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Abstract- In this paper, we present a new link-state routing 

algorithm called Approximate Link state (XL) aimed at 

increasing routing efficiency by suppressing updates from 

parts of the network. We prove that three simple criteria for 

update propagation are sufficient to guaran-tee soundness, 

completeness and bounded optimality for any such algorithm. 

We show, via simulation, that XL significantly outper-forms 

standard link-state and distance vector algorithms—in some 

cases reducing overhead by more than an order of 

magnitude— while having negligible impact on path length. 

Finally, we argue that existing link-state protocols, such as 

OSPF, can incorporate XL routing in a backwards 

compatible and incrementally deploy-able fashion. 
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I. INTRODUCTION  

“How do I best get from here to there?” This simple question is 

the essence of the routing problem, but it belies the consider-able 

complexity embedded in modern intra-domain routing pro-tocols. At 

the heart of this complexity is the issue of topology change. 

Routing in a static network is trivial, a simple table of directions 

calculated once for each destination. However, most real networks 

are dynamic—network links go up and down—and thus some 

nodes may need to be notified to recalculate their routes in 

response. This problem in turn can be boiled down to the ques-tion, 

“Who needs to know?” The traditional approach, enshrined in the 

family of link-state protocols, is to tell everyone; flood the topology 

change throughout the network and have each node then 

recompute its table of best routes. However as a network grows, 

this requirement to universally communicate and act on each topol-

ogy change can become problematic. This is because a larger net- 
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work also generates routing updates more often, necessitating more 

frequent route updates and route re-computation. Worse yet, these 

costs are incurred by every router in the network, meaning that the most 

resource-constrained router effectively determines the maxi-mum 

network size that can be served by a routing algorithm. Thus, link-state 

protocols are frequently said to “not scale well.”  
However, it is manifestly unnecessary to communicate every link 

change to every router. Intuitively, only a small subset of router 

nodes are critically impacted by most link-state changes (particu-

larly those whose shortest path trees include the changed link) and 

most other routing-related communication and computation is re-

dundant. The traditional solution to this problem is to divide the 

network into separate routing domains and use this hierarchy to 

isolate topology updates. In the inter-domain context, the network 

is naturally divided into Autonomous Systems to reflect adminis-

trative and policy boundaries. However, the hierarchy imposed in 

the intra-domain context, for example with OSPF areas, is com-

pletely artificial: these areas do not delineate policy regions but 

rather serve as a routing algorithm optimization. As Cisco’s OSPF 

Design Guide [6] states, “Areas are introduced to put a boundary 

on the explosion of link-state updates.”  
Unfortunately the process of properly configuring and maintain-

ing areas is a complex art form; one with ad-hoc rules of thumb 

(“no more than 50 routers per area”) and complex design trade-

offs.
1
 Indeed, the structure imposed by areas inherently limits the 

kinds of topologies that can be mapped onto routes and, if not 

care-fully managed, can produce arbitrarily sub-optimal routes and 

un-necessary points of failure [31]. Our work is focused on minimiz-

ing or removing the need for such artificial hierarchy by improving 

the efficiency of the underlying routing protocols.  
Another approach to this problem is exemplified in the fish-

eye routing optimization used by the 802.11s Mesh Networking 

stan-dard. This technique simply limits the range over which 

topology updates are communicated, thus limiting updates to 

their immedi-ate region [16, 14]. While this optimization 

imposes no operational burden, it is fundamentally unsound. 

Such protocols can neither guarantee that their routes will lead 

to their destinations (since they may contain loops) nor that all 

reachable destinations will have a valid route. While our work is 

motivated by the same desire to winnow update traffic, we seek 

to do so within the traditional con-straints of correctness.  
This state of affairs is fundamentally unsatisfying, and with link-

state protocols being introduced into a wide range of new domains 
 
1
In Moy’s classic OSPF: Anatomy of an Internet Routing 

Proto-col, he addresses the issue of how to place area 
boundaries as fol-lows: “This is a complicated question, one 
without a single an-swer.” and further clarifies that it 
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including overlay networks [2], ad-hoc and mesh networks [7], and 

to support traffic engineering for both MPLS [15] and Packet Based 

Backbone [9] technologies, we feel the issue is ripe for revisiting. 

To this end, our paper seeks to answer the following simple ques-

tion: “Can one significantly increase routing protocol efficiency by 

selectively propagating topology updates, while still providing tra-

ditional guarantees of soundness, completeness and optimality?”  
In addressing this question, this paper offers three 

contributions. First, we introduce the Approximate Link state 

(XL) routing algo-rithm, which can reduce routing overhead by 

an order of magnitude over existing protocols while still 

maintaining our correctness prop-erties. Second, we show that 

three simple criteria for propagating updates are sufficient to 

ensure these properties for any link-state routing protocol: 
 

S1  When the update is a cost increase (bad news),  
S2 When the link is used in the node’s shortest-path 

tree (propagated only to the next hop along the 

path to the link), and  
C1 When it improves the cost to any destination by 

more than a 1 + cost factor, where is a design 

parameter of the algorithm. 
 
We show that all other updates may be safely suppressed. We show 

that these conditions are sufficient to guarantee that all forwarding 

paths are loop-free and within a 1 + cost factor of optimal. 
Finally, since our approach is primarily a restriction of the 

tradi-tional link-state approach, it is possible to mix it within an 

existing link-state framework; allowing incremental deployment. 

We sketch how such interoperability could be achieved 

between native OSPF and a modified OSPF/XL protocol.  
The remainder of the this paper is structured as follows: we 

briefly outline the relevant background and related work in Sec-tion 

2, followed by a description of the network model and notation used 

throughout the paper in Section 3 and the XL routing algo-rithm 

itself in Section 4. Section 5 describes the simulation sys-tem we 

developed for evaluating the performance of routing algo-rithms. 

Then, in Section 6 we present our experimental evaluation the XL 

routing algorithm compared with link-state and distance-vector 

based approaches. In Section 7 we explain how OSPF may be 

modified to include the update suppression mechanism used in XL 

and Section 8 summarizes our results and concludes the paper. 

II. BACKGROUND AND RELATED 

WORK  
Beginning with the development of the ARPANET routing al-

gorithms in the late seventies and early eighties [21, 22], 

network routing became a major area of research. The long-

term loops suf-fered by the ARPANET distance-vector algorithm 

led to the de-velopment of link-state routing algorithms. In turn, 

a number of competitive distance vector algorithms were later 

developed that avoided long-term loops [4, 12, 17, 23, 28], 

including Garcia-Luna-Aceves’ DUAL [10], which became the 

basis for Cisco’s EIGRP [5]. To scale to larger networks, the 

link-state protocols OSPF and IS-IS introduced area routing. In 

this regime the network is manually divided into areas and while 

routing within an area takes place as before. Forwarding to 

destinations outside the local area is handled by special border 

routers—largely isolating most areas from the knowledge of any 

external topology change. As the OSPF specifi-cation states: 
 

[The] isolation of knowledge enables the protocol 

to effect a marked reduction in routing traffic as 

com-pared to treating the entire Autonomous 

System as a single OSPF domain. [24] 

We are not the first to identify that areas can introduce problems 

in link-state networks. These problems have long been understood 

experimentally and are well summarized by AT&T’s Mikkel Tho-rup 

in his “OSPF Areas Considered Harmful” [31]. Nor are we the first 

to look at reducing flooding overhead in link-state protocols. A 

number of such proposals have been made—typically for partic-

ular narrow regimes—including optimizations for flooding across 

interfaces [32], for reducing refresh overhead [27] and to damp the 

effects of route flapping [25]. We believe that our work is consid-

erably more general than these efforts and with greater impact on 

efficiency.  
Another approach to improving the scalability of link-state al-

gorithms is the Link Vector (LV) algorithm introduced by Behrens 

and Garcia-Luna-Aceves [3]. The LV algorithm only propagates link 

updates about links in the node’s shortest-path tree, an idea 

borrowed from distance vector algorithms, which we use in our 

work as well. However unlike our algorithm, the LV algorithm ex-

plicitly notifies neighbors when a link is added or removed from the 

shortest-path tree, whereas in our algorithm, the shortest-path tree 

is never explicitly communicated to neighbors; links not in the 

shortest-path tree are removed lazily only if their cost actually 

changes. This allows us to support approximation which, in turn, 

permits significant reductions in overhead for small increases in 

stretch, as our simulations show.  
Finally, our notion of a view as a representation of network state 

is similar to that of Fayet et al. [8]. In their work, they give several 

sufficient conditions for routing in a network where nodes may have 

different views. However they do not give a routing algorithm or 

propose a mechanism for achieving these conditions. 
 

III.  DEFINITIONS AND NOTATION  
In this section we formally describe our network representation 

and define what we mean by “forwarding.” We then define the 

routing problem in terms of network configurations (e.g., “loop-

free”). The reader may choose to skip directly to the ext section, 

where we describe the XL routing algorithm itself, turning back to 

this section for reference.  
XL is a routing algorithm for a destination-based forwarding net-

work such as the Internet. Formally, a routing algorithm is a mech-

anism by which network nodes can coordinate packet forwarding to 

ensure any two nodes in the network can communicate. In a 

destination-based forwarding network, forwarding is based on the 

packet destination address only. A node makes its forwarding de-

cision using a forwarding table which either gives the next hop to 

each destination or indicates that the destination is not reachable 

by forwarding. The objective of a routing algorithm is to maintain a 

network configuration in which nodes are globally reachable by 

forwarding. 
 
3.1  Network Model  

We model the network as a graph G = (V; E; e) with vertex set V 

, edge set E, and edge weight function e. The vertices represent 

network nodes, edges represent links, and edge weight represent 

link costs. Throughout the paper, we will use the pairs of terms 

node and vertex, link and edge, interchangeably.  
To simplify exposition, the set of nodes and edges is fixed 

and globally known; only the edge weight function varies with 

time. It is straightforward to extend an algorithm in this model to 

allow vertices and edges to be inserted or deleted. The range 

of the weight function is the set of non-negative real numbers 

together with the special value 1 having the usual semantics.  
Let n = jV j, m = jEj and let N(u) denote the set of neighbors 

of u 2 V . The set of edges E is undirected, however the weight 
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function e is directed, which meaning that costs may be 

different along each direction of the link. 
A path is a sequence of nodes of which any consecutive 

pair is adjacent in the graph. The weight of a path in G, 
denoted k k is sum of the weights (given by the weight 
function e) of its edges. Let (u; w) be the minimum weight of 
a path from u to w, or 1 if no such path exists. If (u; w) is 
finite, we say that w is reachable (in the network) from u.  

We use a superscript to denote the time at which the value of a 

function or variable is considered. For example, 
t
(u; w) denotes the 

weight of a minimum-weight path in G at time t. The domain of t is 

the set of non-negative real numbers. We say that a set of edges is 

quiet during a time interval if its weights do not change during the 

time interval. A set of edges becomes quiet at some time t if its 

edge weights do not change after time t. 
 
3.2 Forwarding   

To each node u in the graph we associate a forwarding table fu 

which maps a destination node w to a neighbor of u, with the se-

mantics that a packet arriving at u destined for w will be sent to the 

neighbor of u given by the forwarding table. If the packet has 

reached the destination or the destination is not reachable by for-

warding, the forwarding table contains special value NONE. Thus, 
 

fu(w) 2 N(u) [ fNONEg; (1) 
where N(u) are the neighbors of u.  

We define the configuration of a forwarding network at some in-

stant in time to be the set of all forwarding tables at that time. To 

capture the iterative nature of packet forwarding, we consider the 

path taken by a packet in the network. The (instantaneous) for-

warding path from u to w, denoted (u; w), is the successive ap-

plication of f to w, starting at u, up until NONE. Formally, (u; w) is the 

unique maximum-length sequence satisfying  
0 (u; w) = u (2) 

i+1 (u; w) = f i(u;w)(w) (3) 

i+1 (u; w) 6= NONE: (4) 
Note that (u; w) may be an infinite sequence, (if for example 

fu(w) = v and fv(w) = u) resulting in a forwarding loop. If (u; 
w) is a finite path from u to w, we say that w is reachable by 
forwarding from u. 
 
3.3 Soundness and Completeness   

To each node we associate a routing process responsible for com-

puting the forwarding table of the node. The routing process knows (or 

measures directly) the costs of incident links and communicates with its 

neighbors via these links. A routing algorithm is the mech-anism that 

defines what information is exchanged with neighbors and how the 

forwarding tables are computed. The central purpose of a routing 

algorithm is to maintain a forwarding configuration in which nodes are 

mutually reachable by forwarding. It is often also desirable for the paths 

taken by forwarded packets to be optimal or near-optimal. We formalize 

these objectives using the notions of soundness, completeness and 

stretch. 
 
Definition. A configuration is sound if for all nodes u and w, 

fu(w) 6= NONE implies (u; w) is a path from u to w. A rout-ing 
algorithm is sound if it produces a sound configuration after 
the network becomes quiet. 
 

In a nutshell, soundness says that a node should only attempt to 

forward to destinations it can reach by forwarding. We will show 

that the XL routing algorithm we describe in this paper has this 

property. There is also a weaker property that is sufficient for many 

applications, and it is simply that there be no forwarding loops: 
 
Definition. A configuration is loop-free if for all u and w, (u; 

w) is finite. A routing algorithm is loop-free if it produces a 

loop-free configuration after the network becomes quiet. 
 

The difference between a sound and a loop-free configuration is 

that in the latter, a node only needs to know that forwarding to its 

next hop will not cause a loop (but the packet could be dropped 

somewhere down the path), while in a sound configuration, for-

warding to the next hop must actually reach the destination.  
The easiest way to achieve soundness is for every node to “pre-

tend” everyone is unreachable by setting fu(w) = NONE for all 

destinations w. Clearly this is a degenerate configuration, so what 

we also want is for fu(w) to be NONE only if w really is unreach-able 

from u in the network. We call this property completeness. 
 
Definition. A configuration is complete if for all distinct u and 

w, (u; w) 6= 1 implies fu(w) 6= NONE. A routing algorithm is 

complete if it produces a complete configuration after the 
network becomes quiet. 
 

Together the soundness and completeness properties 

say that all nodes are reachable by forwarding, but they say 

nothing about the optimality of the forwarding paths. This is 

the subject of our next definition. 
 
Definition. The stretch of a configuration is the maximum 

taken over all distinct nodes u and w of the ratio k (u; w)k= 

(u; w), with the convention that 1=1 is 0, and 1=1 is 

undefined and not included in the maximum. A routing 

algorithm has stretch 1 + if it produces a configuration with 

stretch at most 1 + after the network becomes quiet. 
 

IV.  THE XL ROUTING ALGORITHM  
XL is fundamentally a link-state routing algorithm. It differs 

from the standard link-state algorithm in propagating only some 

link state updates. At the heart of the algorithm are three rules 

describing when an update should be propagated, and our 

main technical contribution is showing that these are sufficient 

for cor-rectness as defined above. These conditions, which are 

at the heart of the algorithm, are: 
 

S1  When the update is a cost increase (bad news),  
S2 When the link is used in the node’s shortest-path tree 

(propagated only to the next hop to the link), and  
C1 When it improves the cost to any destination by 

more than a 1 + cost factor, where is a design 

parameter of the algorithm. 
 
Any updates not covered by the three rules above may be sup-pressed. 

The intuition behind these rules is that S1 and S2 ensure that each 

node’s estimate of the distance to a destination decreases along the 

forwarding path, which ensures that no loops are formed. (More 

generally, S1 and S2 ensure soundness as described above.) Rule C1 

ensures that all nodes know about some good (not but necessarily 

optimal) paths; this ensures completeness and bounded stretch. In the 

rest of this section, we formally describe our algo-rithm and describe 

how it implements these rules.  
Because some updates are propagated while others are suppressed, 

nodes will not all have the same information about the network. To 

reason about this formally, we encapsulate a node’s knowledge of the 

network in a view. A view is an edge weight function giving the weight of 

each edge at a particular point in time. Each node has an 
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Figure 1: The routing process state for a pair of adjacent nodes. The routing 

process of each node maintains the forwarding table (fu and fv), internal view 

(Tu and Tv), and, for each neighbor, an external view (Tuv and Tvu). The 

forwarding table and internal view are private, while the external view Tuv 
can be atomically updated by u and atomically read by v. Similarly, the 

external view Tvu can be atomically updated by v and atomically read by u. 
 
 
internal view containing the most recent edge weight information 
available to it. For each neighbor, a node also has an external 
view, which contains the edge cost information it wants to share 

with that neighbor. We denote the internal view of a node u by Tu 

and the external view of u for neighbor v by Tuv. For a pair of 

nodes u and v, their external views Tuv and Tvu will normally be the 

same, as the algorithm attempts to maintain “consensus” of 
external views. In describing the algorithm, we assume that the 

external view Tuv can be atomically written by u and atomically 

read by v. The for-warding table, internal view, and external views 
together constitute the state of the routing process (Figure 1).  

Updating an external view incurs a communication cost, since 

the update must to be sent to corresponding neighbor. Our goal is 

to minimize the frequency of external view updates. To simplify 

analysis, we assume that external views can be updated even 

when the corresponding link has infinite cost. In practice, such 

updates would be queued until the link comes back up.  
Formally, a view is a function mapping each edge to an edge da-

tum, which is simply a pair of values p and t, written p @ t, meaning 

that the edge had weight p at time t. Furthermore, views must only 

have correct information, meaning that the edge in question should 

have really had cost p at time t. We call this the view invariant. To 

avoid writing each definition twice, once for the internal views and 

once for external views, we will use the placeholder subscript 3 to 

mean both u and uv. With this convention, the view invariant is: 
 

T3(x; y) = p @ t ) e
t
(x; y) = p: (V1)  

For convenience, let e3(x; y) = p denote the weight of (x; y) ac-

cording to T3, that is, if T3(x; y) = p @ t. But note that e3 is 
distinct from the true weight function e written with no subscript.  

We say an edge datum p @ t is more recent than datum p
0
 

@ t
0
 if t > t

0
. We will also use the terms less recent and as 

recent having the obvious meanings. Finally, we define a “most 
recent” operator “rec.“ Applied to a set of edge data S, rec S is 
the most recent datum in S. Formally, if there exists an edge 

datum p @ t 2 S that is more recent than all other p
0
 @ t

0
 2 S, 

then rec S = p @ t; otherwise, rec S is undefined.  
Let 3(z; w) be a minimum-cost path

2
 from z to w in T3. Since 

the underlying graph is connected, such a path always exists, 
al-though the cost may not always have finite cost. Define 

d3(w) = k 3(u; w)k3; as before, 3 stands for both u and uv. 
The routing algorithm is structured as an iterated state 

update algorithm. The process starts in the initial state 
defined by the initial views and then repeatedly executes 
the update algorithm, which updates the views and 
forwarding table. We start by defining the initial view. 
 
2
Ties may be broken arbitrarily, as long as the following 

consis-tency property is preserved: if a b is a subsequence  
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Tu, Tuv1 , . . . , Tuvk  

        
 

current time τ  
      

 

      
 

        

 
Figure 2: The update algorithm computes the new forwarding table, internal 
view, and external views. The inputs to the algorithm are current incident 
edge weights, neighbors’ external views, its previous internal view and 
external views. The algorithm also has access to the current time. 

 

4.1  Initial View  
The initial view defines the initial state of the routing 

process, before it has determined the incident link costs or 

communicated with its neighbors. In other words, it serves 

as the “base case” for the algorithm. The initial view, both 

internal and external, is defined as 
 

T3(x; y) = 1 @ 0: (5) 
To satisfy the view invariant (Equation V1), we also define 

e
0
(x; y) to be 1 for all (x; y) 2 E.  

4.2  Update Algorithm  
The update algorithm computes a new forwarding table as 

well as new internal and external views. The input to the 

algorithm consists of the incident link costs, the current external 

views of its neighbors, and its own previous internal and 

external views, as well as the current time, denoted (Figure 2).  
For the remainder of this section, fix a node u executing the up-date 

algorithm. The XL update algorithm has three phases. In the first phase, 

the algorithm computes a new internal view of u and the preliminary 

external views for its neighbors; in the second phase, it updates the 

forwarding table using the new internal view; and in the last phase, it 

computes new external views for each neighbor. We now describe 

these phases. Table 1 summarizes the notation used in the description 

and analysis of the routing algorithm. 
 
4.2.1 Phase I: Internal and Prelim. External Views  
 
 
  Time at the start of the iteration (INPUT).    

 

u(w) Maximum allowed relative error for destination w with re- 
 

  spect to u (ALGORITHM PARAMETER).    
 

T 
0 ; T 

0 The internal view and external view for v 2 N(u), re- 
 

u uv       

  spectively, computed in the last iteration of the update al- 
 

  gorithm, or, during the first iteration, the initial internal and 
 

  external views (INPUT).     
 

 Tvu The external view of v 2 N(u) (INPUT).    
 

Tu; Tuv The internal view and external view for v 2 N(u), respec- 
 

  tively, currently being computed (OUTPUT).   
 

 T The preliminary external view of v 
2 

N(u) (Sec- 
 

 vu tion 4.2.1).     
 

       
 

 fu The forwarding table of u,  currently being computed 
 

  (OUTPUT).      
 

e(x; y) Weight of edge (x; y) in G.    
 

e3(x; y) Weight of edge (x; y) in T3.    
 

k k; k k3 Cost of path   in G and T3, respectively.    
 

3(z; w) Shortest path from z to w in T3, with ties broken as con- 
 

  sistently (Sections 4.2.2 and 4.2.3).    
 

d3(w) Cost of the shortest path from u to w in T3; by definition, 
 

  d3(w) = k 3(u; w)k3 (Section 4.2.3).    
 

Du(w) Minimum distance proxy from u to w (Section 4.4). 
 

 
Table 1: Notation used in the description and analysis of the update algorithm. The  
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The first phase is concerned with view bookkeeping. Conceptu- We achieve these global objectives by enforcing the following three 
 

ally, we would like to have a single shared view for each pair of local constraints on external views.   
 

neighbors. However since the neighbors operate asynchronously, The first two constraints, as we will soon show, guarantee sound- 
 

this would require a synchronization to ensure that the common ness:           
 

view is updated correctly. Instead, we allow each neighbor to have  
8(x; y) 2 E euv(x; y)   eu(x; y) (S1) 

 

its own version of this shared view. Neighbors keep their respec-  
 

tive external views in agreement by only updating them with more 
8w fu(w) = v ) 

   
(S2) 

 

recent information and by maintaining the invariant that a node’s    
 

external view is no older than its neighbors. This ensures that the  
8 
(x; y) 

2 
u(u; w) euv(x; y) = eu(x; y)  

 

pair of views converge to the same single view. Thus first step in          
 

Constraint S1 states that we must never under-report an edge weight. 
 

Phase I is to make sure the local external view is up to date with 
 

respect to the neighbor’s external view for u. We call this updated This constraint ensures that in steady state all views reflect edge 
 

view the preliminary external view. For each edge (x; y), the pre- costs that are greater than or equal to the actual costs. Constraint S2 
 

liminary external view takes the more recent datum of the previous states that a node must advertise the latest edge cost to the neighbor 
 

external view Tuv
0
 and the neighbor’s external view Tvu:  v used to reach that edge. Intuitively, this constraint ensures that if 

 

T  (x; y) = rec  T 
0
 (x; y); Tvu(x; y) (6) 

v is our next hop to some destination w, then its own estimate of 
 

the distance to w will be no worse than ours, and, therefore, v will  

uv uv     

The preliminary external view is what the node and it’s neighbor not attempt to reach w through us.    
 

already agree on, or will agree on after the neighbor performs an The third constraint guarantees completeness as well as bounded 
 

stretch. Before stating it, we need one more definition. Let Du(w)  

update. It is the starting point for any updates the algorithm decided  

be a lower bound on the minimum distance from u to w in G. We  

to communicate to its neighbor.     
 

    

show how Du(w) may be computed in Section 4.4.  With these  

Next, we make the internal view the most recent information  

definitions in mind, the third constraint is:  
 

about each edge available to u. For edges incident on u, the most  
 

           
 

recent information is available locally and is only updated if the 
8w duv(w)   1 + u(w) Du(w) or (C1) 

 

edge weight changes. Formally, for v  N(u),   
 

  
2     d 

uv (u; w) = d 
u (w):  

 

             
 

e (u; v) @   if e (u; v) = eu
0
(u; v),  It states that distances in the external view should not be much  Tu(u; v) =

 

(
Tu0(u; v) otherwise, 6 (7) 

 

worse than actual. The lower bound Du(w) is used as a proxy 
 

where “rec” is the “most recent” operator. 
  for the actual distance  (u; w).     

 

  It is possible to satisfy all three constraints by setting Tuv = Tu,  
For all other edges, the source of the most recent information are  

that is, by propagating all edge datum updates. The resulting algo-  

the external views. We collect the most recent datum for each edge.  

rithm would behave exactly like the standard link-state algorithm.  

For all x and y where x 6= u, 
    

 

    However by updating only the edges in the external view Tuv nec- 
 

Tu(x; y) = rec Tuv(x; y):  (8) essary to satisfy the constraints above, we can can reduce routing 
 

 v    communication. The following algorithm does this.  
 

      
 

The following lemma follows by construction.   Satisfying Constraints S1 and S2 is straightforward:  an edge 
 

Lemma 1. The internal view and preliminary external view are 
must be updated if it causes S1 or S2 to fail. Constraint C1 is more 

 

complicated.
3
 Call an edge hot, denoted HOT(x; y), if it lies on a 

 

well-defined and satisfy the view invariant.   path to a destination that causes Constraint C1 to fail.  
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Algorithm 1 PHASE III.  
1. for all (x; y) 2 E do 
2. Tuv(x; y)   Tuv(x; y) 

3. if euv(x; y) < eu(x; y) then  

4. Tuv(x; y)   Tu(x; y)  
5. end if  

6. if (x; y) 2 u(u; y) ^ fu(y) = v then 
 

7.  

T  (x; y) Tu(x; y) 
 

 

 uv    
 

8. end if  
9. end for  

 
10. for all (x; y) 2 E do   
11. if HOT(x; y) then  
12. Tuv(x; y)   Tu(x; y)  
13. end if   
14. end for  
 
 
that a set of edges is quiet during a time interval if their 

weights do not change during the time interval. 
Together the following two lemmas bound the cost of the 

for-warding path from u to w by 1 + times the cost of the 
optimal path. Omitted proofs appear in the Appendix. 
 
Lemma 3. Fix a time t >  . If  

t
(u; w) is a non-empty path that 

is both quiet during time interval [t ; t] and coherent at time 

t, then 
t
(u; w) is a finite path from u to w and k 

t
(u; w)k

t
 

d
t
u(w). 

 
Lemma 4. Fix a time t >  . Let   be a path from u to w. If   is  
(i) quiet during [t ; t], and (ii) coherent at time t, then 
 

d
t
u(w)   (1 + )k k

t
; 

 
where  = maxx2  x(w). 
 

Both Lemmas above are still conditioned on coherence. Here we 

show that a quiet network eventually becomes coherent, which will 

imply that our routing algorithm converges in finite time. 
 
Lemma 5. If a network is becomes quiet at some time t, 

then after a finite period of time it also becomes coherent. 
 

We can now state our main theorem. 
 
Theorem 1. If a network is quiet at and after some time t, then 

after a finite period of time the forwarding configuration 

becomes sound, complete, and has bounded distortion , where  
= max eu(w): 

u;w 
 
Proof. By combining Lemmas 3, 4, and 5. 
 
4.4 Minimum Distance Proxy Function   

Recall that the minimum distance proxy function Du was used 

instead of the actual minimum distance function to define the 

Completeness constraint (C1) in Section 4.2.3 and was also used 

in Algorithm 1 to compute an external view. The correctness of the 

XL routing algorithm requires only that 0 Du(w) (u; w) for all u and 

w. However to give the algorithm leeway in suppressing updates, 

Du(w) should be as close to (u; w) as possible. Comput-ing the 

exact distance (u; w) is exactly what we’re trying to avoid by using 

approximation, so we choose Du(w) to be the distance computed 

by taking the weight of each edge to be the lowest cost of the edge 

ever observed. Because this value only changes when an edge 

cost drops below its all-time minimum cost, or an edge is 

 
added to the network, updates are infrequent and therefore 

intro-duce very little overhead to the algorithm. Furthermore, 

because all-time minimum link costs can only decrease, it can 

be computed using a distance vector-style algorithm without 

fear of loop forma-tion, as shown by Jaffe and Moss [17].  
A simpler alternative which does not guarantee globally bounded 

stretch is to set Du = du. In other words, instead of computing and 

maintaining the cost lower bound as described above, we simply 

use out best estimate of the current cost from the internal view. In 

some cases, this will cause the stretch to exceed 1 + , although in 

practice the excess is likely to be quite small.  
4.5  Cut Vertex Partitioning  

Recall that in a sound configuration a node must only forward to 

a destination if the destination is reachable. This is hardly the case 

in the Internet today where ASes advertises prefixes, not in-dividual 

destinations, even if part of the prefix is unreachable. For this 

reason, we introduced a weaker notion, that of a loop-free con-

figuration, in which every forwarding path (u; w) must only be finite 

(loop-free) and not necessarily a path to the destination w. It 

means, essentially, that a node does not need to “know” that a des-

tination is reachable before forwarding, only that forwarding to the 

next hop will not cause a loop. Practically, this means that sending 

a packet to an unreachable destination will generate an ICMP Un-

reachable message from a router further in the network rather than 

the local router.  
As we have shown above, the basic XL algorithm is sound. If 

we relax the requirement of soundness, however, and settle for 

a loop-free algorithm, we can realize significant savings in 

routing communication using an extension to XL routing 

algorithm we call Cut Vertex Partitioning (CVP).  
The idea behind CVP is based on the observation that a cut ver-

tex, which is a vertex whose removal disconnects the graph, par-

titions the network graph into two or more separate subnetworks 

that can only communicate with each other through the cut vertex. 

This means that to communicate with a destination “across” a cut 

vertex, a node can simply forward to the cut vertex and it does not 

need to know about the network beyond the cut vertex. Thus with 

respect to routing, each subnetwork can be considered separately.  
The CVP extension to the XL routing algorithm consists of the 

cut vertex forwarding policy described above, a mechanism for 

nodes to discover that they are cut vertices, and a cut vertex ad-

vertisement for nodes to learn which cut vertex to use to reach 

each destination. In our fixed, globally network model where only 

the edge weight function changes with time, all the necessary com-

putation can be carried out by each node separately. In practice, 

however, where the topology is unknown and can change, cut ver-

tex discovery and advertisement is slightly more involved; we do 

not describe it here.  
In general, real networks do not have cut vertices that 

partition the network into large subnetworks where CVP could 

be used as a “divide and conquer” technique. However, what 

many real net-works do have is a large number of leave. Since 

the neighbor of a leaf is necessarily a a cut vertex, CVP 

eliminates leaves from the routing computation, effectively 

reducing the size of the net-work. In fact, our implementation of 

CVP only considers such leaf cuts. Our experiments (Section 

6) show that this “reduction by a thousand cuts” significantly 

decreases the communication load or routing. 
 

V.  THE SIMULATION SYSTEM  
In this section we describe the simulation system we used to eval-

uate the performance of the XL routing algorithm. We designed 
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our simulation system specifically for the purpose of evaluating the 

performance of routing algorithms on a forwarding network. At its 

heart is a discrete event simulator that simulates a number of 

routing algorithms including the XL algorithm. The simulation in-

cludes of the forwarding tables and all routing algorithm commu-

nication, but not other network traffic. It is expressly not a packet-

level network simulator like ns-2 and does not model or network 

characteristics such as packet loss, latency, or bandwidth.  
The the core of the simulation system is the the generator pro-gram 

then generates an event script (a sequence of edge weight changes) for 

the simulation, and the simulator program that sim-ulates a routing 

algorithm on the network using the generated event script. The output 

of the simulator program is a sequence of for-warding table updates. 

This sequence of processed by the analysis tools to compute 

convergence times, stretch, and related statistics. 
 
5.1 Event Generator   

The generator program produces a sequence of link cost changes 

according to a stochastic model of link failures. In the generated 

event sequence, a link is either up, in which case its cost is the 

nominal cost given defined by the weights file, or down, in which 

case its cost is 1. The two directions are coordinated, that is, links (u; 

v) and (v; u) are either both up or both down. 
 

 p0 
US UF 

λ0 (µ0, σ0
2
) 

λ1 (µ1, σ1
2
)  

p1 
DS   DF 

 
Figure 3: The link failure model used by the generator program. The 
up/stable, down/stable, up/flapping, and down/flapping states are denoted 
US, DS, UF, and DF, respectively. 
 

Link failure and recovery is controlled by a stochastic process 
(Fig. 3). Each link is treated independently. In addition to being up 
or down, a link is also either stable or flapping. The four link-states 
are thus up/stable, down/stable, up/flapping, and down/flapping. In 
the stable state, the link time-to-failure is distributed exponentially 

with mean 0. Once down, a link may remain in the down/stable 

state, in which case the time-to-recovery is distributed exponen-

tially with mean 1, or, with probability p1 a link may become 

unstable and transition to the flapping/down state. Thus, parameter 

p1 controls the propensity of links to flap. In the flapping state, the 

time-to-recovery has a normal distribution truncated to [0; 1) with 

parameters 1 and 1
2
, and time-to-failure has a similarly truncated 

normal distribution with parameters 0 and 0
2
. After recovering from 

failure in the flapping state a link leaves the flapping state with 

probability p0. Parameter p0 thus controls how long a link remains 

flapping.  
Our link event model is a generalization the two-state model of 

Park and Corson [26]; we added the flapping failure mode, which 

we expected the XL algorithm handle particularly well. When p1 = 

0, link failures are independent with exponentially-distributed fail-

ure and recovery times. On the other hand, when p1 = 1, all links 

have an exponentially distributed time-to-first-failure followed by 

repeated up-down cycles controlled by the p0 parameter. 
 
5.2 Protocol Simulator   

The simulator program is a discrete event simulator that sim-ulates a 

single routing algorithm under a given topology and link event 

sequence. In other words, it simulates n instances of the rout-ing 

algorithm running in parallel, one on each node. The simulator 

 

Name n m D1 D2 D3 Description 
 

       

CROWN X  3X 4X 0 1/3 2/3 Two cycles of size X and 2X with 
 

      nodes in the smaller connected to 
 

    

0 1 
alternate nodes in the larger. 

 

HONEY — — 0 A hexagonal grid. 
 

QUAD — — 0 0 0 A rectangular grid. 
 

ABILENE 11 14 0 45% 55% Abilene with routing metrics [1]. 
 

ARPANET 59 72 7% 48% 41% ARPANET (March 1977) [11]. 
 

FUEL1221 104 151 49% 19% 6% AS 1221 from RocketFuel [19]. 
 

FUEL1239 315 972 10% 19% 16% AS 1239 from RocketFuel [19]. 
 

F. 1221C 50 97 0 50% 6% The 2-core of FUEL1221. 
 

F. 1239C 284 941 0 22% 18% The 2-core of FUEL1239. 
 

        

ORB145 145 227 29% 28% 17% FUEL1239 rescaled (-n 200). 
 

ORB257 257 433 31% 20% 21% FUEL1239 rescaled (-n 300). 
 

ORB342 342 606 33% 24% 14% FUEL1239 rescaled (-n 400). 
 

ORB406 406 791 27% 28% 14% FUEL1239 rescaled (-n 500). 
 

ORB497 497 961 29% 26% 17% FUEL1239 rescaled (-n 600). 
 

ORB575 575 1081 31% 25% 16% FUEL1239 rescaled (-n 700). 
 

ORB664 664 1300 26% 27% 17% FUEL1239 rescaled (-n 800). 
 

ORB729 729 1427 32% 24% 16% FUEL1239 rescaled (-n 900). 
 

ORB813 813 1584 29% 25% 16% FUEL1239 rescaled (-n 1000). 
 

ORB892 892 1694 34% 26% 15% FUEL1239 rescaled (-n 1100). 
 

        

 
Table 2: Network topologies used in the experiments. Column legend: n – number 

of nodes; m – number of links; D1, D2, and D3 fraction of nodes of degree 1, 2, 
and 3, respectively. All but the FUEL networks have unit link costs. 

 
repeatedly executes the update algorithm of each node, providing 

as input the (simulation) time at the start and end of the current 

iteration of the algorithm, the costs of incident links, and its mes-

sage queue, consisting of messages sent by its neighbors since 

the last invocation of the update algorithm on this node. The update 

algorithm performs any processing dictated by the algorithm, and if 

necessary, updates its forwarding table and then posts messages 

to its neighbors. The (simulated) duration of the iteration is chosen 

randomly according to a normal distribution truncated to [0; 1) with 

parameters and 
2
 ; we chose the normal distribution be-cause it 

was familiar and because the model did not seem unrea-sonable to 

us.  
The simulator program contains implementations of the 

fol-lowing routing algorithms. 
 

ls The standard link-state algorithm [22] which is the 

ba-sis for OSPF and IS-IS.  
dv A distance vector algorithm very similar to RIP [20] 

with split horizon. The maximum distance bound 

is a global parameter of the algorithm.  
dv+p A modern distance vector algorithm which uses a 

par-ent pointer to detect loops [4, 12, 28].  
lv The Link Vector algorithm proposed by Behrens and 

Garcia-Luna-Aceves [3].  
xl The XL algorithm described in this paper, parametrized 

by error . When = 0, all forwarding paths are opti-

mal just as with the above algorithms. 
 
All of the above algorithms send updates only when a 

topology change occurs (sometimes called “triggered 

update”), and there are no periodic updates. 
The output of the simulation is a sequence of forwarding table 

updates written to the update file for later processing. At the end of 

the simulation, the simulator program reports the total number of 

messages and bytes sent by the routing processes as well as the 

maximum messages and bytes sent by a single node. 
 

VI.  EVALUATION  
In this section we experimentally evaluate the performance of 
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Figure 4: Small examples of synthetic networks. 

 
the XL routing algorithm relative to existing routing 

algorithms. Our objective is to evaluate the claims that the 

XL routing algo-rithm:  
v Sends fewer routing updates,   
v Does not significantly sacrifice correctness, 

convergence time, or stretch, and   
v Continues to perform well as the network grows.   

Our evaluation is based on simulations of the four protocols im-

plemented by the simulator program (ls, dv, dv+p, and xl) on a 

number of networks and under two different link event models. The 

main result of simulation is that the XL routing protocol does indeed 

reduce the number of updates: compared to the link-state al-

gorithm, XL generates between 2 and 20 times fewer updates (Ta-

ble 4). This experiment is discussed in Section 6.2; first, however, 

we describe our experimental setup. 
 
6.1 Experimental Setup   

Each experiment consists of a number of simulation runs. Each 

run simulates a single routing algorithm for 86,400 seconds (one 

day) at a rate of 10 iterations of the update algorithm per second.  
Networks. We used the following networks in our simulations: three 

synthetic networks, the Abilene backbone [1], the ARPANET 

topology from March 1977 [11], two Rocketfuel networks with 

inferred link costs [19], and a series of networks created by re-

scaling the Sprint network (AS 1239) from the Rocketfuel data-set 

using Orbis [18]. The Orbis command-line arguments to the 

dkRescale program were “-k 1 -n nnom”, where the nominal size 

nnom ranged from 200 to 1100. Table 2 describes the net-works 

used in the experiments and Figure 4 shows small instances of 

synthetic networks. The synthetic networks allowed us to test the 

routing algorithms on topologies based design decisions differ-ent 

from the AS router-level topologies. In particular, the large-diameter 

HONEY and GRID networks shed some light on how the algorithms 

might perform in wireless ad-hoc networks.  
We also created the 2-cores of the two Rocketfuel networks. The 

2-core of a graph is the graph resulting from repeatedly removing 

all degree-1 nodes [29]. With no degree-1 nodes, CVP (which was 

implemented only for leaf nodes) would have no effect, allowing us 

to also evaluate the value of this optimization. 
Link Events. All link events for the simulation were generated using 

the generator program (Section 5.1). Recall that in the generator 

link event model, a link is either up (nominal weight) or down 

(infinite weight); the time between failures and failure du-ration are 

controlled by the four-state stochastic model shown in Figure 3. In 

our simulation, we used two different sets of model parameters: a 

Standard set in which a link fails about once a day, and comes 

back up in about an hour, and the Flapping set in which links are 

less likely to fail, but more likely to fail repeatedly (flap); Table 3 

gives the precise model parameters.  
Both the Standard model and Flapping model are more aggres-

sive that what might be expected of a real network [13, 30]. We 

wanted to stress the routing algorithms under the kinds of condi- 

tions where routing algorithm efficiency matters greatly, namely 

where many links are unstable (Standard model) or only some 

are unstable but tend to oscillate (Flapping model).  
Algorithm Parameters. The distance vector algorithm (dv) re-quires 

a maximum distance bound (the so-called “infinity metric”) to detect 

routing loops. For the simulations, this value was com-puted by 

using a linear program to approximate the cost of the longest path. 

The XL routing algorithm (xl) has an error parame-ter that 

determines the stretch. In the experiments, we simulated xl with = 

0:0 and = 0:5, corresponding to no stretch and a maximum stretch 

of 1.5. Increasing beyond 0:5 did not appear to significantly reduce 

the number of updates generated by the algo-rithm beyond the = 

0:5 level. 
 
6.2  Performance  

In this section we evaluate our first two claims: that compared to 

existing routing algorithms, the XL algorithm uses fewer updates to 

achieve comparable performance. We simulated each routing algo-

rithm on the synthetic and measured topologies. Each combination 

of algorithm, network and link event model (Standard or Flapping) 

was simulated 10 times and averaged in reporting results. For each 

combination, the 10 simulations differed only in the link events.  
Total Communication. Table 4 shows the average number of mes-

sages sent during the simulation relative to ls, the link state algo-

rithm, which provides a convenient baseline for comparison.  
Referring to the table, the most erratic performer was dv, which 

was highly sensitive to topology: it did extremely well on networks 

such as QUAD 16 16 with many equal-cost paths and poorly on 

networks with long cycles that trigger its “counting-to-infinity” 

behavior. As expected, both dv+p and lv performed similarly: they 

routinely did better than ls but could not take advantage of the 

multiple equal-cost paths in QUAD networks as well as dv did.  
The XL algorithm performed consistently well on all 

networks. Like dv, it was able to take advantage of path 
redundancy in the QUAD synthetic network. It also did well 
on “leafy” networks like FUEL1221, where CVP played a 
major role in reducing communi-cation.  

We note that XL algorithm performed particularly well in the 

flapping model. Why is this? The reason is that the XL algorithm 

 

 p0 p1 0 
1
 1 

1
 0 0 1 1 

Standard 0.25 0.10 1 d 1 h 1 m 10 s 1 m 10 s 
Flapping 0.25 1.00 2 d 10 s 10 s 1 s 10 s 1 s 

         

 
Table 3: Parameters used to generate link events according to the generator 
link event model described in Section 5.1. Mean time-to-failure is controlled 

by the 0 
1
 parameter and the probability of a repeat failure by the p1 

parameter. Units: d – days, h – hours, m – minutes, s – seconds. 
 
   Standard model    Flapping model  
             

 dv dv+p lv  xl dv dv+p lv  xl 
           

CROWN 64 3.13 1.11 1.10 0.64 0.41 0.85 0.82 0.82 0.45 0.11 
H. 16   16 0.95 0.69 0.65 0.31 0.18 0.28 0.65 0.60 0.20 0.06 
Q. 16   16 0.12 0.40 0.39 0.14 0.10 0.06 0.38 0.37 0.07 0.04 
ABILENE 0.82 0.71 0.71 0.50 0.43 0.88 0.79 0.79 0.47 0.33 
ARPANET 2.33 1.02 1.02 0.47 0.40 1.80 1.00 0.99 0.36 0.24 
FUEL1221 7.90 0.63 0.62 0.14 0.10 7.05 0.61 0.60 0.12 0.05 
FUEL1239 5.01 0.25 0.26 0.17 0.09 1.21 0.25 0.25 0.14 0.04 
F. 1221C 0.79 0.45 0.46 0.34 0.22 0.39 0.42 0.42 0.27 0.11 
F. 1239C 0.99 0.25 0.25 0.19 0.09 0.21 0.24 0.24 0.14 0.04 

             

 
Table 4: Average number of messages after initialization, relative to ls 
(average of 10 simulation runs). The xl columns shows values for algorithm 
parameters = 0:0 (first value) and = 0:5 (second value). 
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   Standard model    Flapping model  
             

 dv dv+p lv  xl dv dv+p lv  xl 
           

CROWN 64 3.41 1.07 1.06 0.68 0.46 1.09 0.79 0.78 0.49 0.17 
H. 16   16 1.09 0.73 0.68 0.35 0.23 0.42 0.71 0.64 0.24 0.09 
Q. 16   16 0.16 0.45 0.43 0.18 0.14 0.12 0.44 0.42 0.10 0.07 
ABILENE 0.97 0.77 0.77 0.64 0.55 0.98 0.83 0.83 0.55 0.46 
ARPANET 2.28 0.91 0.89 0.51 0.45 1.86 0.89 0.87 0.39 0.28 
FUEL1221 7.32 0.46 0.46 0.12 0.09 6.56 0.44 0.43 0.10 0.05 
FUEL1239 4.85 0.23 0.23 0.20 0.11 1.16 0.21 0.21 0.16 0.05 
F. 1221C 0.74 0.38 0.38 0.37 0.26 0.34 0.35 0.36 0.30 0.16 
F. 1239C 0.95 0.22 0.22 0.22 0.11 0.20 0.22 0.21 0.17 0.05 

             

 
Table 5: Average (over 10 simulations) of the maximum number of 
messages gen-erated by any one node, relative to ls. The xl columns shows 
values for algorithm parameters = 0:0 (first value) and = 0:5 (second value). 
 
 
tends to move away from flapping links: The the first time a link fails, an 

update is sent to all nodes in whose shortest-path tree it appears, that 

is, nodes that used the link to reach some destination. When the same 

link comes back up, many of the nodes which used it keep their current 

path because it is only slightly worse than the previous path which used 

the link. As a result, fewer nodes now have the link in the shortest-path 

tree, so that when it fails again, they are not affected. Thus, after the 

first failure, the effects of the link are generally limited to a small 

neighborhood around the link where the link is a significant fraction of 

path costs.  
Per-Node Communication. Table 5 shows the maximum 

number of messages generated by any single node during the 

simulation, relative to ls. In contrast to the total communication, 

this number shows the maximum load placed on an individual 

node rather than the network as a whole. Although it is does 

not show short-term load on a node, it does show whether a 

routing algorithm spreads the communication costs evenly 

across the network or whether it creates bottleneck routers.  
These results do not differ markedly from the total 

communica-tion results shown in Table 4, indicating that none 

of the algorithms loaded any one node significantly more 

heavily than the link-state algorithm, in which the number of 

messages sent by a node is pro-portional to its degree.  
Stretch. In addition to counting the number of messages, we per-

formed additional analysis as described in in Section 5. The first 

quantity we consider is stretch; recall that stretch is the ratio of the 

forwarding cost to optimal cost between a pair of nodes. Because 

stretch is an instantaneous measure for each pair, it is not an easy 

value to summarize for an entire simulation. We use the top stretch 

centile for each pair. By the top centile, we mean the lowest up-per 

bound for 99% of the simulation duration. In other words, a pair’s 

stretch is at most the top centile value 99% of the time. In Table 6 

we report the median, average and maximum top centile stretch 

over all pairs for xl with parameter = 0:5, corresponding to 

maximum allowed stretch of 1:5. For all other algorithms, in-cluding 

xl with = 0:0, the maximum top centile stretch was zero as 

expected, and is not shown.  
Clearly, while the stretch approaches the maximum 1:5 for 

some source-destination pairs, the average stretch is quite 

good, in all cases at most 5% optimal. In fact, since the median 

is 1:00, for the majority of nodes the forwarding path is optimal. 

By just allowing the XL algorithm to choose sub-optimal paths 

we were able to get the reduction in communication complexity 

while paying only a fraction of the allowed 50% penalty.  
Convergence. Finally, we consider the convergence time of the XL 

routing algorithm. By “convergence time” we mean the time it takes 

a routing algorithm to establish a desirable (e.g., sound, com-plete) 

forwarding configuration. In essence, it combines the time 

 

 Standard model  Flapping model 
        

 Med Avg Max  Med Avg Max 
       

CROWN 64 1.00 1.02 1.43 1.00 1.01 1.39 
H. 16  16 1.00 1.05 1.45 1.00 1.02 1.44 
Q. 16  16 1.00 1.02 1.43 1.00 1.01 1.40 
ABILENE 1.00 1.01 1.22 1.00 1.01 1.18 
ARPANET 1.00 1.02 1.45 1.00 1.01 1.41 
FUEL1221 1.00 1.01 1.34 1.00 1.01 1.33 
FUEL1239 1.00 1.04 1.41 1.00 1.02 1.41 
FUEL1221C 1.00 1.02 1.35 1.00 1.01 1.33 
FUEL1239C 1.00 1.04 1.42 1.00 1.02 1.41 

        

 
Table 6: Top centile stretch for xl with parameter = 0:5. The median, average, and 

maximum of the top centile were taken over all source-destination pairs; a pair’s 

instantaneous stretch is at most its top centile value 99% of the time. 
 
   Standard model    Flapping model  
             

 dv dv+p lv  xl dv dv+p lv  xl 
           

CROWN 64 4.08 0.00 0.00 1.04 0.88 9.28 0.00 0.00 1.17 0.66 
H. 16   16 17.19 0.00 0.00 0.99 0.88 1.49 0.00 0.00 0.90 0.80 
Q. 16   16 5.96 0.00 0.00 1.00 0.98 1.24 0.00 0.00 1.16 1.03 
ABILENE 2.27 0.00 0.00 0.79 0.87 1.83 0.00 0.00 0.93 0.98 
ARPANET 3.12 0.00 0.00 0.91 0.82 2.86 0.00 0.00 0.94 0.82 
FUEL1221 74.23 0.00 0.00 0.79 0.79 46.01 0.00 0.00 0.79 0.81 
FUEL1239 85.64 0.00 0.00 0.92 0.87 24.87 0.00 0.00 0.95 0.85 
F. 1221C 10.80 0.00 0.00 0.87 0.85 2.60 0.00 0.00 0.96 0.95 
F. 1239C 25.12 0.00 0.00 0.95 0.86 2.24 0.00 0.00 0.99 0.85 
             

 
Table 7: Forwarding loop duration maximum over all source-destination 
pairs, relative to ls. The forwarding loop duration for a pair of nodes u and w 
is the duration of time (u; w) was infinite. 
 
   Standard model    Flapping model  
             

 dv dv+p lv  xl dv dv+p lv  xl 
           

CROWN 64 2.58 2.74 2.73 1.54 1.74 5.29 5.44 5.37 1.45 1.41 
H. 16   16 1.19 3.08 2.46 1.10 1.09 1.30 4.85 3.12 1.02 0.93 
Q. 16   16 1.10 2.54 2.00 1.03 1.03 1.02 2.92 2.12 0.99 0.99 
ABILENE 1.25 1.41 1.41 1.05 1.14 1.36 1.55 1.56 1.01 1.02 
ARPANET 1.29 1.41 1.34 0.95 0.94 1.20 1.48 1.46 0.96 0.89 
FUEL1221 1.04 1.15 1.09 0.60 0.63 1.06 1.16 1.14 0.52 0.52 
FUEL1239 1.15 1.44 1.36 0.75 0.76 1.04 1.24 1.22 0.74 0.70 
F. 1221C 1.16 1.38 1.36 1.03 1.09 1.33 1.62 1.41 1.00 0.98 
F. 1239C 1.54 1.76 1.57 1.05 1.03 1.50 1.70 1.63 1.01 0.93 

             

 
Table 8: Maximum duration of infinite forwarding-to-optimal distance ratio 

relative to ls. The maximum is taken over all source-destination pairs. The 

infinite forwarding to optimal distance ratio duration for a pair of nodes u and 

w is the duration of time when k (u; w)k was infinite but (u; w) was not. 

 
it takes a routing algorithm to re-establish a sound (or loop-free) 

configuration after a link failure and the time it takes the algorithm 

to start using a lower-cost path when it becomes available.  
The analyzer program does not measure convergence time di-

rectly; instead, it measures the duration of forwarding loops and the 

time to establish a new forwarding path when a node becomes 

reachable. The former is reported in Table 7 as the maximum, over 

all source-destination pairs, of the combined duration of forward-ing 

loops. The time to establish a new forwarding path is reported in 

Table 8 as the maximum, over all source-destination pairs, of the 

total time the forwarding distance was infinite while the optimal 

distance was not. In both tables, results are shown relative to ls.  
It comes as no surprise that the generic distance vector algorithm 

has a problem with long-lasting loops. In contrast, loops in dv+p and lv 

are extremely rare and short-lived because, although it is not 

guaranteed loop-free at all times, its policy for accepting a next hop are 

fairly conservative. The same “reluctance” to accept a new path 
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1.4    Flapping model 
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Figure 5: Number of messages as a function of network size for the ORB family of 

networks; values normalized by number of edges in the graph. Both dv+p and lv 

performed similarly (within 5%); only dv+p is shown. The distance vector algorithm was 

omitted because its communication exceeded the other algorithms by a factor of 5 in the 

Standard model and nearly an order of magnitude on the Flapping model. 
 
 
is also responsible for the longer time to establish a new forwarding 

path, although lv seemed to have slightly faster convergence. 
With the exception of the CROWN network, xl had slightly better 

convergence times than ls. This is because xl changes its next hop 

to a destination only if it is much better than the current next hop, 

thus updating the forwarding table less often and avoiding short-

term loops or unreachable configurations. On the other hand, the 

time to accept a new forwarding path is generally longer than ls 

because xl has less information about the network, so that when a 

link fails, it may be necessary for the link failure update to prop-

agate before a bypass route is advertised. CVP partially remedies 

this the situation because when a cut edge comes up, only the cor-

responding cut vertices need to be updated to restore the path. 
 
6.3 Scalability   

To evaluate the scalability of the XL routing algorithm relative 

to existing algorithms, we simulated each algorithm on families 

of networks of increasing size: the HONEY synthetic network 

family and the ORB re-scaled network family described earlier. 

Each com-bination of algorithm, network, and link event model 

(Standard and Flapping) was simulated 5 times and averaged 

in reporting results. Figure 5 shows algorithm communication 

as a function of network size for the ORB family of networks. 

Except for dv, results on syn-thetic networks was similar; dv 

performance was highly variable from one family to another.  
As the network size increases, xl maintains its good relative per-

formance. As with other algorithms, however, the routing com-

munication load still grows linearly with the size of the network. 

This is because a link failure still triggers partial flooding to nodes 

whose shortest-path tree included the failed link, and roughly half 

of all simulation events are link failures. In a connected network, a 

node’s shortest-path tree contains n 1 nodes, so the probability of a 

node being affected by a link failure is (n 1)=m, and thus the 

expected number of nodes affected by a random link failure is 

about n
2
=m. This means that in a network such as the Internet 

where m=n is small, a random link failure will be propagated to a 

constant fraction of the nodes. 
 

VII.  OSPF WITH XL  
This section is motivated by the observation that the XL rout-ing 

algorithm and the standard link-state algorithm are inherently 

compatible. This is because flooding satisfies Conditions S1, S2, 

and C1, so it is possible to mix instances of XL and the standard 

link-state algorithm. In this section, we sketch how the routing 

algorithm used with the OSPF Version 2 protocol [24] can be mod-

ified to take advantage XL’s update suppression mechanism, while 

still remaining compatible with the original OSPF. In other words, 

routers running the modified algorithm, which we call OSPF/XL, 

can inter-operate in a mixed-deployment scenario with those run-

ning the standard OSPF algorithm. We emphasize, however, that 

we have not implemented these modifications and that all our eval-

uations are based on simulation at this point. We leave implement-

ing OSPF/XL to future work, although we do not believe it should 

be too challenging.  
Recall that in the XL algorithm the state of the network 

consists of the internal and external views. The internal view 

already ex-ists in OSPF as the link-state table. External views, 

however, have no OSPF analog. To save memory, we suggest 

that external views should not be materialized, rather, they can 

be represented as differ-ences from the internal view. Since a 

node’s internal and external views will typically contain a lot of 

the same information, we de no expect the additional memory 

required for external views to be significant.  
The second modification to OSPF is in the way updates are pro-

cessed. Upon receiving an update, a node records it in the external 

view of its incoming interface. If the update has newer informa-tion 

than in the internal view, the internal view is updated as well. Next, 

the main shortest-path tree is re-computed from the internal view. 

Algorithm 1 is then used to update other external views and 

determine to which interfaces the update should be propagated. 

Pe-riodically, not necessarily after each update, the main shortest-

path tree is used to update the forwarding table.  
Finally, the proxy minimum distance Du(w) used in Algorithm 1 

will need to be approximated. The easiest way to do this is for each 

node to simply keep a record of the smallest distance to each desti-

nation observed during some period of time, say 1 day, and use 

this value instead. We believe that such an approximation is 

adequate in all but the worst pathological cases.  
Overall, OSPF/XL requires only modest changes to the stan-

dard OSPF in order to take advantage of our update suppression 

mechanism. Moreover, the benefits of XL can be realized even in a 

mixed environment where only some of the routers implement 

OSPF/XL—incentivizing incremental deployment. 
 

VIII.  CONCLUSION  
We have presented the XL routing algorithm, a new link-state 

routing algorithm specifically designed to minimize network com-

munication. XL works by propagating only some of the link-state 

updates it receives, thereby reducing the frequency of routing up-

dates in the network. We also formally proved the correctness of 



© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002 

IJIRT 100580 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 400 
 

XL and validated our performance claims in simulation. In 

partic-ular, our simulation showed that with a small penalty 
in stretch, our algorithm dramatically reduced the number of 

updates needing to be communicated and processed.  
However, in allowing the routing algorithm to choose slightly 

sub-optimal routes, the network operator also cedes some degree 

of control. In particular, traffic engineering via link costs is harder 

since current traffic forwarding will be determined, in part, by past 

link costs. Fortunately, it is easy to augment our algorithm to “flush” 

all suppressed updates periodically, causing it to propagate and 

use exact routing information. In fact, the approximation pa-rameter 

can be adjusted dynamically in response to load. By set-ting = 0 

locally under normal conditions and and = 0:5 under load or in the 

presence of flapping, the network can achieve the best of both 

worlds: deterministic routing in normal circumstances, ap-proximate 

routing under heavy load.  
Finally, we also believe that there may be significant opportu-

nities to improve the efficiency of link state routing even further. In 

particular, recall that the XL routing algorithm propagates all link 

cost increase updates, meaning that, on average, it will prop-agate 

half of all updates that affect it. It is natural to ask whether this is 

strictly necessary, or whether a superior algorithm—one that 

selectively suppresses link failures—can scale sub-linearly for typ-

ical networks. Whether such an algorithm exists and can guarantee 

soundness and correctness remains an open problem that we 

hope to address in future work. 
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