnell:

michael.odonnell@uam.es Alfonso Ortega:

alfonso.ortega@uam.es

[3] http://www.cs.yale.edu/homes/tap/Files/hopper

-story.html

[4] http://en.wikipedia.org/wiki/D_(programming_

language)

[5] http://en.wikipedia.org/wiki/Common_Lisp

[6] http://en.wikipedia.org/wiki/History_of_compi

ler_construction

[7] http://en.wikipedia.org/wiki/List_of_compilers

#Source-to-source_compilers

