
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100580 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 390

XL: An Efficient Network Routing Algorithm

Jyoti Gahlot, Kirti Sharma

Information Technology

Dronacharya College Of Engineering,Gurgaon,India

Abstract- In this paper, we present a new link-state routing

algorithm called Approximate Link state (XL) aimed at

increasing routing efficiency by suppressing updates from

parts of the network. We prove that three simple criteria for

update propagation are sufficient to guaran-tee soundness,

completeness and bounded optimality for any such algorithm.

We show, via simulation, that XL significantly outper-forms

standard link-state and distance vector algorithms—in some

cases reducing overhead by more than an order of

magnitude— while having negligible impact on path length.

Finally, we argue that existing link-state protocols, such as

OSPF, can incorporate XL routing in a backwards

compatible and incrementally deploy-able fashion.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-

cols

Index Terms- Algorithms, Design, Theory, Performance,

Experimentation

I. INTRODUCTION

“How do I best get from here to there?” This simple question is

the essence of the routing problem, but it belies the consider-able

complexity embedded in modern intra-domain routing pro-tocols. At

the heart of this complexity is the issue of topology change.

Routing in a static network is trivial, a simple table of directions

calculated once for each destination. However, most real networks

are dynamic—network links go up and down—and thus some

nodes may need to be notified to recalculate their routes in

response. This problem in turn can be boiled down to the ques-tion,

“Who needs to know?” The traditional approach, enshrined in the

family of link-state protocols, is to tell everyone; flood the topology

change throughout the network and have each node then

recompute its table of best routes. However as a network grows,

this requirement to universally communicate and act on each topol-

ogy change can become problematic. This is because a larger net-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

work also generates routing updates more often, necessitating more

frequent route updates and route re-computation. Worse yet, these

costs are incurred by every router in the network, meaning that the most

resource-constrained router effectively determines the maxi-mum

network size that can be served by a routing algorithm. Thus, link-state

protocols are frequently said to “not scale well.”
However, it is manifestly unnecessary to communicate every link

change to every router. Intuitively, only a small subset of router

nodes are critically impacted by most link-state changes (particu-

larly those whose shortest path trees include the changed link) and

most other routing-related communication and computation is re-

dundant. The traditional solution to this problem is to divide the

network into separate routing domains and use this hierarchy to

isolate topology updates. In the inter-domain context, the network

is naturally divided into Autonomous Systems to reflect adminis-

trative and policy boundaries. However, the hierarchy imposed in

the intra-domain context, for example with OSPF areas, is com-

pletely artificial: these areas do not delineate policy regions but

rather serve as a routing algorithm optimization. As Cisco’s OSPF

Design Guide [6] states, “Areas are introduced to put a boundary

on the explosion of link-state updates.”
Unfortunately the process of properly configuring and maintain-

ing areas is a complex art form; one with ad-hoc rules of thumb

(“no more than 50 routers per area”) and complex design trade-

offs.
1
 Indeed, the structure imposed by areas inherently limits the

kinds of topologies that can be mapped onto routes and, if not

care-fully managed, can produce arbitrarily sub-optimal routes and

un-necessary points of failure [31]. Our work is focused on minimiz-

ing or removing the need for such artificial hierarchy by improving

the efficiency of the underlying routing protocols.
Another approach to this problem is exemplified in the fish-

eye routing optimization used by the 802.11s Mesh Networking

stan-dard. This technique simply limits the range over which

topology updates are communicated, thus limiting updates to

their immedi-ate region [16, 14]. While this optimization

imposes no operational burden, it is fundamentally unsound.

Such protocols can neither guarantee that their routes will lead

to their destinations (since they may contain loops) nor that all

reachable destinations will have a valid route. While our work is

motivated by the same desire to winnow update traffic, we seek

to do so within the traditional con-straints of correctness.
This state of affairs is fundamentally unsatisfying, and with link-

state protocols being introduced into a wide range of new domains

1
In Moy’s classic OSPF: Anatomy of an Internet Routing

Proto-col, he addresses the issue of how to place area
boundaries as fol-lows: “This is a complicated question, one
without a single an-swer.” and further clarifies that it

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100580 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 391

including overlay networks [2], ad-hoc and mesh networks [7], and

to support traffic engineering for both MPLS [15] and Packet Based

Backbone [9] technologies, we feel the issue is ripe for revisiting.

To this end, our paper seeks to answer the following simple ques-

tion: “Can one significantly increase routing protocol efficiency by

selectively propagating topology updates, while still providing tra-

ditional guarantees of soundness, completeness and optimality?”
In addressing this question, this paper offers three

contributions. First, we introduce the Approximate Link state

(XL) routing algo-rithm, which can reduce routing overhead by

an order of magnitude over existing protocols while still

maintaining our correctness prop-erties. Second, we show that

three simple criteria for propagating updates are sufficient to

ensure these properties for any link-state routing protocol:

S1 When the update is a cost increase (bad news),
S2 When the link is used in the node’s shortest-path

tree (propagated only to the next hop along the

path to the link), and
C1 When it improves the cost to any destination by

more than a 1 + cost factor, where is a design

parameter of the algorithm.

We show that all other updates may be safely suppressed. We show

that these conditions are sufficient to guarantee that all forwarding

paths are loop-free and within a 1 + cost factor of optimal.
Finally, since our approach is primarily a restriction of the

tradi-tional link-state approach, it is possible to mix it within an

existing link-state framework; allowing incremental deployment.

We sketch how such interoperability could be achieved

between native OSPF and a modified OSPF/XL protocol.
The remainder of the this paper is structured as follows: we

briefly outline the relevant background and related work in Sec-tion

2, followed by a description of the network model and notation used

throughout the paper in Section 3 and the XL routing algo-rithm

itself in Section 4. Section 5 describes the simulation sys-tem we

developed for evaluating the performance of routing algo-rithms.

Then, in Section 6 we present our experimental evaluation the XL

routing algorithm compared with link-state and distance-vector

based approaches. In Section 7 we explain how OSPF may be

modified to include the update suppression mechanism used in XL

and Section 8 summarizes our results and concludes the paper.

II. BACKGROUND AND RELATED

WORK
Beginning with the development of the ARPANET routing al-

gorithms in the late seventies and early eighties [21, 22],

network routing became a major area of research. The long-

term loops suf-fered by the ARPANET distance-vector algorithm

led to the de-velopment of link-state routing algorithms. In turn,

a number of competitive distance vector algorithms were later

developed that avoided long-term loops [4, 12, 17, 23, 28],

including Garcia-Luna-Aceves’ DUAL [10], which became the

basis for Cisco’s EIGRP [5]. To scale to larger networks, the

link-state protocols OSPF and IS-IS introduced area routing. In

this regime the network is manually divided into areas and while

routing within an area takes place as before. Forwarding to

destinations outside the local area is handled by special border

routers—largely isolating most areas from the knowledge of any

external topology change. As the OSPF specifi-cation states:

[The] isolation of knowledge enables the protocol

to effect a marked reduction in routing traffic as

com-pared to treating the entire Autonomous

System as a single OSPF domain. [24]

We are not the first to identify that areas can introduce problems

in link-state networks. These problems have long been understood

experimentally and are well summarized by AT&T’s Mikkel Tho-rup

in his “OSPF Areas Considered Harmful” [31]. Nor are we the first

to look at reducing flooding overhead in link-state protocols. A

number of such proposals have been made—typically for partic-

ular narrow regimes—including optimizations for flooding across

interfaces [32], for reducing refresh overhead [27] and to damp the

effects of route flapping [25]. We believe that our work is consid-

erably more general than these efforts and with greater impact on

efficiency.
Another approach to improving the scalability of link-state al-

gorithms is the Link Vector (LV) algorithm introduced by Behrens

and Garcia-Luna-Aceves [3]. The LV algorithm only propagates link

updates about links in the node’s shortest-path tree, an idea

borrowed from distance vector algorithms, which we use in our

work as well. However unlike our algorithm, the LV algorithm ex-

plicitly notifies neighbors when a link is added or removed from the

shortest-path tree, whereas in our algorithm, the shortest-path tree

is never explicitly communicated to neighbors; links not in the

shortest-path tree are removed lazily only if their cost actually

changes. This allows us to support approximation which, in turn,

permits significant reductions in overhead for small increases in

stretch, as our simulations show.
Finally, our notion of a view as a representation of network state

is similar to that of Fayet et al. [8]. In their work, they give several

sufficient conditions for routing in a network where nodes may have

different views. However they do not give a routing algorithm or

propose a mechanism for achieving these conditions.

III. DEFINITIONS AND NOTATION
In this section we formally describe our network representation

and define what we mean by “forwarding.” We then define the

routing problem in terms of network configurations (e.g., “loop-

free”). The reader may choose to skip directly to the ext section,

where we describe the XL routing algorithm itself, turning back to

this section for reference.
XL is a routing algorithm for a destination-based forwarding net-

work such as the Internet. Formally, a routing algorithm is a mech-

anism by which network nodes can coordinate packet forwarding to

ensure any two nodes in the network can communicate. In a

destination-based forwarding network, forwarding is based on the

packet destination address only. A node makes its forwarding de-

cision using a forwarding table which either gives the next hop to

each destination or indicates that the destination is not reachable

by forwarding. The objective of a routing algorithm is to maintain a

network configuration in which nodes are globally reachable by

forwarding.

3.1 Network Model

We model the network as a graph G = (V; E; e) with vertex set V

, edge set E, and edge weight function e. The vertices represent

network nodes, edges represent links, and edge weight represent

link costs. Throughout the paper, we will use the pairs of terms

node and vertex, link and edge, interchangeably.
To simplify exposition, the set of nodes and edges is fixed

and globally known; only the edge weight function varies with

time. It is straightforward to extend an algorithm in this model to

allow vertices and edges to be inserted or deleted. The range

of the weight function is the set of non-negative real numbers

together with the special value 1 having the usual semantics.
Let n = jV j, m = jEj and let N(u) denote the set of neighbors

of u 2 V . The set of edges E is undirected, however the weight

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100580 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 392

function e is directed, which meaning that costs may be

different along each direction of the link.
A path is a sequence of nodes of which any consecutive

pair is adjacent in the graph. The weight of a path in G,
denoted k k is sum of the weights (given by the weight
function e) of its edges. Let (u; w) be the minimum weight of
a path from u to w, or 1 if no such path exists. If (u; w) is
finite, we say that w is reachable (in the network) from u.

We use a superscript to denote the time at which the value of a

function or variable is considered. For example,
t
(u; w) denotes the

weight of a minimum-weight path in G at time t. The domain of t is

the set of non-negative real numbers. We say that a set of edges is

quiet during a time interval if its weights do not change during the

time interval. A set of edges becomes quiet at some time t if its

edge weights do not change after time t.

3.2 Forwarding

To each node u in the graph we associate a forwarding table fu

which maps a destination node w to a neighbor of u, with the se-

mantics that a packet arriving at u destined for w will be sent to the

neighbor of u given by the forwarding table. If the packet has

reached the destination or the destination is not reachable by for-

warding, the forwarding table contains special value NONE. Thus,

fu(w) 2 N(u) [fNONEg; (1)
where N(u) are the neighbors of u.

We define the configuration of a forwarding network at some in-

stant in time to be the set of all forwarding tables at that time. To

capture the iterative nature of packet forwarding, we consider the

path taken by a packet in the network. The (instantaneous) for-

warding path from u to w, denoted (u; w), is the successive ap-

plication of f to w, starting at u, up until NONE. Formally, (u; w) is the

unique maximum-length sequence satisfying
0 (u; w) = u (2)

i+1 (u; w) = f i(u;w)(w) (3)

i+1 (u; w) 6= NONE: (4)
Note that (u; w) may be an infinite sequence, (if for example

fu(w) = v and fv(w) = u) resulting in a forwarding loop. If (u;
w) is a finite path from u to w, we say that w is reachable by
forwarding from u.

3.3 Soundness and Completeness

To each node we associate a routing process responsible for com-

puting the forwarding table of the node. The routing process knows (or

measures directly) the costs of incident links and communicates with its

neighbors via these links. A routing algorithm is the mech-anism that

defines what information is exchanged with neighbors and how the

forwarding tables are computed. The central purpose of a routing

algorithm is to maintain a forwarding configuration in which nodes are

mutually reachable by forwarding. It is often also desirable for the paths

taken by forwarded packets to be optimal or near-optimal. We formalize

these objectives using the notions of soundness, completeness and

stretch.

Definition. A configuration is sound if for all nodes u and w,

fu(w) 6= NONE implies (u; w) is a path from u to w. A rout-ing
algorithm is sound if it produces a sound configuration after
the network becomes quiet.

In a nutshell, soundness says that a node should only attempt to

forward to destinations it can reach by forwarding. We will show

that the XL routing algorithm we describe in this paper has this

property. There is also a weaker property that is sufficient for many

applications, and it is simply that there be no forwarding loops:

Definition. A configuration is loop-free if for all u and w, (u;

w) is finite. A routing algorithm is loop-free if it produces a

loop-free configuration after the network becomes quiet.

The difference between a sound and a loop-free configuration is

that in the latter, a node only needs to know that forwarding to its

next hop will not cause a loop (but the packet could be dropped

somewhere down the path), while in a sound configuration, for-

warding to the next hop must actually reach the destination.
The easiest way to achieve soundness is for every node to “pre-

tend” everyone is unreachable by setting fu(w) = NONE for all

destinations w. Clearly this is a degenerate configuration, so what

we also want is for fu(w) to be NONE only if w really is unreach-able

from u in the network. We call this property completeness.

Definition. A configuration is complete if for all distinct u and

w, (u; w) 6= 1 implies fu(w) 6= NONE. A routing algorithm is

complete if it produces a complete configuration after the
network becomes quiet.

Together the soundness and completeness properties

say that all nodes are reachable by forwarding, but they say

nothing about the optimality of the forwarding paths. This is

the subject of our next definition.

Definition. The stretch of a configuration is the maximum

taken over all distinct nodes u and w of the ratio k (u; w)k=

(u; w), with the convention that 1=1 is 0, and 1=1 is

undefined and not included in the maximum. A routing

algorithm has stretch 1 + if it produces a configuration with

stretch at most 1 + after the network becomes quiet.

IV. THE XL ROUTING ALGORITHM
XL is fundamentally a link-state routing algorithm. It differs

from the standard link-state algorithm in propagating only some

link state updates. At the heart of the algorithm are three rules

describing when an update should be propagated, and our

main technical contribution is showing that these are sufficient

for cor-rectness as defined above. These conditions, which are

at the heart of the algorithm, are:

S1 When the update is a cost increase (bad news),
S2 When the link is used in the node’s shortest-path tree

(propagated only to the next hop to the link), and
C1 When it improves the cost to any destination by

more than a 1 + cost factor, where is a design

parameter of the algorithm.

Any updates not covered by the three rules above may be sup-pressed.

The intuition behind these rules is that S1 and S2 ensure that each

node’s estimate of the distance to a destination decreases along the

forwarding path, which ensures that no loops are formed. (More

generally, S1 and S2 ensure soundness as described above.) Rule C1

ensures that all nodes know about some good (not but necessarily

optimal) paths; this ensures completeness and bounded stretch. In the

rest of this section, we formally describe our algo-rithm and describe

how it implements these rules.
Because some updates are propagated while others are suppressed,

nodes will not all have the same information about the network. To

reason about this formally, we encapsulate a node’s knowledge of the

network in a view. A view is an edge weight function giving the weight of

each edge at a particular point in time. Each node has an

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100580 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 393

fu Tu
T

uv
T

vu
f
v

T
v

v

 u

Figure 1: The routing process state for a pair of adjacent nodes. The routing

process of each node maintains the forwarding table (fu and fv), internal view

(Tu and Tv), and, for each neighbor, an external view (Tuv and Tvu). The

forwarding table and internal view are private, while the external view Tuv
can be atomically updated by u and atomically read by v. Similarly, the

external view Tvu can be atomically updated by v and atomically read by u.

internal view containing the most recent edge weight information
available to it. For each neighbor, a node also has an external
view, which contains the edge cost information it wants to share

with that neighbor. We denote the internal view of a node u by Tu

and the external view of u for neighbor v by Tuv. For a pair of

nodes u and v, their external views Tuv and Tvu will normally be the

same, as the algorithm attempts to maintain “consensus” of
external views. In describing the algorithm, we assume that the

external view Tuv can be atomically written by u and atomically

read by v. The for-warding table, internal view, and external views
together constitute the state of the routing process (Figure 1).

Updating an external view incurs a communication cost, since

the update must to be sent to corresponding neighbor. Our goal is

to minimize the frequency of external view updates. To simplify

analysis, we assume that external views can be updated even

when the corresponding link has infinite cost. In practice, such

updates would be queued until the link comes back up.
Formally, a view is a function mapping each edge to an edge da-

tum, which is simply a pair of values p and t, written p @ t, meaning

that the edge had weight p at time t. Furthermore, views must only

have correct information, meaning that the edge in question should

have really had cost p at time t. We call this the view invariant. To

avoid writing each definition twice, once for the internal views and

once for external views, we will use the placeholder subscript 3 to

mean both u and uv. With this convention, the view invariant is:

T3(x; y) = p @ t) e
t
(x; y) = p: (V1)

For convenience, let e3(x; y) = p denote the weight of (x; y) ac-

cording to T3, that is, if T3(x; y) = p @ t. But note that e3 is
distinct from the true weight function e written with no subscript.

We say an edge datum p @ t is more recent than datum p
0

@ t
0
 if t > t

0
. We will also use the terms less recent and as

recent having the obvious meanings. Finally, we define a “most
recent” operator “rec.“ Applied to a set of edge data S, rec S is
the most recent datum in S. Formally, if there exists an edge

datum p @ t 2 S that is more recent than all other p
0
 @ t

0
 2 S,

then rec S = p @ t; otherwise, rec S is undefined.
Let 3(z; w) be a minimum-cost path

2
 from z to w in T3. Since

the underlying graph is connected, such a path always exists,
al-though the cost may not always have finite cost. Define

d3(w) = k 3(u; w)k3; as before, 3 stands for both u and uv.
The routing algorithm is structured as an iterated state

update algorithm. The process starts in the initial state
defined by the initial views and then repeatedly executes
the update algorithm, which updates the views and
forwarding table. We start by defining the initial view.

2
Ties may be broken arbitrarily, as long as the following

consis-tency property is preserved: if a b is a subsequence

e(u, v1), . . . , e(u, vk)

fu

Updat
e

Tv1u, . . . , Tvku Algorithm
Tu, Tuv1 , . . . , Tuvk

current time τ

Figure 2: The update algorithm computes the new forwarding table, internal
view, and external views. The inputs to the algorithm are current incident
edge weights, neighbors’ external views, its previous internal view and
external views. The algorithm also has access to the current time.

4.1 Initial View
The initial view defines the initial state of the routing

process, before it has determined the incident link costs or

communicated with its neighbors. In other words, it serves

as the “base case” for the algorithm. The initial view, both

internal and external, is defined as

T3(x; y) = 1 @ 0: (5)
To satisfy the view invariant (Equation V1), we also define

e
0
(x; y) to be 1 for all (x; y) 2 E.

4.2 Update Algorithm
The update algorithm computes a new forwarding table as

well as new internal and external views. The input to the

algorithm consists of the incident link costs, the current external

views of its neighbors, and its own previous internal and

external views, as well as the current time, denoted (Figure 2).
For the remainder of this section, fix a node u executing the up-date

algorithm. The XL update algorithm has three phases. In the first phase,

the algorithm computes a new internal view of u and the preliminary

external views for its neighbors; in the second phase, it updates the

forwarding table using the new internal view; and in the last phase, it

computes new external views for each neighbor. We now describe

these phases. Table 1 summarizes the notation used in the description

and analysis of the routing algorithm.

4.2.1 Phase I: Internal and Prelim. External Views

 Time at the start of the iteration (INPUT).

u(w) Maximum allowed relative error for destination w with re-

 spect to u (ALGORITHM PARAMETER).

T
0 ; T

0 The internal view and external view for v 2 N(u), re-

u uv

 spectively, computed in the last iteration of the update al-

 gorithm, or, during the first iteration, the initial internal and

 external views (INPUT).

 Tvu The external view of v 2 N(u) (INPUT).

Tu; Tuv The internal view and external view for v 2 N(u), respec-

 tively, currently being computed (OUTPUT).

 T The preliminary external view of v
2

N(u) (Sec-

 vu tion 4.2.1).

 fu The forwarding table of u, currently being computed

 (OUTPUT).

e(x; y) Weight of edge (x; y) in G.

e3(x; y) Weight of edge (x; y) in T3.

k k; k k3 Cost of path in G and T3, respectively.

3(z; w) Shortest path from z to w in T3, with ties broken as con-

 sistently (Sections 4.2.2 and 4.2.3).

d3(w) Cost of the shortest path from u to w in T3; by definition,

 d3(w) = k 3(u; w)k3 (Section 4.2.3).

Du(w) Minimum distance proxy from u to w (Section 4.4).

Table 1: Notation used in the description and analysis of the update algorithm. The

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100580 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 394

The first phase is concerned with view bookkeeping. Conceptu- We achieve these global objectives by enforcing the following three

ally, we would like to have a single shared view for each pair of local constraints on external views.

neighbors. However since the neighbors operate asynchronously, The first two constraints, as we will soon show, guarantee sound-

this would require a synchronization to ensure that the common ness:

view is updated correctly. Instead, we allow each neighbor to have
8(x; y) 2 E euv(x; y) eu(x; y) (S1)

its own version of this shared view. Neighbors keep their respec-

tive external views in agreement by only updating them with more
8w fu(w) = v)

(S2)

recent information and by maintaining the invariant that a node’s

external view is no older than its neighbors. This ensures that the
8
(x; y)

2
u(u; w) euv(x; y) = eu(x; y)

pair of views converge to the same single view. Thus first step in

Constraint S1 states that we must never under-report an edge weight.

Phase I is to make sure the local external view is up to date with

respect to the neighbor’s external view for u. We call this updated This constraint ensures that in steady state all views reflect edge

view the preliminary external view. For each edge (x; y), the pre- costs that are greater than or equal to the actual costs. Constraint S2

liminary external view takes the more recent datum of the previous states that a node must advertise the latest edge cost to the neighbor

external view Tuv
0
 and the neighbor’s external view Tvu: v used to reach that edge. Intuitively, this constraint ensures that if

T (x; y) = rec T
0
 (x; y); Tvu(x; y) (6)

v is our next hop to some destination w, then its own estimate of

the distance to w will be no worse than ours, and, therefore, v will

uv uv

The preliminary external view is what the node and it’s neighbor not attempt to reach w through us.

already agree on, or will agree on after the neighbor performs an The third constraint guarantees completeness as well as bounded

stretch. Before stating it, we need one more definition. Let Du(w)

update. It is the starting point for any updates the algorithm decided

be a lower bound on the minimum distance from u to w in G. We

to communicate to its neighbor.

show how Du(w) may be computed in Section 4.4. With these

Next, we make the internal view the most recent information

definitions in mind, the third constraint is:

about each edge available to u. For edges incident on u, the most

recent information is available locally and is only updated if the
8w duv(w) 1 + u(w) Du(w) or (C1)

edge weight changes. Formally, for v N(u),

2 d

uv (u; w) = d
u (w):

e (u; v) @ if e (u; v) = eu
0
(u; v), It states that distances in the external view should not be much Tu(u; v) =

(
Tu0(u; v) otherwise, 6 (7)

worse than actual. The lower bound Du(w) is used as a proxy

where “rec” is the “most recent” operator.
 for the actual distance (u; w).

 It is possible to satisfy all three constraints by setting Tuv = Tu,
For all other edges, the source of the most recent information are

that is, by propagating all edge datum updates. The resulting algo-

the external views. We collect the most recent datum for each edge.

rithm would behave exactly like the standard link-state algorithm.

For all x and y where x 6= u,

 However by updating only the edges in the external view Tuv nec-

Tu(x; y) = rec Tuv(x; y): (8) essary to satisfy the constraints above, we can can reduce routing

 v communication. The following algorithm does this.

The following lemma follows by construction. Satisfying Constraints S1 and S2 is straightforward: an edge

Lemma 1. The internal view and preliminary external view are
must be updated if it causes S1 or S2 to fail. Constraint C1 is more

complicated.
3
 Call an edge hot, denoted HOT(x; y), if it lies on a

well-defined and satisfy the view invariant. path to a destination that causes Constraint C1 to fail.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100580 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 395

Algorithm 1 PHASE III.
1. for all (x; y) 2 E do
2. Tuv(x; y) Tuv(x; y)

3. if euv(x; y) < eu(x; y) then

4. Tuv(x; y) Tu(x; y)
5. end if

6. if (x; y) 2 u(u; y) ^ fu(y) = v then

7.

T (x; y) Tu(x; y)

 uv

8. end if
9. end for

10. for all (x; y) 2 E do
11. if HOT(x; y) then
12. Tuv(x; y) Tu(x; y)
13. end if
14. end for

that a set of edges is quiet during a time interval if their

weights do not change during the time interval.
Together the following two lemmas bound the cost of the

for-warding path from u to w by 1 + times the cost of the
optimal path. Omitted proofs appear in the Appendix.

Lemma 3. Fix a time t > . If

t
(u; w) is a non-empty path that

is both quiet during time interval [t ; t] and coherent at time

t, then
t
(u; w) is a finite path from u to w and k

t
(u; w)k

t

d
t
u(w).

Lemma 4. Fix a time t > . Let be a path from u to w. If is
(i) quiet during [t ; t], and (ii) coherent at time t, then

d
t
u(w) (1 +)k k

t
;

where = maxx2 x(w).

Both Lemmas above are still conditioned on coherence. Here we

show that a quiet network eventually becomes coherent, which will

imply that our routing algorithm converges in finite time.

Lemma 5. If a network is becomes quiet at some time t,

then after a finite period of time it also becomes coherent.

We can now state our main theorem.

Theorem 1. If a network is quiet at and after some time t, then

after a finite period of time the forwarding configuration

becomes sound, complete, and has bounded distortion , where
= max eu(w):

u;w

Proof. By combining Lemmas 3, 4, and 5.

4.4 Minimum Distance Proxy Function

Recall that the minimum distance proxy function Du was used

instead of the actual minimum distance function to define the

Completeness constraint (C1) in Section 4.2.3 and was also used

in Algorithm 1 to compute an external view. The correctness of the

XL routing algorithm requires only that 0 Du(w) (u; w) for all u and

w. However to give the algorithm leeway in suppressing updates,

Du(w) should be as close to (u; w) as possible. Comput-ing the

exact distance (u; w) is exactly what we’re trying to avoid by using

approximation, so we choose Du(w) to be the distance computed

by taking the weight of each edge to be the lowest cost of the edge

ever observed. Because this value only changes when an edge

cost drops below its all-time minimum cost, or an edge is

added to the network, updates are infrequent and therefore

intro-duce very little overhead to the algorithm. Furthermore,

because all-time minimum link costs can only decrease, it can

be computed using a distance vector-style algorithm without

fear of loop forma-tion, as shown by Jaffe and Moss [17].
A simpler alternative which does not guarantee globally bounded

stretch is to set Du = du. In other words, instead of computing and

maintaining the cost lower bound as described above, we simply

use out best estimate of the current cost from the internal view. In

some cases, this will cause the stretch to exceed 1 + , although in

practice the excess is likely to be quite small.
4.5 Cut Vertex Partitioning

Recall that in a sound configuration a node must only forward to

a destination if the destination is reachable. This is hardly the case

in the Internet today where ASes advertises prefixes, not in-dividual

destinations, even if part of the prefix is unreachable. For this

reason, we introduced a weaker notion, that of a loop-free con-

figuration, in which every forwarding path (u; w) must only be finite

(loop-free) and not necessarily a path to the destination w. It

means, essentially, that a node does not need to “know” that a des-

tination is reachable before forwarding, only that forwarding to the

next hop will not cause a loop. Practically, this means that sending

a packet to an unreachable destination will generate an ICMP Un-

reachable message from a router further in the network rather than

the local router.
As we have shown above, the basic XL algorithm is sound. If

we relax the requirement of soundness, however, and settle for

a loop-free algorithm, we can realize significant savings in

routing communication using an extension to XL routing

algorithm we call Cut Vertex Partitioning (CVP).
The idea behind CVP is based on the observation that a cut ver-

tex, which is a vertex whose removal disconnects the graph, par-

titions the network graph into two or more separate subnetworks

that can only communicate with each other through the cut vertex.

This means that to communicate with a destination “across” a cut

vertex, a node can simply forward to the cut vertex and it does not

need to know about the network beyond the cut vertex. Thus with

respect to routing, each subnetwork can be considered separately.
The CVP extension to the XL routing algorithm consists of the

cut vertex forwarding policy described above, a mechanism for

nodes to discover that they are cut vertices, and a cut vertex ad-

vertisement for nodes to learn which cut vertex to use to reach

each destination. In our fixed, globally network model where only

the edge weight function changes with time, all the necessary com-

putation can be carried out by each node separately. In practice,

however, where the topology is unknown and can change, cut ver-

tex discovery and advertisement is slightly more involved; we do

not describe it here.
In general, real networks do not have cut vertices that

partition the network into large subnetworks where CVP could

be used as a “divide and conquer” technique. However, what

many real net-works do have is a large number of leave. Since

the neighbor of a leaf is necessarily a a cut vertex, CVP

eliminates leaves from the routing computation, effectively

reducing the size of the net-work. In fact, our implementation of

CVP only considers such leaf cuts. Our experiments (Section

6) show that this “reduction by a thousand cuts” significantly

decreases the communication load or routing.

V. THE SIMULATION SYSTEM
In this section we describe the simulation system we used to eval-

uate the performance of the XL routing algorithm. We designed

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100580 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 396

our simulation system specifically for the purpose of evaluating the

performance of routing algorithms on a forwarding network. At its

heart is a discrete event simulator that simulates a number of

routing algorithms including the XL algorithm. The simulation in-

cludes of the forwarding tables and all routing algorithm commu-

nication, but not other network traffic. It is expressly not a packet-

level network simulator like ns-2 and does not model or network

characteristics such as packet loss, latency, or bandwidth.
The the core of the simulation system is the the generator pro-gram

then generates an event script (a sequence of edge weight changes) for

the simulation, and the simulator program that sim-ulates a routing

algorithm on the network using the generated event script. The output

of the simulator program is a sequence of for-warding table updates.

This sequence of processed by the analysis tools to compute

convergence times, stretch, and related statistics.

5.1 Event Generator

The generator program produces a sequence of link cost changes

according to a stochastic model of link failures. In the generated

event sequence, a link is either up, in which case its cost is the

nominal cost given defined by the weights file, or down, in which

case its cost is 1. The two directions are coordinated, that is, links (u;

v) and (v; u) are either both up or both down.

 p0
US UF

λ0 (µ0, σ0
2
)

λ1 (µ1, σ1
2
)

p1
DS DF

Figure 3: The link failure model used by the generator program. The
up/stable, down/stable, up/flapping, and down/flapping states are denoted
US, DS, UF, and DF, respectively.

Link failure and recovery is controlled by a stochastic process
(Fig. 3). Each link is treated independently. In addition to being up
or down, a link is also either stable or flapping. The four link-states
are thus up/stable, down/stable, up/flapping, and down/flapping. In
the stable state, the link time-to-failure is distributed exponentially

with mean 0. Once down, a link may remain in the down/stable

state, in which case the time-to-recovery is distributed exponen-

tially with mean 1, or, with probability p1 a link may become

unstable and transition to the flapping/down state. Thus, parameter

p1 controls the propensity of links to flap. In the flapping state, the

time-to-recovery has a normal distribution truncated to [0; 1) with

parameters 1 and 1
2
, and time-to-failure has a similarly truncated

normal distribution with parameters 0 and 0
2
. After recovering from

failure in the flapping state a link leaves the flapping state with

probability p0. Parameter p0 thus controls how long a link remains

flapping.
Our link event model is a generalization the two-state model of

Park and Corson [26]; we added the flapping failure mode, which

we expected the XL algorithm handle particularly well. When p1 =

0, link failures are independent with exponentially-distributed fail-

ure and recovery times. On the other hand, when p1 = 1, all links

have an exponentially distributed time-to-first-failure followed by

repeated up-down cycles controlled by the p0 parameter.

5.2 Protocol Simulator

The simulator program is a discrete event simulator that sim-ulates a

single routing algorithm under a given topology and link event

sequence. In other words, it simulates n instances of the rout-ing

algorithm running in parallel, one on each node. The simulator

Name n m D1 D2 D3 Description

CROWN X 3X 4X 0 1/3 2/3 Two cycles of size X and 2X with

 nodes in the smaller connected to

0 1
alternate nodes in the larger.

HONEY — — 0 A hexagonal grid.

QUAD — — 0 0 0 A rectangular grid.

ABILENE 11 14 0 45% 55% Abilene with routing metrics [1].

ARPANET 59 72 7% 48% 41% ARPANET (March 1977) [11].

FUEL1221 104 151 49% 19% 6% AS 1221 from RocketFuel [19].

FUEL1239 315 972 10% 19% 16% AS 1239 from RocketFuel [19].

F. 1221C 50 97 0 50% 6% The 2-core of FUEL1221.

F. 1239C 284 941 0 22% 18% The 2-core of FUEL1239.

ORB145 145 227 29% 28% 17% FUEL1239 rescaled (-n 200).

ORB257 257 433 31% 20% 21% FUEL1239 rescaled (-n 300).

ORB342 342 606 33% 24% 14% FUEL1239 rescaled (-n 400).

ORB406 406 791 27% 28% 14% FUEL1239 rescaled (-n 500).

ORB497 497 961 29% 26% 17% FUEL1239 rescaled (-n 600).

ORB575 575 1081 31% 25% 16% FUEL1239 rescaled (-n 700).

ORB664 664 1300 26% 27% 17% FUEL1239 rescaled (-n 800).

ORB729 729 1427 32% 24% 16% FUEL1239 rescaled (-n 900).

ORB813 813 1584 29% 25% 16% FUEL1239 rescaled (-n 1000).

ORB892 892 1694 34% 26% 15% FUEL1239 rescaled (-n 1100).

Table 2: Network topologies used in the experiments. Column legend: n – number

of nodes; m – number of links; D1, D2, and D3 fraction of nodes of degree 1, 2,
and 3, respectively. All but the FUEL networks have unit link costs.

repeatedly executes the update algorithm of each node, providing

as input the (simulation) time at the start and end of the current

iteration of the algorithm, the costs of incident links, and its mes-

sage queue, consisting of messages sent by its neighbors since

the last invocation of the update algorithm on this node. The update

algorithm performs any processing dictated by the algorithm, and if

necessary, updates its forwarding table and then posts messages

to its neighbors. The (simulated) duration of the iteration is chosen

randomly according to a normal distribution truncated to [0; 1) with

parameters and
2
 ; we chose the normal distribution be-cause it

was familiar and because the model did not seem unrea-sonable to

us.
The simulator program contains implementations of the

fol-lowing routing algorithms.

ls The standard link-state algorithm [22] which is the

ba-sis for OSPF and IS-IS.
dv A distance vector algorithm very similar to RIP [20]

with split horizon. The maximum distance bound

is a global parameter of the algorithm.
dv+p A modern distance vector algorithm which uses a

par-ent pointer to detect loops [4, 12, 28].
lv The Link Vector algorithm proposed by Behrens and

Garcia-Luna-Aceves [3].
xl The XL algorithm described in this paper, parametrized

by error . When = 0, all forwarding paths are opti-

mal just as with the above algorithms.

All of the above algorithms send updates only when a

topology change occurs (sometimes called “triggered

update”), and there are no periodic updates.
The output of the simulation is a sequence of forwarding table

updates written to the update file for later processing. At the end of

the simulation, the simulator program reports the total number of

messages and bytes sent by the routing processes as well as the

maximum messages and bytes sent by a single node.

VI. EVALUATION
In this section we experimentally evaluate the performance of

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100580 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 397

CROWN 8 HONEY 5 5 QUAD 5 5

Figure 4: Small examples of synthetic networks.

the XL routing algorithm relative to existing routing

algorithms. Our objective is to evaluate the claims that the

XL routing algo-rithm:
v Sends fewer routing updates,
v Does not significantly sacrifice correctness,

convergence time, or stretch, and
v Continues to perform well as the network grows.

Our evaluation is based on simulations of the four protocols im-

plemented by the simulator program (ls, dv, dv+p, and xl) on a

number of networks and under two different link event models. The

main result of simulation is that the XL routing protocol does indeed

reduce the number of updates: compared to the link-state al-

gorithm, XL generates between 2 and 20 times fewer updates (Ta-

ble 4). This experiment is discussed in Section 6.2; first, however,

we describe our experimental setup.

6.1 Experimental Setup

Each experiment consists of a number of simulation runs. Each

run simulates a single routing algorithm for 86,400 seconds (one

day) at a rate of 10 iterations of the update algorithm per second.
Networks. We used the following networks in our simulations: three

synthetic networks, the Abilene backbone [1], the ARPANET

topology from March 1977 [11], two Rocketfuel networks with

inferred link costs [19], and a series of networks created by re-

scaling the Sprint network (AS 1239) from the Rocketfuel data-set

using Orbis [18]. The Orbis command-line arguments to the

dkRescale program were “-k 1 -n nnom”, where the nominal size

nnom ranged from 200 to 1100. Table 2 describes the net-works

used in the experiments and Figure 4 shows small instances of

synthetic networks. The synthetic networks allowed us to test the

routing algorithms on topologies based design decisions differ-ent

from the AS router-level topologies. In particular, the large-diameter

HONEY and GRID networks shed some light on how the algorithms

might perform in wireless ad-hoc networks.
We also created the 2-cores of the two Rocketfuel networks. The

2-core of a graph is the graph resulting from repeatedly removing

all degree-1 nodes [29]. With no degree-1 nodes, CVP (which was

implemented only for leaf nodes) would have no effect, allowing us

to also evaluate the value of this optimization.
Link Events. All link events for the simulation were generated using

the generator program (Section 5.1). Recall that in the generator

link event model, a link is either up (nominal weight) or down

(infinite weight); the time between failures and failure du-ration are

controlled by the four-state stochastic model shown in Figure 3. In

our simulation, we used two different sets of model parameters: a

Standard set in which a link fails about once a day, and comes

back up in about an hour, and the Flapping set in which links are

less likely to fail, but more likely to fail repeatedly (flap); Table 3

gives the precise model parameters.
Both the Standard model and Flapping model are more aggres-

sive that what might be expected of a real network [13, 30]. We

wanted to stress the routing algorithms under the kinds of condi-

tions where routing algorithm efficiency matters greatly, namely

where many links are unstable (Standard model) or only some

are unstable but tend to oscillate (Flapping model).
Algorithm Parameters. The distance vector algorithm (dv) re-quires

a maximum distance bound (the so-called “infinity metric”) to detect

routing loops. For the simulations, this value was com-puted by

using a linear program to approximate the cost of the longest path.

The XL routing algorithm (xl) has an error parame-ter that

determines the stretch. In the experiments, we simulated xl with =

0:0 and = 0:5, corresponding to no stretch and a maximum stretch

of 1.5. Increasing beyond 0:5 did not appear to significantly reduce

the number of updates generated by the algo-rithm beyond the =

0:5 level.

6.2 Performance

In this section we evaluate our first two claims: that compared to

existing routing algorithms, the XL algorithm uses fewer updates to

achieve comparable performance. We simulated each routing algo-

rithm on the synthetic and measured topologies. Each combination

of algorithm, network and link event model (Standard or Flapping)

was simulated 10 times and averaged in reporting results. For each

combination, the 10 simulations differed only in the link events.
Total Communication. Table 4 shows the average number of mes-

sages sent during the simulation relative to ls, the link state algo-

rithm, which provides a convenient baseline for comparison.
Referring to the table, the most erratic performer was dv, which

was highly sensitive to topology: it did extremely well on networks

such as QUAD 16 16 with many equal-cost paths and poorly on

networks with long cycles that trigger its “counting-to-infinity”

behavior. As expected, both dv+p and lv performed similarly: they

routinely did better than ls but could not take advantage of the

multiple equal-cost paths in QUAD networks as well as dv did.
The XL algorithm performed consistently well on all

networks. Like dv, it was able to take advantage of path
redundancy in the QUAD synthetic network. It also did well
on “leafy” networks like FUEL1221, where CVP played a
major role in reducing communi-cation.

We note that XL algorithm performed particularly well in the

flapping model. Why is this? The reason is that the XL algorithm

 p0 p1 0
1
 1

1
 0 0 1 1

Standard 0.25 0.10 1 d 1 h 1 m 10 s 1 m 10 s
Flapping 0.25 1.00 2 d 10 s 10 s 1 s 10 s 1 s

Table 3: Parameters used to generate link events according to the generator
link event model described in Section 5.1. Mean time-to-failure is controlled

by the 0
1
 parameter and the probability of a repeat failure by the p1

parameter. Units: d – days, h – hours, m – minutes, s – seconds.

 Standard model Flapping model

 dv dv+p lv xl dv dv+p lv xl

CROWN 64 3.13 1.11 1.10 0.64 0.41 0.85 0.82 0.82 0.45 0.11
H. 16 16 0.95 0.69 0.65 0.31 0.18 0.28 0.65 0.60 0.20 0.06
Q. 16 16 0.12 0.40 0.39 0.14 0.10 0.06 0.38 0.37 0.07 0.04
ABILENE 0.82 0.71 0.71 0.50 0.43 0.88 0.79 0.79 0.47 0.33
ARPANET 2.33 1.02 1.02 0.47 0.40 1.80 1.00 0.99 0.36 0.24
FUEL1221 7.90 0.63 0.62 0.14 0.10 7.05 0.61 0.60 0.12 0.05
FUEL1239 5.01 0.25 0.26 0.17 0.09 1.21 0.25 0.25 0.14 0.04
F. 1221C 0.79 0.45 0.46 0.34 0.22 0.39 0.42 0.42 0.27 0.11
F. 1239C 0.99 0.25 0.25 0.19 0.09 0.21 0.24 0.24 0.14 0.04

Table 4: Average number of messages after initialization, relative to ls
(average of 10 simulation runs). The xl columns shows values for algorithm
parameters = 0:0 (first value) and = 0:5 (second value).

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100580 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 398

 Standard model Flapping model

 dv dv+p lv xl dv dv+p lv xl

CROWN 64 3.41 1.07 1.06 0.68 0.46 1.09 0.79 0.78 0.49 0.17
H. 16 16 1.09 0.73 0.68 0.35 0.23 0.42 0.71 0.64 0.24 0.09
Q. 16 16 0.16 0.45 0.43 0.18 0.14 0.12 0.44 0.42 0.10 0.07
ABILENE 0.97 0.77 0.77 0.64 0.55 0.98 0.83 0.83 0.55 0.46
ARPANET 2.28 0.91 0.89 0.51 0.45 1.86 0.89 0.87 0.39 0.28
FUEL1221 7.32 0.46 0.46 0.12 0.09 6.56 0.44 0.43 0.10 0.05
FUEL1239 4.85 0.23 0.23 0.20 0.11 1.16 0.21 0.21 0.16 0.05
F. 1221C 0.74 0.38 0.38 0.37 0.26 0.34 0.35 0.36 0.30 0.16
F. 1239C 0.95 0.22 0.22 0.22 0.11 0.20 0.22 0.21 0.17 0.05

Table 5: Average (over 10 simulations) of the maximum number of
messages gen-erated by any one node, relative to ls. The xl columns shows
values for algorithm parameters = 0:0 (first value) and = 0:5 (second value).

tends to move away from flapping links: The the first time a link fails, an

update is sent to all nodes in whose shortest-path tree it appears, that

is, nodes that used the link to reach some destination. When the same

link comes back up, many of the nodes which used it keep their current

path because it is only slightly worse than the previous path which used

the link. As a result, fewer nodes now have the link in the shortest-path

tree, so that when it fails again, they are not affected. Thus, after the

first failure, the effects of the link are generally limited to a small

neighborhood around the link where the link is a significant fraction of

path costs.
Per-Node Communication. Table 5 shows the maximum

number of messages generated by any single node during the

simulation, relative to ls. In contrast to the total communication,

this number shows the maximum load placed on an individual

node rather than the network as a whole. Although it is does

not show short-term load on a node, it does show whether a

routing algorithm spreads the communication costs evenly

across the network or whether it creates bottleneck routers.
These results do not differ markedly from the total

communica-tion results shown in Table 4, indicating that none

of the algorithms loaded any one node significantly more

heavily than the link-state algorithm, in which the number of

messages sent by a node is pro-portional to its degree.
Stretch. In addition to counting the number of messages, we per-

formed additional analysis as described in in Section 5. The first

quantity we consider is stretch; recall that stretch is the ratio of the

forwarding cost to optimal cost between a pair of nodes. Because

stretch is an instantaneous measure for each pair, it is not an easy

value to summarize for an entire simulation. We use the top stretch

centile for each pair. By the top centile, we mean the lowest up-per

bound for 99% of the simulation duration. In other words, a pair’s

stretch is at most the top centile value 99% of the time. In Table 6

we report the median, average and maximum top centile stretch

over all pairs for xl with parameter = 0:5, corresponding to

maximum allowed stretch of 1:5. For all other algorithms, in-cluding

xl with = 0:0, the maximum top centile stretch was zero as

expected, and is not shown.
Clearly, while the stretch approaches the maximum 1:5 for

some source-destination pairs, the average stretch is quite

good, in all cases at most 5% optimal. In fact, since the median

is 1:00, for the majority of nodes the forwarding path is optimal.

By just allowing the XL algorithm to choose sub-optimal paths

we were able to get the reduction in communication complexity

while paying only a fraction of the allowed 50% penalty.
Convergence. Finally, we consider the convergence time of the XL

routing algorithm. By “convergence time” we mean the time it takes

a routing algorithm to establish a desirable (e.g., sound, com-plete)

forwarding configuration. In essence, it combines the time

 Standard model Flapping model

 Med Avg Max Med Avg Max

CROWN 64 1.00 1.02 1.43 1.00 1.01 1.39
H. 16 16 1.00 1.05 1.45 1.00 1.02 1.44
Q. 16 16 1.00 1.02 1.43 1.00 1.01 1.40
ABILENE 1.00 1.01 1.22 1.00 1.01 1.18
ARPANET 1.00 1.02 1.45 1.00 1.01 1.41
FUEL1221 1.00 1.01 1.34 1.00 1.01 1.33
FUEL1239 1.00 1.04 1.41 1.00 1.02 1.41
FUEL1221C 1.00 1.02 1.35 1.00 1.01 1.33
FUEL1239C 1.00 1.04 1.42 1.00 1.02 1.41

Table 6: Top centile stretch for xl with parameter = 0:5. The median, average, and

maximum of the top centile were taken over all source-destination pairs; a pair’s

instantaneous stretch is at most its top centile value 99% of the time.

 Standard model Flapping model

 dv dv+p lv xl dv dv+p lv xl

CROWN 64 4.08 0.00 0.00 1.04 0.88 9.28 0.00 0.00 1.17 0.66
H. 16 16 17.19 0.00 0.00 0.99 0.88 1.49 0.00 0.00 0.90 0.80
Q. 16 16 5.96 0.00 0.00 1.00 0.98 1.24 0.00 0.00 1.16 1.03
ABILENE 2.27 0.00 0.00 0.79 0.87 1.83 0.00 0.00 0.93 0.98
ARPANET 3.12 0.00 0.00 0.91 0.82 2.86 0.00 0.00 0.94 0.82
FUEL1221 74.23 0.00 0.00 0.79 0.79 46.01 0.00 0.00 0.79 0.81
FUEL1239 85.64 0.00 0.00 0.92 0.87 24.87 0.00 0.00 0.95 0.85
F. 1221C 10.80 0.00 0.00 0.87 0.85 2.60 0.00 0.00 0.96 0.95
F. 1239C 25.12 0.00 0.00 0.95 0.86 2.24 0.00 0.00 0.99 0.85

Table 7: Forwarding loop duration maximum over all source-destination
pairs, relative to ls. The forwarding loop duration for a pair of nodes u and w
is the duration of time (u; w) was infinite.

 Standard model Flapping model

 dv dv+p lv xl dv dv+p lv xl

CROWN 64 2.58 2.74 2.73 1.54 1.74 5.29 5.44 5.37 1.45 1.41
H. 16 16 1.19 3.08 2.46 1.10 1.09 1.30 4.85 3.12 1.02 0.93
Q. 16 16 1.10 2.54 2.00 1.03 1.03 1.02 2.92 2.12 0.99 0.99
ABILENE 1.25 1.41 1.41 1.05 1.14 1.36 1.55 1.56 1.01 1.02
ARPANET 1.29 1.41 1.34 0.95 0.94 1.20 1.48 1.46 0.96 0.89
FUEL1221 1.04 1.15 1.09 0.60 0.63 1.06 1.16 1.14 0.52 0.52
FUEL1239 1.15 1.44 1.36 0.75 0.76 1.04 1.24 1.22 0.74 0.70
F. 1221C 1.16 1.38 1.36 1.03 1.09 1.33 1.62 1.41 1.00 0.98
F. 1239C 1.54 1.76 1.57 1.05 1.03 1.50 1.70 1.63 1.01 0.93

Table 8: Maximum duration of infinite forwarding-to-optimal distance ratio

relative to ls. The maximum is taken over all source-destination pairs. The

infinite forwarding to optimal distance ratio duration for a pair of nodes u and

w is the duration of time when k (u; w)k was infinite but (u; w) was not.

it takes a routing algorithm to re-establish a sound (or loop-free)

configuration after a link failure and the time it takes the algorithm

to start using a lower-cost path when it becomes available.
The analyzer program does not measure convergence time di-

rectly; instead, it measures the duration of forwarding loops and the

time to establish a new forwarding path when a node becomes

reachable. The former is reported in Table 7 as the maximum, over

all source-destination pairs, of the combined duration of forward-ing

loops. The time to establish a new forwarding path is reported in

Table 8 as the maximum, over all source-destination pairs, of the

total time the forwarding distance was infinite while the optimal

distance was not. In both tables, results are shown relative to ls.
It comes as no surprise that the generic distance vector algorithm

has a problem with long-lasting loops. In contrast, loops in dv+p and lv

are extremely rare and short-lived because, although it is not

guaranteed loop-free at all times, its policy for accepting a next hop are

fairly conservative. The same “reluctance” to accept a new path

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100580 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 399

1.4 Standard model

p
e
rf

o
rm

a
n
c
e
 1.2

1

0.8

0.6

re
la

ti
v
e

0.4

 0.2

 200 300 400 500 600 700 800

network size

1.4 Flapping model

p
e
rf

o
rm

a
n
c
e
 1.2

1

0.8

0.6

re
la

ti
v
e

0.4

 0.2

 200 300 400 500 600 700 800

network size

dv+p ls xl 0.0 xl 0.5

Figure 5: Number of messages as a function of network size for the ORB family of

networks; values normalized by number of edges in the graph. Both dv+p and lv

performed similarly (within 5%); only dv+p is shown. The distance vector algorithm was

omitted because its communication exceeded the other algorithms by a factor of 5 in the

Standard model and nearly an order of magnitude on the Flapping model.

is also responsible for the longer time to establish a new forwarding

path, although lv seemed to have slightly faster convergence.
With the exception of the CROWN network, xl had slightly better

convergence times than ls. This is because xl changes its next hop

to a destination only if it is much better than the current next hop,

thus updating the forwarding table less often and avoiding short-

term loops or unreachable configurations. On the other hand, the

time to accept a new forwarding path is generally longer than ls

because xl has less information about the network, so that when a

link fails, it may be necessary for the link failure update to prop-

agate before a bypass route is advertised. CVP partially remedies

this the situation because when a cut edge comes up, only the cor-

responding cut vertices need to be updated to restore the path.

6.3 Scalability

To evaluate the scalability of the XL routing algorithm relative

to existing algorithms, we simulated each algorithm on families

of networks of increasing size: the HONEY synthetic network

family and the ORB re-scaled network family described earlier.

Each com-bination of algorithm, network, and link event model

(Standard and Flapping) was simulated 5 times and averaged

in reporting results. Figure 5 shows algorithm communication

as a function of network size for the ORB family of networks.

Except for dv, results on syn-thetic networks was similar; dv

performance was highly variable from one family to another.
As the network size increases, xl maintains its good relative per-

formance. As with other algorithms, however, the routing com-

munication load still grows linearly with the size of the network.

This is because a link failure still triggers partial flooding to nodes

whose shortest-path tree included the failed link, and roughly half

of all simulation events are link failures. In a connected network, a

node’s shortest-path tree contains n 1 nodes, so the probability of a

node being affected by a link failure is (n 1)=m, and thus the

expected number of nodes affected by a random link failure is

about n
2
=m. This means that in a network such as the Internet

where m=n is small, a random link failure will be propagated to a

constant fraction of the nodes.

VII. OSPF WITH XL
This section is motivated by the observation that the XL rout-ing

algorithm and the standard link-state algorithm are inherently

compatible. This is because flooding satisfies Conditions S1, S2,

and C1, so it is possible to mix instances of XL and the standard

link-state algorithm. In this section, we sketch how the routing

algorithm used with the OSPF Version 2 protocol [24] can be mod-

ified to take advantage XL’s update suppression mechanism, while

still remaining compatible with the original OSPF. In other words,

routers running the modified algorithm, which we call OSPF/XL,

can inter-operate in a mixed-deployment scenario with those run-

ning the standard OSPF algorithm. We emphasize, however, that

we have not implemented these modifications and that all our eval-

uations are based on simulation at this point. We leave implement-

ing OSPF/XL to future work, although we do not believe it should

be too challenging.
Recall that in the XL algorithm the state of the network

consists of the internal and external views. The internal view

already ex-ists in OSPF as the link-state table. External views,

however, have no OSPF analog. To save memory, we suggest

that external views should not be materialized, rather, they can

be represented as differ-ences from the internal view. Since a

node’s internal and external views will typically contain a lot of

the same information, we de no expect the additional memory

required for external views to be significant.
The second modification to OSPF is in the way updates are pro-

cessed. Upon receiving an update, a node records it in the external

view of its incoming interface. If the update has newer informa-tion

than in the internal view, the internal view is updated as well. Next,

the main shortest-path tree is re-computed from the internal view.

Algorithm 1 is then used to update other external views and

determine to which interfaces the update should be propagated.

Pe-riodically, not necessarily after each update, the main shortest-

path tree is used to update the forwarding table.
Finally, the proxy minimum distance Du(w) used in Algorithm 1

will need to be approximated. The easiest way to do this is for each

node to simply keep a record of the smallest distance to each desti-

nation observed during some period of time, say 1 day, and use

this value instead. We believe that such an approximation is

adequate in all but the worst pathological cases.
Overall, OSPF/XL requires only modest changes to the stan-

dard OSPF in order to take advantage of our update suppression

mechanism. Moreover, the benefits of XL can be realized even in a

mixed environment where only some of the routers implement

OSPF/XL—incentivizing incremental deployment.

VIII. CONCLUSION
We have presented the XL routing algorithm, a new link-state

routing algorithm specifically designed to minimize network com-

munication. XL works by propagating only some of the link-state

updates it receives, thereby reducing the frequency of routing up-

dates in the network. We also formally proved the correctness of

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100580 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 400

XL and validated our performance claims in simulation. In

partic-ular, our simulation showed that with a small penalty
in stretch, our algorithm dramatically reduced the number of

updates needing to be communicated and processed.
However, in allowing the routing algorithm to choose slightly

sub-optimal routes, the network operator also cedes some degree

of control. In particular, traffic engineering via link costs is harder

since current traffic forwarding will be determined, in part, by past

link costs. Fortunately, it is easy to augment our algorithm to “flush”

all suppressed updates periodically, causing it to propagate and

use exact routing information. In fact, the approximation pa-rameter

can be adjusted dynamically in response to load. By set-ting = 0

locally under normal conditions and and = 0:5 under load or in the

presence of flapping, the network can achieve the best of both

worlds: deterministic routing in normal circumstances, ap-proximate

routing under heavy load.
Finally, we also believe that there may be significant opportu-

nities to improve the efficiency of link state routing even further. In

particular, recall that the XL routing algorithm propagates all link

cost increase updates, meaning that, on average, it will prop-agate

half of all updates that affect it. It is natural to ask whether this is

strictly necessary, or whether a superior algorithm—one that

selectively suppresses link failures—can scale sub-linearly for typ-

ical networks. Whether such an algorithm exists and can guarantee

soundness and correctness remains an open problem that we

hope to address in future work.

ACKNOWLEDGEMENTS

This research was supported in part by National Science Founda-tion

grants NSF-0433668 (CCIED) and EIA-0303622 (FWGrid).

REFERENCES

[1] Abilene interior-routing metrics.

http://noc.net.internet2.edu, March 2006.
[2] D. Andersen, H. Balakrishnan, F. Kaashoek, and R.

Morris. Resilient overlay networks. In Proceedings of

the 18th Symposium on Operating Systems

Principles, pages 131–145, 2001.
[3] J. Behrens and J. J. Garcia-Lunes-Aceves. Distributed,

scalable routing based on link-state vectors. In Proceedings

of the ACM SIGCOMM Conference, pages 136–147, 1994.
[4] C. Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-

Lunes-Aceves. A loop-free extended Bellman-Ford

routing protocol without bouncing effect. ACM

SIGCOMM Computer Communication Review,

19(4):224–236, September 1989.
[5] Cisco Systems. Introduction to EIGRP. Document ID 13669.
[6] Cisco Systems. OSPF Design Guide. Document ID 7039.
[7] T. H. Clausen and P. Jacquet. RFC 3626: Optimized

Link State Routing protocol (OLSR), October 2003.

[8] V. Fayet, D. A. Khotimsky, and T. Przygienda. Hop-by-hop

routing with node-dependent topology information. In

Proceedings of The Eighteenth INFOCOM

Conference, pages 79–87, 1999.
[9] D. Fedyk and P. Bottorff. Provider link state

bridging (PLSB). IEEE Draft, 2007.
[10] J. J. Garcia-Lunes-Aceves. Loop-free routing using

diffusing computations. Transactions on Networking,

1(1):130–141, Feb 1993.
[11] F. E. Heart, A. McKenzie, J. M. McQuillan, and D. C.

Walden. ARPANET completion report. Technical

Report 4799, Bolt, Baranek and Newman, 1978.

[12] P. A. Humblet. Another adaptive distributed

shortest path algorithm. IEEE Transactions on

Communications, 39(6):995–1003, June 1991.
[13] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and

C. Diot. Analysis of link failures in an IP backbone. In
Proceedings of the Second Internet Measurement

Workshop, pages 237–242, 2002.
[14] IEEE 802.11s draft standard, 2007.
[15] K. Ishiguro, V. Manral, A. Davey, and A. Lindem. Traffic

engineering extensions to OSPF version 3. IETF Draft, 2007.
[16] A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, and T.-W. Chen.

Scalable routing strategies for ad hoc wireless networks.

IEEE Journal on Selected Areas in

Communication, 17(8):1369–1379, August 1999.

[17] J. M. Jaffe and F. H. Moss. A responsive distributed routing

algorithm for computer networks. IEEE Transactions on

Communications, COM-30(7):1758–1762, July 1982.
[18] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat.

Systematic topology analysis and generation using

degree correlations. In Proc. of the 2006 ACM

SIGCOMM Conference, pages 135–146, 2006.
[19] R. Mahajan, N. Spring, D. Wetherall, and T. Anderston.

Inferring link weights using end-to-end measurements. In

Proceedings of 2nd Internet Measurement Workshop,

pages 231–236, 2002.
[20] G. Malkin. RFC 2453: RIP version 2, 1998.
[21] J. M. McQuillan, G. Falk, and I. Richer. A review of the

development and performance of the ARPANET routing

algorithm. IEEE Transactions on Communications, COM-

26(12):1802–1811, Dec 1978.
[22] J. M. McQuillan, I. Richer, and E. C. Rosen. The new

routing algorithm for the ARPANET. IEEE Transactions

on Communications, 28(5):711–719, May 1980.

[23] P. M. Merlin and A. Segall. A failsafe distributed routing

protocol. IEEE Transactions on Communications, COM-

27(9):1280–1287, September 1979.
[24] J. Moy. RFC 2328: OSPF version 2, 1998.
[25] Y. Ohara, M. Bhatia, N. Osamu, and J. Murai.

Route Flapping Effects on OSPF. In Proceedings

of the 2003 Symposium on Applications and the

Internet Workshops, 2003.
[26] V. D. Park and M. S. Corson. A performance comparison of

the temporally-ordered routing algorithm and ideal link-state

routing. In Proceedings of the 3rd IEEE Symposium on

Computers and Communications, pages 592–598, 1998.
[27] P. Pillay-Esnault. OSPF Refresh and Flooding

Reduction in Stable Topologies. RFC 4136, 2005.
[28] B. Rajagopalan and M. Faiman. A new responsive distributed

shortest-path routing algorithm. In Proceedings of the ACM

SIGCOMM Conference, pages 237–246, 1989.
[29] S. B. Seidman. Network structure and minimum degree.

Social Networks, 5(3):269–287, September 1983.
[30] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and

J. Gottlieb. A case study of OSPF behavior in a large

enterprise network. In Proceedings of the 2nd Workshop

on Internet Measurement, pages 217–230, 2002.
[31] M. Thorup. OSPF Areas Considered Harmful. Private

paper, Apr 2003.
[32] A. Zinin and M. Shand. Flooding Optimizations in

Link-state Routing Protocols. IETF Draft, 2000.

