
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100561 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 236

JAVA SERVER PAGES

Rakesh Sondal, Sheena Batra

DCE Gurgaon, Haryana

Abstract— Java Server Pages or JSP for short is Sun’s solution

for developing dynamic web sites. JSP provides advanced and

excellent server side scripting support for creating more realistic

database driven web application content. JSP technology is an

extension to Java servlet technology. JSP works in tandem with

HTML code separating logic from the static elements , thus

making HTML more functional. Before running, JSP is

translated into Java servlet and then it processes HTTP requests

and reply to it. JSP technology is more convenient to work with

as it allows developers to directly insert java code into jsp file,

making development process easy and simple. JSP technology

directly support using JavaBeans components with JSP language

elements. JSP pages are efficient as it loads into the web server’s

memory on receiving the request for the very first time only and

next calls being served within short period of time. In today’s

environment most web sites servers dynamic pages are based on

user’s request. More wide use of JSP is because of its platform

independent nature. This paper will enlight the unknown facts

about JSP technology and how efficiently it can be brought to use

in collaboration with modern systems.

I. INTRODUCTION

Java Servlets and JSP (JavaServer Pages) constitute a widely

used platform for Web application development. Applications

that are developed using these or related technologies are

typically structured as collections of program fragments

(servlets or JSP pages) that receive user input, produce HTML

or XML output, and interact with databases. These fragments

are connected via forms and links in the generated pages,

using deployment descriptors to declaratively map URLs to

program fragments.This way of structuringapplications

causes many challenges to the programmer. In particular, it is

difficult to ensure, at compile time, the following desirable

properties:

– all output should be well-formed and valid XML (according

to, for example, the schema for XHTML 1.0);

– the forms and fields that are produced by one program

fragment that generates an XHTML page should always match

what is expected by another program fragment that takes care

of receiving the user input; and

– session attributes that one program fragment expects to be

present should always have been set previously in the session.

Our aim is to develop a program analysis system that can

automatically check these properties for a given Web

application

II. JSP BASICS AND CUSTOM TAGS

A JSP page contains template text and JSP elements. All

content that is not a JSP element is called template text. The

template text can be any text, such as HTML, XML, WML, or

even plain text, which is passed directly through to the

browser. The JSP elements, which are used to generate

dynamic content in the page, include directives, standard

actions, custom actions, standard tag library tags, (JSTL)

scripting elements and JavaBean components. Standard

actions use the prefix jsp, such as the <jsp:useBean> and

<jsp:getProperty> actions, which are use to create beans,

access bean properties, and invoke other pages. But there are

still many actions involved in manipulating page content not

covered by standard actions, but covered by custom actions

(also called custom tags) and JSTL. When developing a

custom tag library, two components must be developed: the

implementation of the tags in Java and an XML file called the

tag library descriptor. Each individual tag is implemented as a

Java class called a taghandler. A tag handler defines the tag’s

behavior, which must implement one of the interfaces defined

in the package javax.servlet.jsp.tagext . The tag library

descriptor maps each tag to the appropriate tag handler class

and describes the attributes supported by each tag. Tags are

made available within a JSP page via the taglib directive.The

tag libbrary xxxlib has a local name within the JSP file of

mylib and the custom tag is named cdtitle. The implementation

of the tag is in the file CdtitleTag.class. The JSP container

uses the TLD to find the information it needs to generate code

for invoking the correct tag handler class when it encounters

an action element with a matching prefix. Sun provides a

standard tag library which implements statement level tags for

control flow and database operations. Our approach produces

higher level tags abstracting the business logic of the web

application. As well, JSP 2.0 provides an alternate interface

for custom tags, the simpleTag interface. It simplifies the

implementation, and tags need only implement a single

method. Our technique works with both interfaces.

III. GENERAL APPROACH

In practice, HTML code and Java code are tightly interweaved

in existing JSP web applications. Java code is embedded in

HTML code and HTML tags are embedded in Java code.

Before we discuss the code transformation, we must first

examine the elements that are affected by the transform.

JSP scripting elements. Scripting elements allow us to add

pieces of Java code in a JSP page, which have three types:

scriptlets, expressions, and formal declarations. The scripting

elements in a JSP page will be executed each time the page is

requested. It is better to move and encapsulate Java code

implementing business logic into

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100561 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 237

appropriate custom tags.

HTML content embedded in out.print(). The Java code

sequence out.print(…); is a commonly-used simple method to

generate HTML content from within a scriptlet. The use of

this code has two disadvantages. One is that it needs extra

effort to create and maintain

HTML pages for application programmers. The other is that

content authors (or web page designers) must understand the

embedded code or must ask the application programmers to

make any changes to the scriptlet. Before we perform the

transformation, we extract the HTML contentfrom the

out.print() and out.println() statements and put the content

directly into the page. This changes the code to an HTML

segment that is nested within the scriplet. It starts with a JSP

end tag (%>) and ends with a JSP start tag (<%), allowing

HTML segments to appear inside interesting JSP elements and

is used to handle “the lake inside an island” parse. As a result,

the extracted HTML code can be included directly into the

web pages without out.print() calls and page designers can

make changes to the HTML contents without risk of breaking

the Java code.

JavaBean action elements. A JavaBean component is a Java

class that has a no-argument constructor and conforms to the

JavaBean coding conventions. There are three kinds of JSP

standard action elements which allow developers to use

JavaBean components :

<jsp:useBean> instantiates a Java Bean and makes it available

in a page; <jsp:getProperty> gets a property value from a

JavaBean and adds it to the response; <jsp:setProperty> sets

all properties value in a JavaBean with names matching the

names of the parameters received from the request. These

three action elements along with other scriptletsare all

functions which are more suitable for an application

programmer. The web page designer need not knowhow to

instantiate a Java Bean or how to set properties of the bean.

The page designer only needs to know the properties of a Java

bean component in applications where a separate servlet

instantiates a bean and passes it to a JSP page for display. To

this end, we change the three action elements into valid Java

code enclosed within scriptlet

tags (<%…%>) before the general transformation.

JSP page directives. JSP page directives are usually found at

the top of a JSP page and always enclosed within directive

tags (<%@ … %>). There can be any number of page

directives within a JSP page, but the attribute/value pair must

be unique. The cases that affects the transform is the case

where the page imports a Java package. For

example, <%@ page import =”java.sql.ResultSet” %> This

directive imports the class ResultSet from the package java.sql

into the page. As this class should also be imported into our

newly created custom tags, we change the page directive into a

scriptlet. For example, the directive above becomes <%

import java.sql.ResultSet;

%>. We can then transform this valid import statement as part

of the general transform.

IV. IMPLEMENTATION

In this section, we briefly describe the implementation of the

transformation. Most of the process is implemented using the

TXL language, which is a pure functional programming

language particularly designed tto support rule-based source-

to-source transformation. Transformation process, which

includes five

phases. The preprocessing phase normalizes the source

code. It also performs some comment and lexical

preprocessing.

The grouping phase performs an analysis and annotates each

line of normalized source code with a tag id identifying the

custom tag to which the source code will belong. The first part

of the analysis identifies the cases that we have identified in

this paper. It identifies control statements that contain

HTML/JavaScript and the first

statement of Java sequences within the template text that must

be given their own tags. Thus, the basic structure of

the tags is identified. The second phase of grouping assigns

the remaining statements to one of the identified tags. The tag

id generated in the group phase is mapped to a reasonable user

name such as invalidLogin or CDTitle by a web interface in

the tag naming phase. The code transformation phase uses the

markup from the group phase and the mapping from the tag

naming phase to generate the three outputs of the process.

These are the modernized JSP pages, the tag library

description file, and the custom tag classes. The final post-

processing phase deals with final touchups such as fixing

comments. The whole process is automated, except the tag

naming

phase where the human assistance is required. The details of

the implementation, particularly, the markup approach and the

transformations are described elsewhere. We have tested our

system on 3 small systems to date consisting of an online

music store, a mini weblog application and a guest book

application. Two were obtained

from within Queen’s, the other is a sample systemdownloaded

from the internet. The systems comprise a total of 14 JSP

pages containing a total of 682 lines of mixed JSP and HTML.

The resulting pages contain 362 lines of tags and HTML. 74

custom tag classes were generated. Currently each JSP

expression is translated into its own

custom tag. A simple optimization is to fold the simple JSP

expressions into one simple tag. This would eliminate 23

custom tag classes.

<table border>

<%

String title;

String price;

ResultSet (loopvar.next())

{

%>

<tr>

<%

title=loopvar.getString(1);

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100561 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 238

%>

<td> Title</td>

<td><%=title%></td>

</tr>

<tr>

<%

price=loopvar.getString(2);

%>

<td>Price</td>

<td> <%=currency.format(price)%> </td>

</tr>

<%

}

%>

V. CONTRIBUTION

Our contributions are the following:

– We show how to obtain a context-free grammar that

conservatively approximates the possible output of servlet/JSP

applications using a variant of the Java string analysis

– On top of the string analysis, we apply theory of balanced

grammars by Knuth and grammar approximations by Mohri

and Nederhof to check that the output is always well-formed

XML.

– On top of the well-formedness checking, we show how a

balanced contextfree grammar can be converted into an XML

graph, which is subsequently validated relative to an XML

schema using an existing algorithm.

– By analyzing the form and link elements that appear in the

XML graph together with the deployment descriptor of the

application, we explain how to obtain an inter-servlet control

flow graph of the application.

– Based on the knowledge of the control flow, we give

examples of derived analyses for checking that form fields and

session state are used consistently.

 Together, the above components form a coherent analysis

system for reasoning about the behavior of Web application

that are built using Java Servlets and JSP. The system has a

front-end that converts from Java code to context-free

grammars and a back-end that converts context-free grammars

to XML graphs and checks well-formedness, validity, and

other correctness properties. Our approach can be viewed as

combining and extending techniques from the JWIG and

Xact projects and applying them to a mainstream Web

application

development framework. Perhaps surprisingly, the analysis of

well-formedness and validity can be made both sound and

complete relative to the grammar being produced in the

frontend. (The completeness, however, relies on an

assumption that certain welldefined contrived situations do not

occur in the program being analyzed). The goal of the present

paper is to outline our analysis system, with particular focus

on the construction of context-free grammars and the

translation from context-free grammars to XML graphs. We

base our presentation on a running example. The system is at

the time of writing not yet fully implemented. Although we

here focus on Java-basedWeb applications, we are not relying

on language features that are specific to Java. In particular, the

approach we present could also be applied to the .NET or PHP

platforms where Web applications are typically also built from

loosely connected program fragments that each produce

XHTML output and receive form input

CONCLUSION

The implementation of our transformation is a greedy

approach. It attempts to group as many statements as possible

into each tag. Each web page is also processed independently.

One potentially extension is to identify clones between pages,

separating them in to separate tags. One example is session

management code common to multiple pages. In this paper,

we have presented a set of transforms that can be used to

implement the separation of the presentation and business

logic for existing JSP-based web applications. The transforms

restructure the web applications by moving Java code

embedded in JSP pages into custom tags without changing the

original functionalities and user interfaces of the applications.

The interesting

information required for this restructuring is contained not

only in the multiple languages themselves but also in the way

they are coupled.

An advantage of our Java code transformation is that all

business logic intensive Java code in JSP pages is moved and

encapsulated into custom tags and all elements for

presentation are kept in pages, which helps to reduce the

complexity of web applications and helps make the

restructured applications more reusable and maintainable.

REFRENCES

[1] Hans Bergsten, JavaServer Pages, O’Reilly 2002.

[2] T. Bodhuin, E. Guardabascio, M.Tortorella, “Migrating

COBOL Systems to the WEB by Using the MVC Design

Pattern”, Proc Working conference on Reverse Engineering,

Richmond, Virginia, pp 329-338.

[3] C. Boldyreff, R. Kewish, “ReverseEngineering to Achieve

Maintainable WWW Sites”, Working Conference on Reverse

Engineering, Stuttgart, Germany, Oct. 2001

[4] J. Cordy, “TXL – A Language for Programming Language

Tools and Applications”, Proc ACM International Workshop

on Language Descriptions, Tools and Applications, Edinburg,

Scotland, January 2005, pp. 3-31.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100561 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 239

[5] A. van Deursen, T. Kuipers, “Building Documentation

Generators”, Proc International Conference on Software

Maintenance, Oxford, England, 1999, pp 40-49.

[6] D. Draheim, E. Fehr, G. Weber, “JSPick – A Server Pages

Design Recovery Tool”, Proc 7th European Conference on

Software Maintenance and Reengineering, Benevento, Italy,

March 2003, pp 230-238.

[7] A. Hassan, R. Holt, “Architecture Recovery of Web

Applictions”,

Proc International Conference on Software Engineering,

Orlando, Florida, May 2002, p 19-25.

[8] A. Hassan, R. Holt, “Migrating Web Frameworks Using

Water Transformations”, Proc International Computer

Software and Application Conference, Dallas, Nov. 2003.

