
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100597 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 472

HTML5 SECURITY ASPECTS AND SECURING

YOUR WEB APPLICATION

Pranshu Sharma , Satish Anand Arjunan

I. COMMUNICATION APIS

 Web Messaging

Web Messaging (also known as Cross Domain

Messaging) provides a means of messaging

between documents from different origins in a way

that is generally safer than the multiple hacks used

in the past to accomplish this task. However, there

are still some recommendations to keep in mind.

When posting a message, explicitly state the

expected origin as the second argument to

postMessage rather than * in order to prevent

sending the message to an unknown origin after a

redirect or some other means of the target window's

origin changing. The receiving page should always:

 Check the origin attribute of the sender to

verify the data is originating from the

expected location.

 Perform input validation on the data

attribute of the event to ensure that it's in

the desired format.

Don't assume you have control over the data

attribute. A single Cross Site Scripting flaw in the

sending page allows an attacker to send messages

of any given format. Both pages should only

interpret the exchanged messages as data. Never

evaluate passed messages as code (e.g. via eval())

or insert it to a page DOM (e.g. via innerHTML),

as that would create a DOM-based XSS

vulnerability. For more information see DOM

based XSS Prevention Cheat Sheet. To assign the

data value to an element, instead of using a

insecure method like element.innerHTML = data;,

use the safer option: element.textContent = data;

Check the origin properly exactly to match the

FQDN(s) you expect. Note that the following code:

if(message.orgin.indexOf(".owasp.org")!=-1) { /*

... */ } is very insecure and will not have the

desired behavior as www.owasp.org.attacker.com

will match. If you need to embed external

content/untrusted gadgets and allow user-controlled

scripts (which is highly discouraged), consider

using a JavaScript rewriting framework such as

Google Caja or check the information on

sandboxed frames.

 Cross Origin Resource Sharing:

Validate URLs passed to XMLHttpRequest.open.

Current browsers allow these URLs to be cross

domain; this behavior can lead to code injection by

a remote attacker. Pay extra attention to absolute

URLs. Ensure that URLs responding with Access-

Control-Allow-Origin: * do not include any

sensitive content or information that might aid

attacker in further attacks. Use the Access-Control-

Allow-Origin header only on chosen URLs that

need to be accessed cross-domain. Don't use the

header for the whole domain. Allow only selected,

trusted domains in the Access-Control-Allow-

Origin header. Prefer whitelisting domains over

blacklisting or allowing any domain (do not use *

wildcard nor blindly return the Origin header

content without any checks). Keep in mind that

CORS does not prevent the requested data from

going to an unauthenticated location. It's still

important for the server to perform usual CSRF

prevention. While the RFC recommends a pre-

flight request with the OPTIONS verb, current

implementations might not perform this request, so

it's important that "ordinary" (GET and POST)

requests perform any access control necessary.

Discard requests received over plain HTTP with

HTTPS origins to prevent mixed content bugs.

Don't rely only on the Origin header for Access

Control checks. Browser always sends this header

in CORS requests, but may be spoofed outside the

browser. Application-level protocols should be

used to protect sensitive data.

 WebSockets

Drop backward compatibility in implemented

client/servers and use only protocol versions above

hybi-00. Popular Hixie-76 version (hiby-00) and

older are outdated and insecure. The recommended

version supported in latest versions of all current

browsers is RFC 6455 (supported by Firefox 11+,

Chrome 16+, Safari 6, Opera 12.50, and IE10).

While it's relatively easy to tunnel TCP services

through WebSockets (e.g. VNC, FTP), doing so

enables access to these tunneled services for the in-

browser attacker in case of a Cross Site Scripting

attack. These services might also be called directly

from a malicious page or program. The protocol

doesn't handle authorization and/or authentication.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100597 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 473

Application-level protocols should handle that

separately in case sensitive data is being

transferred. Process the messages received by the

websocket as data. Don't try to assign it directly to

the DOM nor evaluate as code. If the response is

JSON, never use the insecure eval() function; use

the safe option JSON.parse() instead. Endpoints

exposed through the ws:// protocol are easily

reversible to plain text. Only wss:// (WebSockets

over SSL/TLS) should be used for protection

against Man-In-The-Middle attacks. Spoofing the

client is possible outside a browser, so the

WebSockets server should be able to handle

incorrect/malicious input. Always validate input

coming from the remote site, as it might have been

altered. When implementing servers, check the

Origin: header in the Websockets handshake.

Though it might be spoofed outside a browser,

browsers always add the Origin of the page that

initiated the Websockets connection. As a

WebSockets client in a browser is accessible

through JavaScript calls, all Websockets

communication can be spoofed or hijacked through

Cross Site Scripting. Always validate data coming

through a WebSockets connection.

 Server-Sent Events

Validate URLs passed to the EventSource

constructor, even though only same-origin URLs

are allowed. As mentioned before, process the

messages (event.data) as data and never evaluate

the content as HTML or script code. Always check

the origin attribute of the message (event.origin) to

ensure the message is coming from a trusted

domain. Use a whitelist approach.

II. STORAGE APIS

 Local Storage

Also known as Offline Storage, Web Storage.

Underlying storage mechanism may vary from one

user agent to the next. In other words, any

authentication your application requires can be

bypassed by a user with local privileges to the

machine on which the data is stored. Therefore, it's

recommended not to store any sensitive

information in local storage. Use the object

sessionStorage instead of localStorage if persistent

storage is not needed. sessionStorage object is

available only to that window/tab until the window

is closed. A single Cross Site Scripting can be used

to steal all the data in these objects, so again it's

recommended not to store sensitive information in

local storage. A single Cross Site Scripting can be

used to load malicious data into these objects too,

so don't consider objects in these to be trusted. Pay

extra attention to “localStorage.getItem” and

“setItem” calls implemented in HTML5 page. It

helps in detecting when developers build solutions

that put sensitive information in local storage,

which is a bad practice. Do not store session

identifiers in local storage as the data is always

accesible by JavaScript. Cookies can mitigate this

risk using the httpOnly flag. There is no way to

restrict the visibility of an object to a specific path

like with the attribute path of HTTP Cookies, every

object is shared within an origin and protected with

the Same Origin Policy. Avoid host multiple

applications on the same origin, all of them would

share the same localStorage object, use different

subdomains instead.

 Client-side databases

On November 2010, the W3C announced Web

SQL Database (relational SQL database) as a

deprecated specification. A new standard Indexed

Database API or IndexedDB (formerly

WebSimpleDB) is actively developed, which

provides key/value database storage and methods

for performing advanced queries. Underlying

storage mechanisms may vary from one user agent

to the next. In other words, any authentication your

application requires can be bypassed by a user with

local privileges to the machine on which the data is

stored. Therefore, it's recommended not to store

any sensitive information in local storage. If

utilized, WebDatabase content on the client side

can be vulnerable to SQL injection and needs to

have proper validation and parameterization. Like

Local Storage, a single Cross Site Scripting can be

used to load malicious data into a web database as

well. Don't consider data in these to be trusted.

III. GEOLOCATION

The Geolocation RFC recommends that the user

agent ask the user's permission before calculating

location. Whether or how this decision is

remembered varies from browser to browser. Some

user agents require the user to visit the page again

in order to turn off the ability to get the user's

location without asking, so for privacy reasons, it's

recommended to require user input before calling

getCurrentPosition or watchPosition.

IV. WEB WORKERS

Web Workers are allowed to use XMLHttpRequest

object to perform in-domain and Cross Origin

Resource Sharing requests. See relevant section of

this Cheat Sheet to ensure CORS security.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100597 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 474

While Web Workers don't have access to DOM of

the calling page, malicious Web Workers can use

excessive CPU for computation, leading to Denial

of Service condition or abuse Cross Origin

Resource Sharing for further exploitation. Ensure

code in all Web Workers scripts is not malevolent.

Don't allow creating Web Worker scripts from user

supplied input.

Validate messages exchanged with a Web Worker.

Do not try to exchange snippets of Javascript for

evaluation e.g. via eval() as that could introduce a

DOM Based XSS vulnerability.

V. SANDBOX FRAMES

Use the sandbox attribute of an iframe for untrusted

content. The sandbox attribute of an iframe enables

restrictions on content within a iframe. The

following restrictions are active when the sandbox

attribute is set:

 All markup is treated as being from a

unique origin.

 All forms and scripts are disabled.

 All links are prevented from targeting

other browsing contexts.

 All features that triggers automatically are

blocked.

 All plugins are disabled.

It is possible to have a fine-grained control over

iframe capabilities using the value of the sandbox

attribute. In old versions of user agents where this

feature is not supported, this attribute will be

ignored. Use this feature as an additional layer of

protection or check if the browser supports

sandboxed frames and only show the untrusted

content if supported. Apart from this attribute, to

prevent Clickjacking attacks and unsolicited

framing it is encouraged to use the header X-

Frame-Options which supports the deny and same-

origin values. Other solutions like framebusting

if(window!== window.top) { window.top.location

= location; } are not recommended.

VI. OFFLINE APPLICATIONS

Whether the user agent requests permission to the

user to store data for offline browsing and when

this cache is deleted varies from one browser to the

next. Cache poisoning is an issue if a user connects

through insecure networks, so for privacy reasons it

is encouraged to require user input before sending

any manifest file.

Users should only cache trusted websites and clean

the cache after browsing through open or insecure

networks.

VII. PROGRESSIVE ENHANCEMENT AND

GRACEFUL DEGRADATION RISK

The best practice now is to determine the

capabilities that a browser supports and augment

with some type of substitute for capabilities that are

not directly supported. This may mean an onion-

like element, e.g. falling through to a Flash Player

if the <video> tag is unsupported, or it may mean

additional scripting code from various sources that

should be code reviewed.

VIII. SECURING WEB COMMUNICATION:

CERTIFICATES, SSL AND HTTPS://

If your website lets users enter sensitive

information in the browser and send it to the server,

you really should secure that communication.

Sensitive information might be a password, a social

security number, or a credit card number -

basically, anything that no one should know except

the user and your website. To establish secure

communications between the user and your

website, you need an SSL certificate. A certificate

does two things:

 It verifies that your site belongs to you. This

assures users that they're sending sensitive

information to you and not to a malicious user

whose site looks like yours.

 It encrypts the communications between the

user's browser and the web server where your

site is hosted. (This is the "SSL" part of "SSL

certificate," which stands for "secure sockets

layer" and which is the security protocol used to

encrypt the communication.) Encryption

prevents people from eavesdropping and

reading the sensitive information.

As a user, you've probably used an SSL certificate

many times. Any time you access a website using

the protocol https:// instead of http://, you're using

SSL, such as when you buy something online or do

your banking online. If you've noticed this, you've

also noticed that you as a user don't have to do

anything to use SSL and https:// -- the verification

and encryption all happen automatically.

When you create a website, though, it's up to you to

get a certificate and to make sure your site is

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100597 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 475

configured to use it. Certificates are sold by various

companies and are valid for a specified time.

(Search for "SSL certificate" on the web.) Hosting

providers often offer SSL certificates to go along

with their hosting plans. To get a certificate, in

addition to paying the fee, you must provide

information about your company or yourself that

helps the certificate authority (CA) validate who

you are and then code this information into the

certificate. When the process is finished, the CA

sends you some files that constitute the certificate.

After you've acquired a certificate, it has to be

installed on the server where your website is

hosted. If you're using a hosting provider, you don't

have direct access to the server and therefore can't

install the certificate yourself. Instead, the hosting

company typically provides a configuration utility

or dashboard that lets you send them the certificate

(if they didn't issue it themselves) and install it on

their servers. If you are managing your own server,

you need to install the certificate yourself. (If

you're using IIS 7, see How to Set Up SSL on IIS

7 on the IIS.net website.)

IX. TESTING SSL IN WEBMATRIX

When you're creating a website in WebMatrix, you

want to be able to test that sensitive pages are

working properly using SSL. To help with this,

WebMatrix includes a self-signed certificate that's

created by IIS Express. A self-signed certificate

performs the encryption that certificates do, but it

has not been verified by a CA. It's therefore useful

for testing to make sure that encryption is working.

However, it's not suitable for use with a live site,

because users would see an error message that

warns them that the certificate is not authenticated.

To use the self-signed certificate in WebMatrix, in

the Site navigation pane, click Settings.

Under SSL Connection, select Enable SSL.

Although SSL is enabled, when you run a page

from WebMatrix using IIS Express, the page will

automatically use the http:// protocol. To verify that

the https:// protocol is using the self-signed

certificate, click Run and then choose a browser

option with HTTPS.

Because you're testing using a self-signed

certificate, the browser will display an error. For

example, here's what Internet Explorer displays:

Because you're just testing in WebMatrix, it's safe

to go ahead and click Continue to this website (or

whatever similar option you see in other browsers).

The browser will often indicate that you're using a

non-trusted certificate. In Internet Explorer, the

address bar is shown with a red background and

"Certificate Error" is displayed:

In Google Chrome, the address bar shows the

protocol (https://) with a line through it:

However, when you later deploy your website to

the server where your real certificate is installed,

you won't see this error any more.

REFERENCES

[1] www.owasp.org

[2] www.microsoft.com

http://webblogheart.blob.core.windows.net/files/SecuringWebCommunications-1.png
http://webblogheart.blob.core.windows.net/files/SecuringWebCommunications-2.png
http://webblogheart.blob.core.windows.net/files/SecuringWebCommunications-3.png
http://webblogheart.blob.core.windows.net/files/SecuringWebCommunications-4.png
http://webblogheart.blob.core.windows.net/files/SecuringWebCommunications-5.jpg

