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Abstract- Data warehouses are become 

widespread these days, as they are 

specialized in taking decisions .Data 

warehouses have many applications. They 

have been rapidly spreading within the 

industrial world over the last decade, due to 

their undeniable contribution to increasing 

the effectiveness and efficiency of the 

decisional processes within business and 

scientific domains. Since, the process that 

requires analysis of historical trends, for it 

time and management acquire a huge 

importance. In this paper we consider the 

variety of issues, often grouped under term 

temporal data warehousing, implied by the 

need for accurately describing how 

information changes over time in data 

warehousing systems. We can recognize with 

reference to a three-levels architecture, these 

issues can be classified into some topics, 

namely: handling data changes in the data 

warehouse, handling data changes in the 

data mart, querying temporal data, and 

designing temporal data warehouses. So, 

these are the various issues that we are 

dealing in this research paper. After 

introducing the main concepts and 

terminology of temporal databases, we 

separately survey these topics. Finally, we 

discuss the open research issues also in 

connection with their implementation on 

commercial tools. 

 

Index Terms- Communication Handling data 

changes in data mart, handling data changes 

in data warehouse, querying temporal data 

and its designing. 

I. INTRODUCTION 

At the core of most business intelligence 

applications, data warehousing systems are 

specialized in supporting decision making. 

They have been rapidly spreading within 

the industrial world over the last decade, 

due to their undeniable contribution to 

increasing the effectiveness and efficiency 

of the decisional processes within business 

and scientific domains. This wide 

diffusion was supported by remarkable 

research results aimed at improving 

querying performance, at refining the 

quality of data, and at outlining the design 

process, as well as by the quick 

advancement of commercial tools. 

 

In the remainder of the paper, for the 

sake of terminological consistency, we 

will refer to a classic architecture for data 

warehousing systems, relies on three 

levels: 

 

- The data sources, that store the data 

used for feeding the data warehousing 

systems. They are mainly corporate 

operational databases, hosted by either 

relational, but in some cases they may 

also include external web data, flat 

files, spreadsheet files, etc. 

- The data warehouse a normalized 

operational database that stores 

detailed, integrated, clean and 

consistent data extracted from data 

sources and properly processed by 

means of ETL tools. 

- The data marts, where data taken from 

the data warehouse are summarized 

into relevant information for decision 
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making, in the form of intricate cubes, 

to be typically queried by OLAP and 

reporting front-ends.  

 

Cubes are structured according to the 

multidimensional model, whose key 

concepts are fact, measure and dimension. 

A fact is a focus of interest for the 

decisional process, occurrences correspond 

to events that dynamically occur within the 

business world. Each event is 

quantitatively described by a set of 

numerical measures. In the intricate model, 

events are arranged within an n-

dimensional space whose axes, called 

dimensions of analysis, define different 

perspectives for their identification. 

Dimensions commonly are discrete, 

alphanumerical attributes that determine 

the minimum granularity for analyzing 

facts. Each dimension is the root of a 

placing that includes a set of levels, each 

providing a way of selecting and 

aggregating events. Each level can be 

described by a set of properties. 

As a consequence of the fact that the 

decisional process typically relies on 

calculating historical trends and on 

comparing snapshots of the enterprise 

taken at different moments, one of the 

main characterizations of data 

warehousing systems is that of storing 

historical, non volatile data. Thus, time 

and its management acquire a huge 

importance. In this paper we discuss the 

variety of issues, often grouped under term 

temporal data warehousing, implied by the 

need for accurately describing how 

information changes over time. These 

issues, arising by the never ending 

development of the application domains, 

are even more pressing today, as several 

mature implementations of data 

warehousing systems are fully operational 

within medium to large business contexts. 

Note that, in comparison with operational 

databases, temporal issues are more 

critical in data warehousing systems since 

queries frequently span long periods of 

time, thus, it is very common that they are 

required to cross the boundaries of 

different versions of data and/or schema. 

Besides, the criticality of the problem is 

obviously higher for systems that have 

been established for a long time, since 

unhandled developments will determine a 

stronger gap between the reality and its 

representation within the database, which 

will soon become obsolete and useless. 

So, not surprisingly, there has been a 

lot of research so far regarding temporal 

issues in data warehousing systems. 

Basically, the approaches devised in the 

literature can be accommodated in the 

following categories: 

 

• Handling changes in the data 

warehouse  

 

This mainly has to do with 

maintaining the data warehouse in 

sync with the data sources when 

changes on either of these two levels 

occur.  

 

• Handling data changes in the data 

mart  

 

Events are continuously added to data 

marts, while recorded events are 

typically not subject to further 

changes, in some cases they can be 

modified to allocate errors or late 

notifications of up-to-date values for 

measures. Besides, the instances of 

dimensions and hierarchies are not 

entirely static.  

 

• Handling schema changes in the data 

mart  

 

The data mart structure may change in 

response to the evolving business 

requirements. New levels and 
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measures may become necessary, 

while others may become obsolete. 

Even the set of dimensions 

characterizing a fact may be required 

to change. 

 

• Querying temporal data (sixth 

section). Querying in presence of data 

and schema changes require specific 

attention, especially if the user is 

interested in formulating queries 

whose temporal range covers different 

versions of data and/or schema.  

 

• Designing temporal data warehouses  

       The specific characteristics of 

temporal data warehouses may require ad-

hoc approaches                     for their 

design. 

II. TEMPORAL DATABASES 

Databases where time is not represented 

are often called short-lived databases. 

Within an ephemeral database, only the 

current representation of real-world 

objects is stored and no track of changes is 

kept, so it is impossible to reconstruct how 

the object was in the past. Conversely, 

temporal databases focus on representing 

the inherent temporal nature of objects 

through the time-dependent recording of 

their structure and state. Two different 

time dimensions are normally considered 

in temporal databases, namely valid time 

and deal time. Temporal database systems 

are called valid-time databases, deal-time 

databases depending on their capacity to 

handle either or both of these two time 

dimensions. The main benefit of using a 

bi-temporal database is that not only the 

history of the changes an object is subject 

to is recorded, but it is also possible to 

obtain the same result from a query 

independently of the time when it is 

developed. 

 

In the real world, objects change in 

both their state and their structure. This 

means that, within a database, both the 

values of data and their schema may 

change. Obviously, values of data are 

constantly modified by databases 

applications. On the other hand, altering 

the database schema is a less frequent, 

though still common, occurrence in 

database administration. With reference to 

changes in the database schema, the 

literature commonly distinguishes three 

possibilities: 

 

• Schema alteration is supported when a 

database system allows changes to the 

schema definition of a populated 

database, which may lead to loss of 

data.  

 

• Schema development is supported 

when a database system enables the 

alteration of the database schema 

without loss of existing data.  

 

• Schema versioning is supported when 

a database system allows the 

accessing of all data, both 

retrospectively and prospectively, 

through user-definable version 

interfaces.  

 

The significant difference between 

development and versioning is that the 

former does not require the maintenance of 

a schema history, while in the latter all 

past schema versions are confirmed.  

The concepts introduced in this section 

were originally devised for operational 

data-bases, and in particular for relational 

databases. While in principle they can also 

be applied to data warehousing systems, 

that in ROLAP implementations that are 

based on relational databases, the 

peculiarities of the intricate model and the 

strong relevance of time in the OLAP 

world call for more specific approaches. 
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III. HANDLING CHANGES IN 

THE DATA WAREHOUSE 

When considering temporal data, it is first 

of all necessary to empathize how time is 

reflected in the database, and how a new 

piece of information affects existing data. 

From this point of view, Devlin proposes 

the following classification: 

 

• Ephemeral data: alterations and 

deletions of existing records 

physically destroy the previous data 

content.  

 

• Periodic data: once a record is added 

to a database, it is never physically 

deleted, nor is its content ever 

modified.  

 

• Semi-periodic data: in some 

situations, due to performance and/or 

storage constraints, only the more 

recent history of data changes is kept. 

• Snapshot data: a data snapshot is a 

stable view of data as it exists at some 

point in time, not containing any 

record of the changes that determined 

it. A series of snapshots can provide 

an overall view of the history of an 

organization.  

 

Each attribute, or each set of attributes 

having the same behaviour with reference 

is stored in a separate table so that a 

change occurred to one concept does not 

affect the other concepts. Obviously, such 

normalized and time-oriented structure is 

not suited for querying, that will take place 

on de-normalized data marts fed from the 

data warehouse. 

 

Since the data warehouse can be 

thought of as a set of derived, materialized 

views defined over a set of source 

schemata, the problem of developing the 

content and the schema of derived views in 

connection to the source changes is highly 

relevant in the context of temporal data 

warehouses. 

View maintenance consists in 

maintaining a materialized view in 

response to data modifications of the 

source relations. 

 

View adjustment consists in re-

calculating a materialized view in response 

to changes either in the schema of the 

source relations or in the definition of the 

view itself. Changes in the source 

schemata may be due to an development of 

the application domain they represent, or 

to a new physical location for them. 

Changes in the definition of the view may 

also be due to new requirements of the 

business users who query the data marts 

fed by the data warehouse. Performing a 

schema change leads to creating a new 

view, by means of an extended view 

definition language that incorporates two 

clauses: conceal which describes a set of 

attributes to be hidden, and add, that 

allows a view to own additional attributes 

that do not belong to source relations. In 

the EVE framework, in order to automate 

the redefinition of a view in response to 

schema changes in the data sources, the 

database administrator is allowed to 

embed her preferences about view 

development into the view definition itself. 

The preference-based view rewriting 

process, called view synchronism, 

identifies and extracts appropriate 

information from other data sources as 

replacements of the affected components 

of the original view definition, in order to 

produce an alternative view that somehow 

preserves the original one. 

 

 

The key idea of adjustment techniques is 

to avoid recalculating the materialized 

view from scratch by relying on the 

previous materialization and on the source 
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relations. The adjustment of the data 

warehouse in response to schema changes 

arising on source relations located on 

multiple sites. To adapt the extent of the 

data warehouse in response to these 

changes, they adopts rewriting algorithms 

that make use of containment checking, so 

that only the part of the new view that is 

not contained in the old view will be 

recomputed. In the same context, a 

distinctive feature of the Auto Med system 

is the capability of handling not only 

schema developments in materialized data 

integration scenarios, but also changes in 

the data model in which the schema is 

showed.  

 

With reference to the problem of keeping 

the data warehouse in sync with the 

sources, Bebel propose a model for 

handling changes in the operational data 

sources, which supports the automatic 

spotting of structural and content changes 

in the sources and their automatic 

propagation to the data warehouse. 

IV. HANDLING DATA CHANGES 

IN THE DATA MART 

Content changes result from user activities 

that perform their day-to-day work on data 

sources by means of different applications. 

These changes are reflected in the data 

warehouse and then in the data marts fed 

from it. The intricate model provides direct 

support for representing the sequence of 

events that constitute the history of a fact: 

by including a temporal dimension in the 

fact, each event is associated to its date. 

For instance, if we consider an ORDER 

fact representing the measures in the lines 

of orders received by a company selling 

PC consumables, the dimensions would 

probably be product, order Number, and 

order Date. Thus, each event would be 

associated to the ordered product, to the 

number of the order it belongs to, and to 

the order date. 

On the other hand, the intricate model 

implicitly assumes that the attributes and 

the related levels are entirely static. This 

assumption is clearly unrealistic in most 

cases, for instance, considering again the 

order domain, a company may add new 

categories of products to its list while 

others can be dropped, or the category of a 

product may change in response to the 

marketing policy. 

 

Another common assumption is that, 

once an event has been registered in a data 

mart, it is never modified so that the only 

possible writing operation consists in 

appending new events as they occur. 

While this is acceptable for a wide variety 

of domains, some applications call for a 

different behaviour , for example the 

measure of a product ordered in a given 

day could be wrongly registered or could 

be communicated after the ETL process 

has run. 

 

These few examples emphasize the need 

for a correct handling of changes in the 

data mart content. Differently from the 

problem of handling schema changes, the 

issues related to data changes have been 

widely addressed by researchers and 

practitioners, even because in several cases 

they can be directly managed in 

commercial DBMSs. In the following 

subsections we separately discuss the 

issues related to changes in dimensional 

data and factual data, that  events. 

V. CHANGES IN DIMENSIONAL 

DATA 

By this term we mean any content change 

that may occur within an instance of a 

placing, involving either the dimension 

itself, or a property. For instance, 

considering a product placing featuring 

levels type and category, 

the name of a product may change, or a 

new category may be introduced so that 
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the existing types have to be reassigned to 

categories. 

The study of changes in dimensional 

data has been pioneered by Kimball, who 

coined the term slowly-changing 

dimension to point out that, differently 

from data in fact tables, changes within the 

dimension tables occur less frequently. He 

proposed three basic modelling solutions 

for a ROLAP implementation of the 

intricate model, each inducing a different 

capability of tracking the history of data. 

Conversely, in the Type II solution, each 

change produces a new record in the 

dimension table: old events stay related to 

the old versions of hierarchies, while new 

events are related to the current version. In 

order to allow two or more tuples 

representing the same placing instance to 

be included in the dimension table, 

surrogate keys must necessarily be 

adopted. Finally, the Type III solution is 

based on augmenting the schema of the 

dimension table by representing both the 

current and the previous value for each 

level or attribute subject to change. 

The first one proposes a temporal star 

schema that, differently from the 

traditional one, omits the time dimension 

table and time-packs each row in every 

table instead, treating the fact table and the 

dimension tables equally with respect to 

time. Similarly, the second one proposes to 

handle changes by adding time-packs to all 

the components of a intricate schema: the 

values of both dimensions and facts, the 

inter-level partial order that shapes placing 

instances and the fact-dimension 

relationships.  

VI. CHANGES IN FACTUAL 

DATA 

We start this section by preliminarily 

mentioning the two basic paradigms 

introduced by Kimball for representing 

inventory-like information in a data mart: 

the model, where each increase and 

decrease in the inventory level is recorded 

as an event, and the snapshot model, 

where the current inventory level is 

periodically recorded.  

 

• Flow facts record a single deal or 

summarize a set of deals that occur 

during the same time they are 

monitored by collecting their 

occurrences during a time interval and 

are cumulatively measured at the end 

of that period. Examples of flow facts 

are orders and enrolments. 

• Stock facts refer to an instant in time 

and are evaluated at that instant, they 

are monitored by periodically 

sampling and measuring their state. 

Examples are the price of a share and 

the level of a river.  

 

By the term changes in factual data 

we mean any content change an event may 

be subject to, involving either the values of 

its measures or the dimensional elements it 

is connected to. Changes in factual data 

are a relevant issue in all those cases 

where the values measured for a given 

event may change over a period of time, to 

be consolidated only after the event has 

been for the first time registered in the data 

mart. The late measurements typically 

happens ,when the early measurements 

made for events are subject to errors when 

events inherently develop over time. This 

problem becomes even more evident as the 

timeliness requirement takes more 

importance .This is the case for zero-

latency data ware-housing systems, whose 

goal is to allow organizations to deliver 

relevant information as fast as possible to 

knowledge workers or decision systems 

that need to react in near real-time to new 

information. 

 

In these contexts, if the update state is to 

be made timely visible to the decision 

makers, past events must be continuously 
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updated to reflect the incoming late 

measurements. Unfortunately, if updates 

are carried out by physically overwriting 

past registrations of events, some problems 

may arise. In fact, accountability and 

traceability require the capability of 

preserving the exact information the 

analyst based her decision upon. If the old 

registration for an event is replaced by its 

latest version, past decisions can no longer 

be justified. Besides, in some applications, 

accessing only up-to-date versions of 

information is not sufficient to ensure the 

correctness of analysis.  

Supporting accountability and 

traceability in presence of late 

measurements requires the adoption of a 

bi-temporal solution where both valid and 

deal time are represented by means of time 

packs. Only few approaches in the 

literature are specifically focused on 

studying this specific topic. Bruckner 

discuss the problem of temporal 

consistency in consequence of delayed 

discovery of real-world changes and 

propose a solution based on valid time, 

revelation time and loading time. Loading 

time is the point in time when a new piece 

of information is loaded in the data mart, 

while revelation time is the point in time 

when that piece of information was 

realized by at least one data source.  

VII. HANDLING SCHEMA 

CHANGES IN THE DATA 

MART 

According to schema, changes in the data 

mart may be caused by different factors: 

• Subsequent design iterations in the 

context of an incremental approach to 

data mart design.  

 

• Changes in the user requirements, 

produced for instance by the need for 

producing more sophisticated reports, 

or by new categories of users that 

subscribe to the data mart.  

• Changes in the application domain, 

that means, arising from alterations in 

the business world, such as a change 

in the way a business is done, or a 

changing in the organizational 

structure of the company.  

 

• New versions of software components 

being installed.  

• System tuning activities.  

 

As stated in the second section, depending 

on how previous schema versions are man-

aged, two main classes of approaches may 

be distinguished: schema development, 

that allows alterations of the schema 

without loss of data but does not maintain 

the schema history, and schema 

versioning, where past schema 

descriptions are confirmed so that all data 

may be accessed through a version 

specified by the user. In the two following 

subsection these two classes of approaches 

will be separately surveyed. 

VIII. DEVELOPMENT 

In this context, FIESTA is a methodology 

where the development of intricate schema 

is supported on a conceptual level, thus for 

both ROLAP and MOLAP 

implementations. Core of the approach is a 

schema evolution algebra which includes a 

formal intricate data model together with a 

wide set of schema development 

operations, whose effects on both schema 

and instances are described. Essentially, 

the operations allow dimensions, placing 

levels, properties and measures to be 

added and deleted from the intricate 

schema. Since OLAP systems are often 

implemented on top of relational DBMSs, 

the approach also shows how a intricate 

schema can be mapped to a relational 

schema by means of a meta-schema that 

extends the list of the underlying DBMS. 

Each list of development operations is then 

transformed into a sequence of relational 
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development commands that adapt the 

relational database schema together with 

its instances, and update the contents of 

the meta-schema accordingly. 

The development problems investigated 

with particular reference to its impact on 

the logical level for ROLAP 

implementations, namely, on star and 

snowflake schema. Eight basic 

development operators are defined. For 

each of them, the changes implied on star 

and snowflake schemata are described and 

their impact on existing SQL queries in 

reporting tools is discussed. Remarkably, 

an in-depth comparison reveals that the 

star schema is generally more potent than 

the snowflake schema against schema 

changes. A comprehensive approach to 

development is the one jointly devised at 

the Universities of Toronto and Buenos 

Aires. The fundamentals are laid, who 

propose a formal model for updating 

attributes at both the schema and instance 

level, based on a set of alteration 

operators. 

IX. VERSIONING 

One of the features of a data warehouse is 

its non-volatility, which means that data is 

integrated into the data warehousing 

system once and remains unchanged 

afterwards. Importantly, this feature 

implies that the re-execution of a single 

query will always produce the same result. 

While non-volatility in the presence of 

changes at the data level can be achieved 

by adopting one of the solutions discussed 

in the third section, non-volatility in the 

presence of changes at the schema level 

requires some versioning approach to be 

undertaken. In fact, it is easy to see that 

the ability to re-execute previous queries 

in the presence of schema changes 

requires access to past schema versions, 

which cannot be achieved with an 

development approach .The first work in 

this direction is COMET a model that 

supports schema and instance versioning. 

All classes in the model are time stamped 

with a validity interval, so multiple, 

subsequent versions of cubes can be stored 

and queried. Transformation of data from 

one version into the immediate one is 

supported, though the paper reports no 

details on how a new version can be 

obtained from the previous one, a 

comprehensive set of constraints that the 

versions have to complete in order to 

ensure the integrity of the temporal model 

is proposed. 

Essentially, they propose two meta-

models: one for managing a multi-version 

data mart and one for spotting changes in 

the operational sources. A multi-version 

data mart is a sequence of versions, each 

composed of a schema version and an 

instance version. Data migration from the 

old to the new version is semi-automated, 

that means, based on the differences 

between the two versions the system 

suggests a set of migration actions and 

gives support for their execution. The key 

idea of this approach is to support flexible 

cross-version querying by allowing the 

designer to enrich previous versions using 

the knowledge of current schema 

alterations. For this purpose, when 

creating a new schema version the 

designer may choose to create augmented 

schemata that extend previous schema 

versions to reflect the current schema 

extension, both at the schema and the 

instance level. In a nutshell, the augmented 

schema associated with a version is the 

most general schema describing the data 

that are actually recorded for that version 

and thus are available for querying 

purposes. Like for migration, a set of 

possible augmentation actions is proposed 

to the designer. 

 

To the best of our knowledge, only 

two approaches use both valid and deal 

time in the context of versioning. Each 
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version has a temporal pertinence 

composed by a valid time and a deal time, 

thus enabling the existence of two or more 

versions with the same valid time, but 

different deal times. Associated to this 

model, there are 16 operators for schema 

changing and a SQL-like language to 

create and alter versions. 

X. QUERYING TEMPORAL 

DATA 

The development of a model for 

temporal data warehousing is of little use 

without an appropriate query language 

capable of effectively handling time. In 

principle, a temporal query could be 

directly developed on a relational schema 

using standard SQL, but this would be 

exceedingly long and complex even for a 

skilled user. 

 

• Up-to-date queries, that require the 

most recent measurement for each 

event,  

• Rollback queries, that require a past 

version measurement for each event,  

• Historical queries, that require 

multiple measurements for events, 

that means, are aimed at 

reconstructing the history of event 

changes.  

 

All three querying scenario are 

supported. Also meta-queries, e.g. 

concerning the instant changes to data took 

place, can be showed. 

In the context of querying, a number of 

works are related to the so-called temporal 

aggregation problem, studied mainly in the 

context of MOLAP systems and consists 

in efficiently calculating and maintaining 

temporal aggregates. In fact, time 

dimensions typically lead to a high degree 

of sparseness in traditional array-based 

MOLAP cubes because of their large 

cardinality, and to significant overhead to 

answer time-parameterized range queries.  

Specifically, for count queries, its goal is 

to provide answers guaranteed to deviate 

from the exact ones within a given 

threshold. Their framework allows large 

amounts of new data to be integrated into 

the warehouse and historical summaries to 

be efficiently generated, independently of 

the extent of the data set in the time 

dimension. They proposed a general 

approach to improve the efficiency of 

range aggregate queries on MOLAP data 

cubes in a temporal data warehouse by 

separately handling time-related 

dimensions to take advantage of their 

monotonic trend over time. Finally, it 

introduce a new index structure called the 

SB-tree, which supports fast lookup of 

aggregate results based on time, and can 

be maintained efficiently when the data 

changes along the time line. 

XI. DESIGNING TEMPORAL 

DATA WAREHOUSES 

It is widely recognized that designing a 

data warehousing system requires 

techniques that are radically different from 

those normally adopted for designing 

operational databases. On the other hand, 

though the literature reports several 

attempts to devise design methodologies 

for data ware-houses, very attention has 

been posed on the specific design issues 

related to time.  

 

Pedersen and Jensen, recognize that 

properly handling time and changes is a 

must-have for intricate models.  

 

Considering the leading role played 

by temporal hierarchies within data marts 

and OLAP queries, it is worth adopting ad 

hoc approaches for their modelling not 

only from the logical, but also from the 

conceptual point of view. While all 

conceptual models for data marts allow for 

temporal hierarchies to be represented like 

any other hierarchies, to the best of our 
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knowledge the only approach that provides 

ad-hoc concepts. 

XII. CONCLUSIONS 

In this survey we discussed the issues 

related to temporal data warehousing. An 

in-depth analysis of the literature revealed 

that the research community not always 

denoted a comprehensive attention to all 

these aspects described above. As a matter 

of fact, a wide agreement on the possible 

design solutions has been reached only 

with reference to changes in dimensional 

data. As to changes in factual data and 

changes in schema, though some 

interesting solutions have been proposed, 

no broad and shared framework has been 

devised yet. Already in year 2000, systems 

such as Business Warehouse by SAP 

(2000) were allowed to track changes in 

data and effectively query cubes based on 

different temporal scenarios by choosing 

users to choose which version of the 

hierarchies to adopt for querying. On the 

other hand, today there still is very 

marginal support to changes in schema by 

commercial tools. Also, the Oracle Change 

Management Pack is aimed to report and 

track the evolving state of metadata, thus 

allowed to compare database schemata, 

and to generate and execute scripts to carry 

out the changes. In both cases, formulating 

a single query spanning multiple databases 

with different schemata is not possible. 

We believe that, considering the maturity 

of the field and the wide diffusion of data 

warehousing systems, in the near future 

decision makers will be more and more 

demanding for advanced temporal support. 

Thus, it is essential that both vendors and 

researchers be ready to deliver effective 

solutions. In this direction we envision two 

main open issues. For instance, support for 

cross-version queries is not satisfactory 

yet, and its impact on performance has not 

been completely investigated, similarly, 

the effectiveness of view adjustment 

approaches is still limited. On the other 

hand, in order to encourage vendors to add 

full temporal support to commercial 

platforms, the solutions proposed in the 

literature should be better harmonized to 

converge into a complete, flexible 

approach that could be effortlessly 

accepted by the market 
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