
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100562 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 240

RPC

SECURE MODE OF CALLING

Rakesh Sondal, Sheena Batra

Dronacharya College Of Engineering, Gurgaon, India

Abstract- Remote procedure call (RPC) is a powerful primitive

used for communication and synchronization between

distributed processes. RPC mechanism is extended to provide

transfer of control and data within a communication network.

RPC poses a problem that it reduce the amount of parallelism,

because of its synchronous nature. This paper shows how simple

process can be used to find a way of avoiding a difficulty in this

problem . The primary purpose of our paper is to make

distributed computation easier and secure. The combination of

blocking RPC calls and light-weight processes provides both

simple semantics and efficient exploitation of parallelism.

I. INTRODUCTION

q Within the operating system research community, remote

procedure call [Birrell and Nelson, 1984; Nelson, 1981] has

achieved sacred cow status. It is almost universally assumed to

be the appropriate paradigm for building a distributed

operating system. Through our use of remote procedure call

(RPC) in our own experimental distributed system [references

to be provided after blind refereeing is completed], we have

discovered that although RPC is an elegant model, it also has a

number of unpleasant aspects as well. In this paper we have

assembled some of our criticisms, as well as those

of other researchers, not because we believe RPC should be

abandoned, but as a way to focus attention on the problems

and to stimulate others to try and solve them. Before detailing

our criticisms of the RPC model, let us briefly summarize

what we

mean by RPC. RPC is a communication mechanism between

two parties, a client and a server. For simplicity, let us assume

that a computation consist of a main program, running on the

client machine, and a procedure to be called, running on the

server machine. When the main program calls the procedure,

what actually happens is that a call is

made to a special procedure called the client stub on the

client’s machine. The client stub marshalls (collects) the

parameters into a message, and then sends the message to the

server machine where it is received by the server stub. The

server stub unpacks the parameters from the message, and

then calls the server

procedure using the standard calling sequence. In this way,

both the main program and the called procedure see only

ordinary, local procedure calls, using the normal calling

conventions. Only the stubs, which are typically automatically

generated by the compiler know that the call is remote. In

particular, the programmer does not have to be aware of the

network at all or the details of how message passing works.

The distribution of the program over two machines is said to

be transparent . Furthermore, between RPCs, there is no

connection of any kind established between the client and

server. Our criticism of RPC concerns the advisability of its

use as a general communication model, for arbitrary

applications. In many experimental systems to date, RPC has

primarily been used for communication between clients and

file servers. In this one restricted application, many of the

problems we will point out below do not occur, or can be

avoided by careful server design. It is our view that a general

paradigm should not require programmers to restrict

themselves to a subset of the chosen programming language or

force them to adopt a certain programming style (e.g., do not

use pointers in their full generality because RPC cannot handle

them). We propose the following test for a general-purpose

RPC system. Imagine that two programmers are working on a

project. Programmer 1 is writing the main program.

Programmer 2 is writing a collection of procedures to be

called by the main program. The subject of RPC has never

been mentioned and both programmers assume that all their

code will be compiled and linked together into a single

executable binary program and run on a free-standing

computer, not connected to any networks.

At the very last minute, after all the code has been thoroughly

tested, debugged, and documented and both programmers

have quit their jobs and left the country, the project

management is forced by unexpected, external circumstances

to run the program on a distributed system. The main program

must run on one computer, and each procedure must run on a

different computer. We also assume that all the stub

procedures are produced mechanically by a stub generating

program. It is our contention that a large number of things

may now go wrong due to the fact that RPC tries to make

remote procedure calls look exactly like local ones, but is

unable to do it perfectly. Many of the problems can be solved

by modifying the code is various ways, but then the

transparency is lost. Once we admit that true transparency is

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100562 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 241

impossible, and that programmers must know which calls are

remote and which ones are local, we are faced with the

question of whether a partially transparent mechanism is really

better than one that was designed specifically for remote

access and makes no attempt to make remote computations

look local at all.

II. CONCEPTUAL PROBLEMS WITH RPC
In this section we will deal with a variety of problems that are

inherent in the RPCmodel of a client sending a message to a

server then blocking until a reply is received.

1. Who is the Server and Who is the Client?

RPC is not appropriate to all computations. A a simple

example of where it is not

appropriate, consider a simple UNIX† pipeline:

sort <infile | uniq | wc -l >outfile that sorts infile, an ASCII file

with one word per line, strips out the duplicates, and prints the

word count on outfile.

It is hard to see who is the client and who is the server here.

One possible configuration would be to have each of the three

programs act as both client and server at times, possibly split

up into two processes internally if need be. The client part of

sort could send read requests to a file server to acquire blocks

of the input file. The client part of uniq could send requests to

the server part of sort to provide sorted data as it became

available. The client part of wc could send requests to the

server part of uniq to provide duplicateless data as it became

available. So far everything is fine. The problem is what does

wc do with its output? How

does it get it to the file server? If the file server made READ

request wc could respond

 with the data, but this would turn the file serve into a file

client , certainly an abnormal. This model is read-driven,

because the RPC requests are of the form ‘‘I want data.’’

The complementary write-driven model, with sort acting as

client to uniq and saying ‘‘Please write this data’’ solves the

problem of producing the output file, since wc as client just

commands the file server to accept data. Unfortunately it

creates a problem for sort since the file server refuses to take

an active role and pump data at it, as it does

to uniq. Having sort contain two processes, both clients, one

talking to the file server to acquire data and one talking to uniq

to pump data at it creates an asymmetric situation. The first

component of the pipeline then contains two clients and the

rest one client and one server. Various ad hoc solutions are

possible, such as having the pipes be active processes that pull

and push data where needed, but no matter how one looks at

it, it is clear that the RPC model just does not fit.

2. Unexpected Messages

Various situations exist in which one process has important

information for another process, but the intended recipient,

typically a client, is not expecting the information. In the RPC

model, it is exceedingly difficult for the holder of the

information to convey it. In the virtual circuit model with full-

duplex connections, either party can send a highpriority (i.e.,

emergency) message at any moment. Let us illustrate this

problem with two examples. A distributed system has a

terminal

concentrator to which all the terminals are attached. As

characters are typed on the terminals, they are held in the

concentrator until some processor in the system, acting as a

client, does an RPC to the terminal concentrator, acting as a

server asking for some input. This usually works fine._�Of

course one can design file systems that do not need unsolicited

messages, a dubious concept at best. The point however, is

that if the file system designer has good

reasons for wanting to do this, it is undesirable that the

communication paradigm make such a design impossible. It is

as though the ARPANET electronic mail system arbitrarily

discarded any message containing the ASCII text ‘‘END OF

MESSAGE’’

because such phrases interfered with its internal workings. The

communication mechanism

should not dictate policy decisions of its users.

3. Single Threaded Servers

Another server design decision that RPC virtually forces on

the operating system designer is the choice of a multi-threaded

over a single threaded file server. Consider a distributed

system with a UNIX file server containing a substantial RAM

buffer cache, say 64 megabytes, well within the reach of most

computer science departments these

days. The file server designer is interested in making the file

server as simple as possible to reduce the number of bugs in

the code. For this reason, the design chosen is to have a single

thread of control within the file server. When a read request

arrives at the server stub, it calls the file server as a procedure.

The server procedure then carries out the work, usually just

fetching a block from the buffer cache, and then returns the

requested data to the stub as the value of the procedure. If the

data requested in not in the buffer cache, the file server

procedure reads it from the disk, suspending all file server

activity while waiting. If the hit rate from the 64M cache is

high enough, the designers may consider the occasional disk

wait preferable to a complex multi-threaded file server. In any

event, for better or for worse, that is their decision to make.

Now consider what happens if a client reads from an empty

pipe. In a virtual better or for worse, that is their decision to

make.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100562 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 242

Now consider what happens if a client reads from an empty

pipe. In a virtual circuit system, the file server would simply

make some table entries noting that the client was trying to

read from the pipe, and then go back to the top of its main

loop to wait for

the next request message. In an RPC system, this is

impossible. The server procedure cannot just return control to

the stub empty-handed because the stub is programmed to

send back the reply to the client immediately. In this case, the

reply should not be sent until data arrives in the pipe, possibly

hours later. In a virtual circuit system, the code for the file

server looks something like this (in C):

do {

get_message(&mess_buf);

perform_work(&mess_buf, &reply_buf);

send_reply(&reply_buf);

}

However, if no reply is available (e.g., reply_buf contains a

special NO_REPLY_AVAILABLE_YET code), send_reply

can just return without sending a reply message. There is no

requirement of a strict alternation of getting a message and

sending a reply, as there is with RPC. Because RPC does not

allow the same server procedure to be called a second time

before it has returned the first time, the server designer is

virtually forced to write the server as multithreaded code, with

internal multiprogramming. We are not arguing for or against

single threaded servers here, but are merely pointing out that

using RPC has forced a major design decision on the operating

system writers that should be left open to their own judgment.

4. The Two Army Problem

Consider what happens if a client requests a server to provide

it with some irreplaceable data, for example, by sampling a

real-time physics experiment being controlled by the server.

After sending its reply, the server cannot just discard the data

because the reply may have been lost, in which case the client

stub will time out and repeat the request. The question is

‘‘How long should the server hold the irreplaceable data?’’

One way to handle this problem is to have the client stub send

an acknowledgement back to the server stub after receiving

the reply. But what happens if the acknowledgement

is lost? The server will hold the data forever. To avoid this

situation, the server stub should acknowledge the

acknowledgement, and the client stub should not terminate the

RPC until its acknowledgement has been acknowledged.

However, even this protocol is not adequate. After

acknowledging the client stub’s acknowledgement, the server

still does not know if the client received the acknowledgement

and thus will stop the protocol, or if the acknowledgement got

lost, and more messages will be forthcoming from the client

side. There is, in fact, no protocol that guarantees

that both sides definitely and unambiguously know that the

RPC is over in the face of a lossy network.

This problem, known as the two-army problem, also occurs in

virtual circuit systems when trying to close a connection

gracefully. However there it only occurs once per session,

when everything is finished. With RPC it happens on every

call. In practice, the problem is not so bad because local

networks are highly reliable. Still, one would prefer a

mechanism that worked in theory as well as it worked in

practice (usually it is the other way around!).

5. Multicast

Situations frequently exist in which one process wants to send

a message to several other processes. We saw one above—the

file server wanting to tell all the processes holding part of a

modified file to purge their caches. Numerous other examples

exist. Most local area networks are able to support.

broadcast or multicast in hardware. A packet sent in broadcast

or multicast mode can be received by multiple machines at

once. Thus we have a situation in which processes need to do

multicasting and the hardware is able to do it. Only the RPC

paradigm is inherently a two-party interaction, so there is no

way to utilize the hardware facility.

III. TECHNICAL ISSUES

In this section we will look at some problems concerning

access to parameters, global variables, and possible timing

problems.

1. Parameter Marshalling

In order to marshall the parameters, the client stub has to

know how many there are and what type they all have. For

strongly typed languages, these usually does not cause any

trouble, although if union types or variant records are

permitted, the stub may not be able to deduce which union

member or variant record is being passed. For languages such

as C, which are not type safe, the problems are worse. The

procedure printf , for example, is called with a variety of

different parameters. If printf or anything like it is the

procedure to be called remotely, the client stub has no easy

way of determining how many parameters there are or what

there types are.

2. Parameter Passing

When the client calls its stub, the call is made using the

normal calling sequence The stub then collects the parameters

and puts them into the message to be sent to the server. If all

the parameters are value parameters, no problem arises. They

are just copied into the message and off they go. However, if

there are reference parameters or pointers, things are more

complicated. While it is obviously possible to copy pointers

into the message, when the server tries to use them, it will not

work correctly because the object pointed to will not be

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100562 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 243

present. Two possible solutions suggest themselves, each with

major drawbacks. The first solution is to have the client stub

not only put the pointer itself in the message, but also the thing

pointed to. However, if the thing pointed to is the middle of a

complex list

structure containing pointers in both directions, sublists, etc.,

copying the entire structure into the message will be

expensive. Furthermore, when it arrives, the structure will

have to be reassembled at the same memory addresses that it

had on the client side, because the server code will just

perform indirection operations on the pointers as though it

were working on local variables. Furthermore, if the parameter

is a pointer to a union (record variant) of several types, some

of which are pointers and some of which are not, it may well

be impossible for the client stub to even find the entire data

structure because it may not be able to tell which member of

the union is the current one. The other solution is just to pass

the pointer itself. Every time the pointer is used, a message is

sent back to the client to read or write the relevant word. The

problem here is that we violate one of the basic rules: the

compiler should not have to know that it is dealing with RPC.

Normally the code produced for reading from a pointer is just

to indirect from it. If remote pointers work differently from

local pointers, the transparency of the RPC is lost. Forbidden

pointers are parameters is equally unattractive since it also

violates one of the rules: programmers using RPC systems

should not be restricted to only a subset of the language. If

pointers and reference parameters is valid locally, they should

be valid remotely as well.

3.3. Global Variables

Most programming languages offer the programmer a way to

declare global variables. Procedures may directly access such

global variables by just using them. If a procedure that was

originally designed to be run locally is suddenly forced to run

remote contains references to global variables, these

references will fail and the procedure will not work. This

problem is similar to that of pointer variables and just as

difficult to deal with.

3.4. Timing Problems

For most procedures, the execution speed is not essential for

the correct operation of the procedure. However, there is one

class of procedure for which the execution speed is critical:

I/O device drivers. Some I/O devices have the property that

issuing a command to the device requires the driver to write

several words into the controller’s device registers. Often there

are hardware-dependent rules about the allowed interval

between the words. For example, it may be required that after

the first word has been written, the second word must be

written within t microseconds. Failure to observe this limit

will cause the controller to time out and the operation to fail.

A problem can occur if the driver calls a small procedure after

writing the first word but before writing the second word, for

example, to convert the DMA address from virtual to physical.

If the small procedure happens to be running remote, the delay

intro introduced may be long enough to cause the controller to

time out and the operation to fail.

IV. PERFORMANCE PROBLEMS

Our last category of problems has to do with performance

rather than correctness.One of the goals of having a distributed

system is usually to take advantage of processing power

available. In this respect RPC may not be as good as other

communication models.

1. Lack of Parallelism

With RPC, when the server is active, the client is always idle,

waiting for the response. Thus there is never any parallelism

possible. The client and the server are effectively coroutines.

With other communication models it may be possible to have

the client continue computing while the server is working, in

order to gain performance.Furthermore, with a single threaded

server and multiple clients, the situation is even worse. While

the server is waiting for, say, a disk operation, all the clients

have to wait.

2. Lack of Streaming

In data base work it is common for a client to request a server

to perform an operation to look up tuples in a data base that

meet some predicate. With RPC, the server must wait until all

the tuples have been found before making the reply. If the

operation

of finding all the tuples is a time consuming one, the client

may be idle for a long time,waiting for the last tuple to be

found.

With virtual circuits, the situation is quite different. Here the

server can send the first tuple back to the client as soon as it

has been located. While the server continues to search for

more tuples, the client can be processing the first one. As the

server finds more tuples, it just sends them back. There is no

need to wait until all have been found.

3. Bad Assumptions

In many situations, programmers use small procedures instead

of inline code because it is more modular and does not affect

the performance much. For example, many sort programs have

a little routine to exchange element i with element j. If such a

procedure ever ran remote, it might slow down the whole

computation by the ratio of a

remote call to a local call, perhaps a factor of 1000. With

nontransparent communication it can never happen that an

important little procedure runs remote.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100562 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 244

CONCLUSION

 Transparency is imperative, and leads to

effectiveness

 Maintain local procedure calling semantics

 Binding strategies influences efficiency

 Emulate shared address space

 Timeout implementation

REFRENCES

[1] Birrell, A. D. and Nelson, B. J.; Implementing remote

procedure calls; ACM Trans. Comput. Syst. 2.1

[2] Garry Nutt; Operating systems; 2nd Edition, Addison

Wesley

[3] Andrew Tanenbaum and Maarten van Steen; Distributed

Systems: Principles and Paradigms, Prentice Hall, 2002

