
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100576 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 376

Issues of Consistency in Distributed Shared Memory System

Sandeep Yadav, Swati Sharma

Dronacharya College Of Engineering

Department of Information And Technology, Gurgaon, Haryana, India

Abstract- Distributed shared memory is used to provide an

environment where computers support a shared address space

that is made by physically dispersed memories. The popularity of

Distributed Shared Memory system is believed to be increasing in

parallel computing, as it offers a single system memory view

which makes the programming easy as well as the control of

parallel computing using multiple processors. Consistency is an

important issue because there might be some potential

consistency problems when different processors access, cache and

update the shared single memory space. The designers of

distributed shared memory systems should decide the proper

standards of memory coherence semantics and consistency

protocols in order to get better performance and get accurate

result of computation . In this paper, we first report the overview

of distributed shared memory systems and reveal the consistency

problems and their feasible solutions. We will also study the cases

of several up to date implementations and their role in

maintaining system memory consistency.

I. INTRODUCTION

1.1 Overview

In 1986, Kai Li distributed his Phd thesis entitled,

"Imparted Virtual Memory on Inexactly Coupled

Microchips," in this manner opening up the field of

research that is currently known as Appropriated

Imparted Memory (DSM) frameworks.[1] From that

point onward, heaps of scrutinizes in dispersed imparted

memory frameworks have been proposed. In conveyed

imparted memory frameworks, forms shared data

crosswise over hub limits transparently. All hubs in the

appropriated imparted memory framework see the same

figment of a solitary location space. Any processor can

get to any memory area in the location space

specifically. Memory mapping administrators is in

charge of mapping between nearby memories and the

imparted memory location space. Other than mapping,

their boss obligation is to keep the location space lucid at

tall times; that is, the worth returned by a read operation

is dependably the same as the quality composed by the

latest compose operation to the same location[2]. There

favorable circumstances of conveyed imparted memory

frameworks including:

• Methodologies can run on distinctive processors in

parallel.

• Memory mapping, page faulting, information

development are overseen by circulated imparted

memory without client mediation.

• Single location space disentangles programming tasks.

Fig 1: A single image illusion of distributed shared

memory systems

1.2 Design Issues

A few outline issues need to be tended to before we go

further into this study. Each of these components

altogether influences the execution of the framework.

• Virtual memory and Distributed Memory System

Current machine frameworks utilize the idea of virtual

memory to accomplish better execution. The virtual

memory administration component is in charge of page

substitution, swapping and flushing. Essentially, in

fulfilling a remote memory ask for, the appropriated

imparted memory would need to counsel the virtual

memory supervisor to get a page outline, and so forth.

The viability of the appropriated imparted memory

standard depends vitally on how rapidly a remote

memory access solicitation is adjusted and the

processing is permitted to proceed.

• Granularity:

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100576 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 377

Processing granularity alludes to the measure of the

imparting unit. It can be a byte, a saying, a page or other

sort of unit. Picking the right granularity is a real issue in

disseminated imparted memory on the grounds that it

arrangements to the measure of calculation done

between synchronization or correspondence focuses.

Moving around code and information in the systems

includes dormancy and overhead from system

conventions. In this way, such remote memory gets to

need to be incorporated some way or another with the

memory administration at every hub. This regularly

strengths the granularity of access to be an indispensable

numerous of the central unit of memory administration

(normally a page) or just exchange piece of the page to

lessen the idleness[3].

• Memory Model and Intelligibility Conventions:

To guarantee right multiprocessor execution, memory

models ought to be utilized with consideration. Two

customary memory models are used in numerous

conveyed imparted memory frameworks. Successive

Consistency memory model guarantees that the

perspective of the memory is predictable at all times

from all the processors. The other is Discharge

Consistency, which recognizes sorts of synchronization

gets to, specifically, obtain and discharge, creating a

predictable perspective of imparted memory at the

discharge point[3]. A few cognizance conventions are

utilized to keep up memory consistency and will be

distinguished in subtle element in later segments.

1.3. Consistency Issues in Distributed Memory

System

To get adequate execution from a Disseminated

Imparted Memory Framework, information must be set

close to the processors who are utilizing it. This is

carried out by imitating and substituting information for

read and compose operations at various processors.

Since a few duplicates of information are put away in the

neighborhood reserve, read and compose access can be

performed effectively. The reserving system expands the

proficiency of Appropriated Imparted Memory

Frameworks, yet it additionally raises the consistency

issues, which happens when a processor composes

(changes) the reproduced imparted information. How

and when this change is noticeable by different

processors who additionally have a duplicate of the

imparted information turns into a paramount issue.

A memory is predictable if the worth returned by a read

operation is dependably the same as the quality

composed by the latest compose operation to the same

location. In a conveyed imparted memory framework, a

processor needs to get to the imparted virtual memory

when page flaws happen. To lessen the correspondence

expense started by this reason, it appears to be regularly

to build the page size. In any case, vast page size

delivers the discord issue when various procedures

attempt to get to the same page and it likewise triggers

the false imparting issue, which, thus, may expand the

quantity of messages due to aggregation[4].

False offering is created by the vast size of the memory

page and thought to be an execution bottleneck to

conveyed imparted memory frameworks. False

imparting happens when two irrelevant variables (each

one utilized by diverse procedures) are set in the same

page. The page seems imparted, despite the fact that the

first variables were not. Routine programming typically

obliges methods to increase restrictive access to a page

before it begins adjustment. Hence, false offering

prompts a race condition where numerous processors go

after responsibility for page while really they are altering

entirely unexpected sets of information.

A few methods are acquainted with decrease the impact

of false offering including: Loose memory consistency

model and compose imparted conventions. We will

explore these arrangements and the executions in later

segments.

Numerous arrangements are proposed to decrease or

even kill these consistency issues. We will examine some

of them in later segments

II. MEMORY INTELLIGIBILITY MODELS

2.1. Consecutive Consistency

Lamport characterized the framework to be

consecutively (strictly) reliable if:

The aftereffect of any execution is the same as though

the operations of every last one of processors were

executed in some consecutive request, and the operations

of every individual processor show up in this grouping in

the request defined by its program.

The framework guarantees that all gets to of the

imparted memory from diverse processors interleave in a

certain way so that the weighty execution is the same as

though these gets to are executed in some successive

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100576 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 378

request. While this model ensures that each compose is

promptly seen by all processors in the framework, it

additionally creates more messages for keeping up this

sort of consistency and, accordingly, higher idleness [7].

In addition, deciding consecutive consistency is a

NPcomplete issue, which may prompts genuine

framework stoppage in huge scale Distributed shared

memory System

2.2. Processor Consistency

Processor consistency permits composes from diverse

processors to be seen in distinctive requests, in spite of

the fact that composes from a solitary processor must be

executed in the request that they happened. Unequivocal

synchronization operations must be utilized for gets to

that ought to be all around requested. The primary

playing point of processor consistency is that it permits a

processor's peruses to sidestep its composes and

henceforth build the framework execution.

2.3. Relaxed Consistency

Loose (feeble) consistency does not oblige changes to be

noticeable to different processors quickly. At the point

when certain synchronization gets to happen, all the past

composes must be seen in the project request. Two

methodologies are said to be contending if no less than

one of them is a compose. Imparted memory gets to are

classified either as standard or synchronization gets to,

with the recent class further partition into secure and

discharge gets to [8].

Two well-know methodologies executing the loose

consistency are:

• Discharge Consistency (RC):

Discharge consistency is a manifestation of loose

memory consistency. A framework is discharge

predictable if:

 Before a common access is permitted to

perform as for some other processor, all past

secures must be performed

 Before a discharge is permitted to perform as

for whatever other processor, all 6 past

common peruses and composes must be

performed.

 Uncommon gets to are successively reliable

concerning each other.

The preference of this manifestation of consistency is

that it postpones the consistency overhaul with

synchronization occasions. In this manner, overhauls

happen just when required by application and

unnecessary messages will be diminished. Nonetheless,

most discharge predictable frameworks require the

software engineer to make unequivocal utilization of

gain and discharge operation.

• Sluggish Discharge Consistency (LRC):

In Sluggish Discharge Consistency, the engendering of

changes is further put off until the time of the obtain

[10]. A framework in LRC needs to fulfill the

accompanying conditions [11]:

 Before a customary read or compose access is

permitted to perform regarding an alternate process, all

past procure gets to must be performed with deference to

that different procedure

 Before a discharge access is permitted to

perform regarding some other procedure, all past normal

read and store gets to must be performed with deference

to that different methodology, and

 Sync are consecutively predictable concerning

each other.

2.4. Passage Consistency

In passage consistency, information must be expressly

announced accordingly in the project message, and

connected with a synchronization protest that secures

access to that imparted information. Entrance

consistency exploits the relationship between particular

synchronization variables which secure discriminating

areas and the imparted information got to inside those

basic segments. Forms must synchronize by means of

framework supplied primitives. Synchronization

operations are partitioned into secures what's more

discharges. In the wake of finishing a secure, passage

consistency guarantees that a procedure sees the latest

rendition of the information connected with the obtained

synchronization variable.

The above consistency models can be compressed and

represented in the accompanying table:

(Table1) Summary of Consistency

III. CONSISTENCY CONVENTIONS

Storing imparted information presents expands the

framework execution in circulated imparted memory

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100576 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 379

frameworks. Nonetheless, to keep up memory

consistency, extraordinary outlined conventions required

to be executed to

1) engender a recently composed worth to all reserved

duplicates of the changed area,

2) discover when a compose is finished and

3) safeguard the atomicity for composes regarding

different operations.

3.1. Compose Distributed Convention

The compose imparted convention cradles the compose

gets to in this way permits numerous essayists upgrade

simultaneously. Two or more essayists can adjust their

nearby duplicates of the same imparted information in

the meantime and the changed duplicates are

consolidated in the following synchronization occasion.

The dispersed imparted memory programming at first

compose secure the memory page containing the

compose imparted information. At the point when some

processor needs to change this page, appropriated

imparted memory programming makes a duplicate of the

page containing the compose imparted information and

take off the compose insurance so further overhaul

operations is possible without dispersed imparted

memory programming intercession.

The first information page is placed in a deferred

redesign line. At discharge time, the framework

performs a correlation of the first page and its duplicate

and run-length encodes the consequences of this

distinction into the space distributed to the duplicate.

Each one encoded overhaul comprises of a tally of

indistinguishable words, the quantity of contrasting

words that take after, and the information connected with

those varying words. At that point each one hub that has

a duplicate of an imparted question that has been

adjusted is sent a rundown of the accessible overhauls.

The getting hubs will then translate the upgrades and

consolidation the progressions into their variant of the

imparted information. This convention kills the sick

impacts of false-imparting and subsequently brings down

the correspondence connected with it.

3.2. Lazy Diff Creation Convention :

Fundamentally, LDC is indistinguishable to compose

imparted convention is the feeling of make diffs for

uniting further overhaul. The time of making diff in LDC

is delayed until the adjustments are asked for, which

contrasts from that of compose imparted convention.

This altogether diminished the quantity of diffs made

and enhanced execution.

3.3. . Eager Invalidate Protocol:

Excited conventions push adjustments to all hubs that

store the information at synchronization variable

discharges. In the event that remote duplicate is perused

just, it is basically negated; if the duplicate is checked as

readwrite, the remote hub adds the diff to the answer and

afterward negates the page. At the point when the

locking processor discharges its composes, all other

storing hubs are told that they must negate their

duplicates. The procurement inertness is long when lock

appeal pending at discharge, short generally.

3.4. Lazy Invalidate Convention

In apathetic nullify, the proliferation of changes is

postponed until the time of the procure.

The releaser informs the acquirer, of which pages have

been adjusted, bringing about the acquirer to discredit its

neighborhood duplicates of these pages. A processor

acquires a page blame on the first get to an discredited

page, and gets diffs for that page from past releasers. The

execution of each methodology is isolated into mostly

requested interims, which is typically spoken to by

timestamps.

Each time a methodology performs a discharge or an

obtain, another interim starts. Neighborhood duplicates

of pages for which a compose notice with a bigger

timestamp is gotten are discredited. This convention has

most brief lock obtaining dormancy (single message)

when solicitation pending, additionally great when not

pending.

3.5. Lazy Hybrid Protocol:

This convention is like apathetic nullify convention with

the exception of that sluggish half breed upgrades a

portion of the pages at the time of an obtain as opposed

to nullifying the changed page. The releaser sends to the

acquirer all the alterations that it feels that the acquirer is

intrigued by. The acquirer negates pages for which

compose notices were gotten however no changes were

incorporated in the lock award message. Single pair of

messages in the middle of acquirer and releaser, just

have overhead head of piggybacks. Measure of

information is more diminutive than for the overhaul

convention. Lessened number of access misses.

The trade off between these conventions can be

delineated in the accompanying table.

(Table 2) Protocol Trade off [8]

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100576 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 380

IV. DISCUSSION AND CONCLUSION

From the discussion above, we can find that distributed

shared memory system gives an environment to simple

programming and parallel processing. Yet the

correspondence expense inherited in the underlying

system is extremely lavish, hence restricts the

adaptability of appropriated shared memory system and

make different issues. Due to this trademark, the

granularity of memory unit is limited in a certain reach

to anticipate false-offering or inordinate message-

passing. Be that as it may, the unbend ability of

granularity has a negative impact on calculation speedup

for some system with high correspondence necessity.

For the correlation of the framework plan, memory

models and conventions utilized as a part of Treadmarks

and Halfway, the result can be finished up as takes after:

• For the programming straightforwardness, Treadmarks

needs no uncommon necessity while Halfway requires

the developers to unequivocally relate a lock with an

imparted information object.

• For compose recognition, Treadmarks framework

needs to output the whole imparted information area,

albeit just a little parcel of it may have been upgraded. In

Halfway, framework just outputs the grimy bits of the

imparted information object.

• Halfway just make those information connected with

the lock predictable at a lock get stage. Conversely,

Treadmarks needs to guarantee consistency for all

information objects, which brings about less information

being moved in Halfway than in Treadmarks.

• The evasion of TCP/IP convention stack harms the

versatility of Treadmarks, particularly in the Web time

where TCP/IP is a prevailing convention.

Clearly, there is no overwhelming framework between

these two examined in the paper. Case in point, Section

Consistency beats Languid Discharge Consistency on the

off chance that its rationality unit is bigger than a page.

In the event that Entrance Consistency's intelligibility

unit is littler than a page, then Section Consistency beats

Languid Discharge Consistency if there is a false-

offering while Sluggish Discharge Consistency outflanks

Passage Consistency if there is spatial region bringing

about a prefetch impact. Accordingly, the decision of

usage must be made as per the need of clients or

developers and additionally different conditions.

In addition to algorithms, conventions and memory

models, new system innovations may assume an

imperative part in enhancing Appropriated Imparted

Memory Frameworks proficiency since the

correspondence expense is still the central point that

influences framework.

REFERENCE

 [1] John B. Carter, Dilip Khandekar, and Linus Kamb,

Distributed Shared Memory: Where We Are and Where

We Should Be Headed, the Fifth Workshop on Hot

Topics in Operating Systems, May 1995.

 [2] Kai Li and Paul Hudak, Memory Coherence in

Shared Virtual Memory Systems, ACM Transactions on

Computer Systems, Vol. 7, No. 4, November 1989

[3] Ajay Mohindra and Umakishore Ramachandran, A

Comparative Study of Distributed Shared Memory

Design Issues, GIT-CC-94/95, August 1994.

 [4] Cristian Amza, Alan Cox, Karthick Rajamani, and

Willy Zwaenepoel, Tradeoffs between False Sharing and

Aggregation in Software Distributed Shared Memory,

Proceedings of ACM SIGPLAN Conference on

Principles and Practices of Computer Programming,

1997.

[5] B Nitzberg and V Lo, Distributed Shared Memory: A

Survey of Issues and Algorithms, IEEE Computer

August 1991, pp. 52-60.

 [6] John Hennessy, Mark Heinrich and Anoop Gupta,

Cache-Coherent Distributed Shared Memory:

Perspectives on Its Development and Future Challenges,

Proceedings of the IEEE, VOL. 87, No. 3, March 1999.

 [7] Masaaki Mizuno, Michel Raynal, James Z. Zhou,

Sequential Consistency in Distributed Systems, Proc. of

the Int'l Workshop on Theory and Practice in Distributed

Systems, October 1994.

 [8] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and

Willy Zwaenepoel. An evaluation of software-based

release consistent protocols. Journal of Parallel and

Distributed Computing, 29(2):126--141, September

1995.

[9] Vijay Karamcheti, Architecture and Programming of

Parallel Computers, Lecture 11, Future Directions

Project presentations: December, 1998

 [10] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and

Willy Zwaenepoel. Treadmarks: Distributed shared

memory on standard workstations and operating

systems. In Proceedings of the 1994 Winter Usenix

Conference, pages 115 131, January 1994.

 [11] Pete Keleher, Lazy Release Consistency for

Distributed Shared Memory, PhD thesis of Rice

University, Huston, Texas, January, 1995.

 [12] A. Judge, P.A. Nixon, V.J. Cahill, B. Tangney, S.

Weber, Overview of distributed shared memory,

October, 1998.

