
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100585 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 418

A REVIEW OF TEMPORAL

DATAWAREHOUSE

Aastha Sharma, Dhruvika sharma

 Student, Information Technology, Maharishi Dayanand University

Dronacharya College Of Engineering , Haryana,India

Abstract- Data warehouses are become

widespread these days, as they are

specialized in taking decisions .Data

warehouses have many applications. They

have been rapidly spreading within the

industrial world over the last decade, due to

their undeniable contribution to increasing

the effectiveness and efficiency of the

decisional processes within business and

scientific domains. Since, the process that

requires analysis of historical trends, for it

time and management acquire a huge

importance. In this paper we consider the

variety of issues, often grouped under term

temporal data warehousing, implied by the

need for accurately describing how

information changes over time in data

warehousing systems. We can recognize with

reference to a three-levels architecture, these

issues can be classified into some topics,

namely: handling data changes in the data

warehouse, handling data changes in the

data mart, querying temporal data, and

designing temporal data warehouses. So,

these are the various issues that we are

dealing in this research paper. After

introducing the main concepts and

terminology of temporal databases, we

separately survey these topics. Finally, we

discuss the open research issues also in

connection with their implementation on

commercial tools.

Index Terms- Communication Handling data

changes in data mart, handling data changes

in data warehouse, querying temporal data

and its designing.

I. INTRODUCTION

At the core of most business intelligence

applications, data warehousing systems are

specialized in supporting decision making.

They have been rapidly spreading within

the industrial world over the last decade,

due to their undeniable contribution to

increasing the effectiveness and efficiency

of the decisional processes within business

and scientific domains. This wide

diffusion was supported by remarkable

research results aimed at improving

querying performance, at refining the

quality of data, and at outlining the design

process, as well as by the quick

advancement of commercial tools.

In the remainder of the paper, for the

sake of terminological consistency, we

will refer to a classic architecture for data

warehousing systems, relies on three

levels:

- The data sources, that store the data

used for feeding the data warehousing

systems. They are mainly corporate

operational databases, hosted by either

relational, but in some cases they may

also include external web data, flat

files, spreadsheet files, etc.

- The data warehouse a normalized

operational database that stores

detailed, integrated, clean and

consistent data extracted from data

sources and properly processed by

means of ETL tools.

- The data marts, where data taken from

the data warehouse are summarized

into relevant information for decision

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100585 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 419

making, in the form of intricate cubes,

to be typically queried by OLAP and

reporting front-ends.

Cubes are structured according to the

multidimensional model, whose key

concepts are fact, measure and dimension.

A fact is a focus of interest for the

decisional process, occurrences correspond

to events that dynamically occur within the

business world. Each event is

quantitatively described by a set of

numerical measures. In the intricate model,

events are arranged within an n-

dimensional space whose axes, called

dimensions of analysis, define different

perspectives for their identification.

Dimensions commonly are discrete,

alphanumerical attributes that determine

the minimum granularity for analyzing

facts. Each dimension is the root of a

placing that includes a set of levels, each

providing a way of selecting and

aggregating events. Each level can be

described by a set of properties.

As a consequence of the fact that the

decisional process typically relies on

calculating historical trends and on

comparing snapshots of the enterprise

taken at different moments, one of the

main characterizations of data

warehousing systems is that of storing

historical, non volatile data. Thus, time

and its management acquire a huge

importance. In this paper we discuss the

variety of issues, often grouped under term

temporal data warehousing, implied by the

need for accurately describing how

information changes over time. These

issues, arising by the never ending

development of the application domains,

are even more pressing today, as several

mature implementations of data

warehousing systems are fully operational

within medium to large business contexts.

Note that, in comparison with operational

databases, temporal issues are more

critical in data warehousing systems since

queries frequently span long periods of

time, thus, it is very common that they are

required to cross the boundaries of

different versions of data and/or schema.

Besides, the criticality of the problem is

obviously higher for systems that have

been established for a long time, since

unhandled developments will determine a

stronger gap between the reality and its

representation within the database, which

will soon become obsolete and useless.

So, not surprisingly, there has been a

lot of research so far regarding temporal

issues in data warehousing systems.

Basically, the approaches devised in the

literature can be accommodated in the

following categories:

• Handling changes in the data

warehouse

This mainly has to do with

maintaining the data warehouse in

sync with the data sources when

changes on either of these two levels

occur.

• Handling data changes in the data

mart

Events are continuously added to data

marts, while recorded events are

typically not subject to further

changes, in some cases they can be

modified to allocate errors or late

notifications of up-to-date values for

measures. Besides, the instances of

dimensions and hierarchies are not

entirely static.

• Handling schema changes in the data

mart

The data mart structure may change in

response to the evolving business

requirements. New levels and

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100585 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 420

measures may become necessary,

while others may become obsolete.

Even the set of dimensions

characterizing a fact may be required

to change.

• Querying temporal data (sixth

section). Querying in presence of data

and schema changes require specific

attention, especially if the user is

interested in formulating queries

whose temporal range covers different

versions of data and/or schema.

• Designing temporal data warehouses

 The specific characteristics of

temporal data warehouses may require ad-

hoc approaches for their

design.

II. TEMPORAL DATABASES

Databases where time is not represented

are often called short-lived databases.

Within an ephemeral database, only the

current representation of real-world

objects is stored and no track of changes is

kept, so it is impossible to reconstruct how

the object was in the past. Conversely,

temporal databases focus on representing

the inherent temporal nature of objects

through the time-dependent recording of

their structure and state. Two different

time dimensions are normally considered

in temporal databases, namely valid time

and deal time. Temporal database systems

are called valid-time databases, deal-time

databases depending on their capacity to

handle either or both of these two time

dimensions. The main benefit of using a

bi-temporal database is that not only the

history of the changes an object is subject

to is recorded, but it is also possible to

obtain the same result from a query

independently of the time when it is

developed.

In the real world, objects change in

both their state and their structure. This

means that, within a database, both the

values of data and their schema may

change. Obviously, values of data are

constantly modified by databases

applications. On the other hand, altering

the database schema is a less frequent,

though still common, occurrence in

database administration. With reference to

changes in the database schema, the

literature commonly distinguishes three

possibilities:

• Schema alteration is supported when a

database system allows changes to the

schema definition of a populated

database, which may lead to loss of

data.

• Schema development is supported

when a database system enables the

alteration of the database schema

without loss of existing data.

• Schema versioning is supported when

a database system allows the

accessing of all data, both

retrospectively and prospectively,

through user-definable version

interfaces.

The significant difference between

development and versioning is that the

former does not require the maintenance of

a schema history, while in the latter all

past schema versions are confirmed.

The concepts introduced in this section

were originally devised for operational

data-bases, and in particular for relational

databases. While in principle they can also

be applied to data warehousing systems,

that in ROLAP implementations that are

based on relational databases, the

peculiarities of the intricate model and the

strong relevance of time in the OLAP

world call for more specific approaches.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100585 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 421

III. HANDLING CHANGES IN

THE DATA WAREHOUSE

When considering temporal data, it is first

of all necessary to empathize how time is

reflected in the database, and how a new

piece of information affects existing data.

From this point of view, Devlin proposes

the following classification:

• Ephemeral data: alterations and

deletions of existing records

physically destroy the previous data

content.

• Periodic data: once a record is added

to a database, it is never physically

deleted, nor is its content ever

modified.

• Semi-periodic data: in some

situations, due to performance and/or

storage constraints, only the more

recent history of data changes is kept.

• Snapshot data: a data snapshot is a

stable view of data as it exists at some

point in time, not containing any

record of the changes that determined

it. A series of snapshots can provide

an overall view of the history of an

organization.

Each attribute, or each set of attributes

having the same behaviour with reference

is stored in a separate table so that a

change occurred to one concept does not

affect the other concepts. Obviously, such

normalized and time-oriented structure is

not suited for querying, that will take place

on de-normalized data marts fed from the

data warehouse.

Since the data warehouse can be

thought of as a set of derived, materialized

views defined over a set of source

schemata, the problem of developing the

content and the schema of derived views in

connection to the source changes is highly

relevant in the context of temporal data

warehouses.

View maintenance consists in

maintaining a materialized view in

response to data modifications of the

source relations.

View adjustment consists in re-

calculating a materialized view in response

to changes either in the schema of the

source relations or in the definition of the

view itself. Changes in the source

schemata may be due to an development of

the application domain they represent, or

to a new physical location for them.

Changes in the definition of the view may

also be due to new requirements of the

business users who query the data marts

fed by the data warehouse. Performing a

schema change leads to creating a new

view, by means of an extended view

definition language that incorporates two

clauses: conceal which describes a set of

attributes to be hidden, and add, that

allows a view to own additional attributes

that do not belong to source relations. In

the EVE framework, in order to automate

the redefinition of a view in response to

schema changes in the data sources, the

database administrator is allowed to

embed her preferences about view

development into the view definition itself.

The preference-based view rewriting

process, called view synchronism,

identifies and extracts appropriate

information from other data sources as

replacements of the affected components

of the original view definition, in order to

produce an alternative view that somehow

preserves the original one.

The key idea of adjustment techniques is

to avoid recalculating the materialized

view from scratch by relying on the

previous materialization and on the source

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100585 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 422

relations. The adjustment of the data

warehouse in response to schema changes

arising on source relations located on

multiple sites. To adapt the extent of the

data warehouse in response to these

changes, they adopts rewriting algorithms

that make use of containment checking, so

that only the part of the new view that is

not contained in the old view will be

recomputed. In the same context, a

distinctive feature of the Auto Med system

is the capability of handling not only

schema developments in materialized data

integration scenarios, but also changes in

the data model in which the schema is

showed.

With reference to the problem of keeping

the data warehouse in sync with the

sources, Bebel propose a model for

handling changes in the operational data

sources, which supports the automatic

spotting of structural and content changes

in the sources and their automatic

propagation to the data warehouse.

IV. HANDLING DATA CHANGES

IN THE DATA MART

Content changes result from user activities

that perform their day-to-day work on data

sources by means of different applications.

These changes are reflected in the data

warehouse and then in the data marts fed

from it. The intricate model provides direct

support for representing the sequence of

events that constitute the history of a fact:

by including a temporal dimension in the

fact, each event is associated to its date.

For instance, if we consider an ORDER

fact representing the measures in the lines

of orders received by a company selling

PC consumables, the dimensions would

probably be product, order Number, and

order Date. Thus, each event would be

associated to the ordered product, to the

number of the order it belongs to, and to

the order date.

On the other hand, the intricate model

implicitly assumes that the attributes and

the related levels are entirely static. This

assumption is clearly unrealistic in most

cases, for instance, considering again the

order domain, a company may add new

categories of products to its list while

others can be dropped, or the category of a

product may change in response to the

marketing policy.

Another common assumption is that,

once an event has been registered in a data

mart, it is never modified so that the only

possible writing operation consists in

appending new events as they occur.

While this is acceptable for a wide variety

of domains, some applications call for a

different behaviour , for example the

measure of a product ordered in a given

day could be wrongly registered or could

be communicated after the ETL process

has run.

These few examples emphasize the need

for a correct handling of changes in the

data mart content. Differently from the

problem of handling schema changes, the

issues related to data changes have been

widely addressed by researchers and

practitioners, even because in several cases

they can be directly managed in

commercial DBMSs. In the following

subsections we separately discuss the

issues related to changes in dimensional

data and factual data, that events.

V. CHANGES IN DIMENSIONAL

DATA

By this term we mean any content change

that may occur within an instance of a

placing, involving either the dimension

itself, or a property. For instance,

considering a product placing featuring

levels type and category,

the name of a product may change, or a

new category may be introduced so that

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100585 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 423

the existing types have to be reassigned to

categories.

The study of changes in dimensional

data has been pioneered by Kimball, who

coined the term slowly-changing

dimension to point out that, differently

from data in fact tables, changes within the

dimension tables occur less frequently. He

proposed three basic modelling solutions

for a ROLAP implementation of the

intricate model, each inducing a different

capability of tracking the history of data.

Conversely, in the Type II solution, each

change produces a new record in the

dimension table: old events stay related to

the old versions of hierarchies, while new

events are related to the current version. In

order to allow two or more tuples

representing the same placing instance to

be included in the dimension table,

surrogate keys must necessarily be

adopted. Finally, the Type III solution is

based on augmenting the schema of the

dimension table by representing both the

current and the previous value for each

level or attribute subject to change.

The first one proposes a temporal star

schema that, differently from the

traditional one, omits the time dimension

table and time-packs each row in every

table instead, treating the fact table and the

dimension tables equally with respect to

time. Similarly, the second one proposes to

handle changes by adding time-packs to all

the components of a intricate schema: the

values of both dimensions and facts, the

inter-level partial order that shapes placing

instances and the fact-dimension

relationships.

VI. CHANGES IN FACTUAL

DATA

We start this section by preliminarily

mentioning the two basic paradigms

introduced by Kimball for representing

inventory-like information in a data mart:

the model, where each increase and

decrease in the inventory level is recorded

as an event, and the snapshot model,

where the current inventory level is

periodically recorded.

• Flow facts record a single deal or

summarize a set of deals that occur

during the same time they are

monitored by collecting their

occurrences during a time interval and

are cumulatively measured at the end

of that period. Examples of flow facts

are orders and enrolments.

• Stock facts refer to an instant in time

and are evaluated at that instant, they

are monitored by periodically

sampling and measuring their state.

Examples are the price of a share and

the level of a river.

By the term changes in factual data

we mean any content change an event may

be subject to, involving either the values of

its measures or the dimensional elements it

is connected to. Changes in factual data

are a relevant issue in all those cases

where the values measured for a given

event may change over a period of time, to

be consolidated only after the event has

been for the first time registered in the data

mart. The late measurements typically

happens ,when the early measurements

made for events are subject to errors when

events inherently develop over time. This

problem becomes even more evident as the

timeliness requirement takes more

importance .This is the case for zero-

latency data ware-housing systems, whose

goal is to allow organizations to deliver

relevant information as fast as possible to

knowledge workers or decision systems

that need to react in near real-time to new

information.

In these contexts, if the update state is to

be made timely visible to the decision

makers, past events must be continuously

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100585 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 424

updated to reflect the incoming late

measurements. Unfortunately, if updates

are carried out by physically overwriting

past registrations of events, some problems

may arise. In fact, accountability and

traceability require the capability of

preserving the exact information the

analyst based her decision upon. If the old

registration for an event is replaced by its

latest version, past decisions can no longer

be justified. Besides, in some applications,

accessing only up-to-date versions of

information is not sufficient to ensure the

correctness of analysis.

Supporting accountability and

traceability in presence of late

measurements requires the adoption of a

bi-temporal solution where both valid and

deal time are represented by means of time

packs. Only few approaches in the

literature are specifically focused on

studying this specific topic. Bruckner

discuss the problem of temporal

consistency in consequence of delayed

discovery of real-world changes and

propose a solution based on valid time,

revelation time and loading time. Loading

time is the point in time when a new piece

of information is loaded in the data mart,

while revelation time is the point in time

when that piece of information was

realized by at least one data source.

VII. HANDLING SCHEMA

CHANGES IN THE DATA

MART

According to schema, changes in the data

mart may be caused by different factors:

• Subsequent design iterations in the

context of an incremental approach to

data mart design.

• Changes in the user requirements,

produced for instance by the need for

producing more sophisticated reports,

or by new categories of users that

subscribe to the data mart.

• Changes in the application domain,

that means, arising from alterations in

the business world, such as a change

in the way a business is done, or a

changing in the organizational

structure of the company.

• New versions of software components

being installed.

• System tuning activities.

As stated in the second section, depending

on how previous schema versions are man-

aged, two main classes of approaches may

be distinguished: schema development,

that allows alterations of the schema

without loss of data but does not maintain

the schema history, and schema

versioning, where past schema

descriptions are confirmed so that all data

may be accessed through a version

specified by the user. In the two following

subsection these two classes of approaches

will be separately surveyed.

VIII. DEVELOPMENT

In this context, FIESTA is a methodology

where the development of intricate schema

is supported on a conceptual level, thus for

both ROLAP and MOLAP

implementations. Core of the approach is a

schema evolution algebra which includes a

formal intricate data model together with a

wide set of schema development

operations, whose effects on both schema

and instances are described. Essentially,

the operations allow dimensions, placing

levels, properties and measures to be

added and deleted from the intricate

schema. Since OLAP systems are often

implemented on top of relational DBMSs,

the approach also shows how a intricate

schema can be mapped to a relational

schema by means of a meta-schema that

extends the list of the underlying DBMS.

Each list of development operations is then

transformed into a sequence of relational

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100585 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 425

development commands that adapt the

relational database schema together with

its instances, and update the contents of

the meta-schema accordingly.

The development problems investigated

with particular reference to its impact on

the logical level for ROLAP

implementations, namely, on star and

snowflake schema. Eight basic

development operators are defined. For

each of them, the changes implied on star

and snowflake schemata are described and

their impact on existing SQL queries in

reporting tools is discussed. Remarkably,

an in-depth comparison reveals that the

star schema is generally more potent than

the snowflake schema against schema

changes. A comprehensive approach to

development is the one jointly devised at

the Universities of Toronto and Buenos

Aires. The fundamentals are laid, who

propose a formal model for updating

attributes at both the schema and instance

level, based on a set of alteration

operators.

IX. VERSIONING

One of the features of a data warehouse is

its non-volatility, which means that data is

integrated into the data warehousing

system once and remains unchanged

afterwards. Importantly, this feature

implies that the re-execution of a single

query will always produce the same result.

While non-volatility in the presence of

changes at the data level can be achieved

by adopting one of the solutions discussed

in the third section, non-volatility in the

presence of changes at the schema level

requires some versioning approach to be

undertaken. In fact, it is easy to see that

the ability to re-execute previous queries

in the presence of schema changes

requires access to past schema versions,

which cannot be achieved with an

development approach .The first work in

this direction is COMET a model that

supports schema and instance versioning.

All classes in the model are time stamped

with a validity interval, so multiple,

subsequent versions of cubes can be stored

and queried. Transformation of data from

one version into the immediate one is

supported, though the paper reports no

details on how a new version can be

obtained from the previous one, a

comprehensive set of constraints that the

versions have to complete in order to

ensure the integrity of the temporal model

is proposed.

Essentially, they propose two meta-

models: one for managing a multi-version

data mart and one for spotting changes in

the operational sources. A multi-version

data mart is a sequence of versions, each

composed of a schema version and an

instance version. Data migration from the

old to the new version is semi-automated,

that means, based on the differences

between the two versions the system

suggests a set of migration actions and

gives support for their execution. The key

idea of this approach is to support flexible

cross-version querying by allowing the

designer to enrich previous versions using

the knowledge of current schema

alterations. For this purpose, when

creating a new schema version the

designer may choose to create augmented

schemata that extend previous schema

versions to reflect the current schema

extension, both at the schema and the

instance level. In a nutshell, the augmented

schema associated with a version is the

most general schema describing the data

that are actually recorded for that version

and thus are available for querying

purposes. Like for migration, a set of

possible augmentation actions is proposed

to the designer.

To the best of our knowledge, only

two approaches use both valid and deal

time in the context of versioning. Each

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100585 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 426

version has a temporal pertinence

composed by a valid time and a deal time,

thus enabling the existence of two or more

versions with the same valid time, but

different deal times. Associated to this

model, there are 16 operators for schema

changing and a SQL-like language to

create and alter versions.

X. QUERYING TEMPORAL

DATA

The development of a model for

temporal data warehousing is of little use

without an appropriate query language

capable of effectively handling time. In

principle, a temporal query could be

directly developed on a relational schema

using standard SQL, but this would be

exceedingly long and complex even for a

skilled user.

• Up-to-date queries, that require the

most recent measurement for each

event,

• Rollback queries, that require a past

version measurement for each event,

• Historical queries, that require

multiple measurements for events,

that means, are aimed at

reconstructing the history of event

changes.

All three querying scenario are

supported. Also meta-queries, e.g.

concerning the instant changes to data took

place, can be showed.

In the context of querying, a number of

works are related to the so-called temporal

aggregation problem, studied mainly in the

context of MOLAP systems and consists

in efficiently calculating and maintaining

temporal aggregates. In fact, time

dimensions typically lead to a high degree

of sparseness in traditional array-based

MOLAP cubes because of their large

cardinality, and to significant overhead to

answer time-parameterized range queries.

Specifically, for count queries, its goal is

to provide answers guaranteed to deviate

from the exact ones within a given

threshold. Their framework allows large

amounts of new data to be integrated into

the warehouse and historical summaries to

be efficiently generated, independently of

the extent of the data set in the time

dimension. They proposed a general

approach to improve the efficiency of

range aggregate queries on MOLAP data

cubes in a temporal data warehouse by

separately handling time-related

dimensions to take advantage of their

monotonic trend over time. Finally, it

introduce a new index structure called the

SB-tree, which supports fast lookup of

aggregate results based on time, and can

be maintained efficiently when the data

changes along the time line.

XI. DESIGNING TEMPORAL

DATA WAREHOUSES

It is widely recognized that designing a

data warehousing system requires

techniques that are radically different from

those normally adopted for designing

operational databases. On the other hand,

though the literature reports several

attempts to devise design methodologies

for data ware-houses, very attention has

been posed on the specific design issues

related to time.

Pedersen and Jensen, recognize that

properly handling time and changes is a

must-have for intricate models.

Considering the leading role played

by temporal hierarchies within data marts

and OLAP queries, it is worth adopting ad

hoc approaches for their modelling not

only from the logical, but also from the

conceptual point of view. While all

conceptual models for data marts allow for

temporal hierarchies to be represented like

any other hierarchies, to the best of our

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100585 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 427

knowledge the only approach that provides

ad-hoc concepts.

XII. CONCLUSIONS

In this survey we discussed the issues

related to temporal data warehousing. An

in-depth analysis of the literature revealed

that the research community not always

denoted a comprehensive attention to all

these aspects described above. As a matter

of fact, a wide agreement on the possible

design solutions has been reached only

with reference to changes in dimensional

data. As to changes in factual data and

changes in schema, though some

interesting solutions have been proposed,

no broad and shared framework has been

devised yet. Already in year 2000, systems

such as Business Warehouse by SAP

(2000) were allowed to track changes in

data and effectively query cubes based on

different temporal scenarios by choosing

users to choose which version of the

hierarchies to adopt for querying. On the

other hand, today there still is very

marginal support to changes in schema by

commercial tools. Also, the Oracle Change

Management Pack is aimed to report and

track the evolving state of metadata, thus

allowed to compare database schemata,

and to generate and execute scripts to carry

out the changes. In both cases, formulating

a single query spanning multiple databases

with different schemata is not possible.

We believe that, considering the maturity

of the field and the wide diffusion of data

warehousing systems, in the near future

decision makers will be more and more

demanding for advanced temporal support.

Thus, it is essential that both vendors and

researchers be ready to deliver effective

solutions. In this direction we envision two

main open issues. For instance, support for

cross-version queries is not satisfactory

yet, and its impact on performance has not

been completely investigated, similarly,

the effectiveness of view adjustment

approaches is still limited. On the other

hand, in order to encourage vendors to add

full temporal support to commercial

platforms, the solutions proposed in the

literature should be better harmonized to

converge into a complete, flexible

approach that could be effortlessly

accepted by the market

REFERENCES

[1] Agarwal, S., Agrawal, R., Deshpande,

P., Gupta, A., Naughton, J., Ramakrishna,

R., and Sarawagi. S. On the computation

of multidimensional aggregates. Proc.

VLDB, 1996.

[2] Choi, W., Kwon, D., and Lee, S.

Spatio-temporal data warehouses using an

adaptive cell-based approach. DKE, 59, 1

(Oct. 2006), 189-207.

[3] eCourier.co.uk dataset,

http://api.ecourier.co.uk/. (URL valid on

June 20, 2009).

[4] Giannotti, F., Nanni, M., Pinelli, F.,

and Pedreschi, D. Trajectory pattern

mining. Proc. KDD, 2007.

[5] Gray, J., Chaudhuri, S., Bosworth, A.,

Layman, A., Reichart, D., Venkatrao, M.,

Pellow, F., and Pirahesh, H. Data cube: A

relational aggregation operator

generalizing groub-by, cross-tab and sub-

totals. DMKD, 1, 1 (Mar. 1997), 29-53.

[6] Han, J., Stefanovic, N., and Koperski,

K. Selective Materialization: An Efficient

Method for Spatial Data Cube

Construction. Proc. PAKDD, 1998.

[7] Jensen, C.S., Kligys, A., Pedersen,

T.B., Dyreson, C.E., and Timko, I.

Multidimensional data modeling for

location-based services, VLDBJ, 13 (Jan.

2004), 1–21.

[8] Kalnis, P., Mamoulis, N., and Bakiras,

S. On discovering moving clusters in

spatio-temporal data. Proc. SSTD, 2005.

[9] Lee, J., Han, J., and Whang, K.

Trajectory Clustering: A Partition-and-

Group Framework. Proc. SIGMOD, 2007.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100585 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 428

[10] Li, X., Han, J., Lee, J.-G., and

Gonzalez, H. Traffic density-based

discovery of hot routes in road networks.

Proc. SSTD, 2007.

[11] Liu, Y., Choudhary, A.N., Zhou, J.,

and Khokhar, A.A. A scalable distributed

stream mining system for highway traffic

data. Proc. PKDD, 2006.

[12] Marketos, G., Frentzos, E., Ntoutsi, I.,

Pelekis, N., Raffaeta, A., and Theodoridis,

Y. Building Real World Trajectory

Warehouses. Proc. MobiDE, 2008.

[13] Ntoutsi, I., Mitsou, N., and Marketos,

G. Traffic mining in a road-network: How

does the traffic flow? IJBIDM, 3, 1, (Apr.

2008), 82-98.

[14] Orlando, S., Orsini, R., Raffaetà, A.,

Roncato, A., and Silvestri, C. Trajectory

Data Warehouses: Design and

Implementation Issues. JCSE, 1, 2 (Dec.

2007), 211-232.

