
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100605 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 504

Integrating a Set of Contract Checking Tools into Visual

Studio
Himanshu Kapoor, Amritanshu Sharan,

Dronacharya College Of Engineering

Khentawas ,Gurgaon

Abstract—Integrating tools and extensions into existing lan-
guages, compilers, debuggers, and IDEs can be difficult, work-
intensive, and often results in a one-off integration. In this
paper, we report on our experience of building and integrat-
ing the CodeContract tool set into an existing programming
environment. The CodeContract tools enable 1) authoring of
contracts (preconditions, postconditions, and object invariants),
2) instrumenting contract checks into code, 3) statically check-
ing code against contracts, and 4) visualizing contracts and
results. We identify three characteristics of our integration that
allowed us to reuse existing compilers and IDEs, increase the
reach of our tools to multiple languages and target platforms,
and maintain the tools over three consecutive versions of C#
and Visual Studio with little effort. These principles are 1)
use source embedding for new language features, 2) use target
analysis and rewriting, and 3) use generic plug-ins to isolate
tools from the IDE.

Keywords-tools; plug-ins; contracts; IDE
I. INTRODUCTION

Programming language researchers and professional tool
writers need to get their language extensions and analysis
tools into the hands of professional developers in order to
have impact and learn from user experience. On the other
side, the professional programmer requires tools to provide
1) easy adoption, 2) immediate benefit, and 3) low risk.

Teams consist of many developers with established devel-
opment, build, and test practices. Easy adoption of a tool
means that these practices are impacted minimally. This
requirement leaves tool writers with little space in which
to deviate from existing practice. In particular, developers
typically don’t have the luxury to switch languages or
programming environments in order to adopt a new tool.

Developers need to see immediate benefit from using a
new tool, otherwise, it easily falls by the wayside. It may
be beneficial to provide a combination of tools that provide
some small immediate low cost benefit, with the promise of
higher long-term benefit at a higher cost.

Tool writers must attempt to provide low risk to teams
adopting the tools. Tools often are buggy; what is the risk
of abandoning the tools when a dead-end is reached? Will
it be necessary to change a lot of code or practice, leading
to further cost and delays? If the tools do code generation,
what’s the risk of generating bad code that will only be
found after shipping? How easy is it to mitigate this issue?

In this paper, we report on our experience of building
and integrating the CodeContract tools [1] into an existing

programming environment. We discuss how we achieved the
above mentioned goals of easy adoption, immediate benefit,
and low risk, and how these affected our design and the
integration with the host programming environment, in our
case, Visual Studio.
programming environment. We discuss how we achieved the
above mentioned goals of easy adoption, immediate benefit,
and low risk, and how these affected our design and the
integration with the host programming environment, in our
case, Visual Studio.

The main lessons we draw from our experience for
integrating into an existing development environment are:

Source Embedding: Embed new language features into
an existing source language using only existing language
features such as attributes and calls to special libraries, rather
than new syntax or stylized comments.

Target Rewriting: Give semantics to the new features by
rewriting the compiler output (the target language), rather
than the source input. Similarly, perform analysis of code at
the target language level, rather than the source level.

Generic Plug-ins: For IDE integration, write plug-ins that
are reusable across many tools rather than a single specific
one. This means that generic plug-ins are themselves plug-
gable with tool specific extensions. The main two generic
plug-ins we wrote are 1) a property and settings manager to
visualize, edit, and persist tool specific settings into whatever
format the development environment uses to store such info
about a build unit, and 2) a feedback manager that translates
tool output such as warnings and errors into IDE specific
warning lists and source squigglies.

These design decisions have served us well and have
provided our tools with a great amount of leverage:

_ The source embedding allows using our language fea-tures in
both C# and VisualBasic without a single line of change to the
existing compilers and IDE.

_ Our new features always work with the latest version of these
languages. During the lifetime of CodeCon-tracts, the
compilers and languages have changed twice already (v3.5, v4.0,
v4.5).

_ Analyzing and rewriting the target instead of the source makes
our tools language agnostic. The same tools work on C# and
VisualBasic output.

_ The use of generic plug-ins isolates our extensions from changes
in the underlying IDE. We are on our third version of Visual
Studio (2008, 2010, and now 2012) with no change to the
tools and a few minor changes to the installers.

_ The loose integration of our tools at the level of the source
language and the .NET target language make
our tools usable for a variety of platforms supported by

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100605 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 505

Visual Studio, namely desktop (VB and C#), Silverlight

inside and outside of browser (VB and C#), Windows

Phone Applications (VB and C#), and server side

ASP.NET and Azure code (VB and C#).

The rest of the paper is organized as follows: Section II

provides some background on the contract tools, Section III

discusses the principles of embedding and target rewriting

we employed, Section IV explains the MSBuild process

and the hooks in Visual Studio necessary for our approach.

Section V discusses our generic plug-ins that isolate our

tools from the Visual Studio IDE and Section VI recaps our

string Compute(string str, int index, Collection c, out int len)

f
string Compute(string str, int index, Collection c, out int len)

f
Contract.Requires(str == null jj

0 <= index && index < str.Length);
Contract.Ensures(str == null jj

! String .IsNullOrEmpty(Contract.Result())

&& c.Count > Contract.OldValue(c.Count));
Contract.Ensures(Contract.ValueAtReturn(out len) >= 0);

Contract.Ensures(str == null jj

Contract.ForAll (
0, Contract.ValueAtReturn(out len),

i => Contract.Result()[i] == s[i]));

...
g

lessons learned. Figure 1. Example of an embedded language feature: CodeContracts

II. CODECONTRACTS

We use the CodeContracts tools [2], [3] as the poster
child to illustrate our preferred methodology for language
extension and tool integration. CodeContracts enable 1)
authoring of contracts (preconditions, postconditions, and
object invariants), 2) instrumenting contract checks into
code, 3) statically checking code against contracts, and 4)
visualizing contracts and results. Upon embarking on this
project, we gave ourselves a firm constraint that the entire
tool chain and experience must integrate into an existing
programming environment, in our case, Visual Studio, ben-
efiting developers who do not have the luxury to rely on
research compilers. We carefully picked our extension and
interaction points in order to 1) minimize the integration
work, 2) make our tools usable on multiple languages and
target platforms, and 3) keep the tools working from one
version of Visual Studio to the next.

An example of CodeContracts and its embedding in
C# is shown in Fig. 1. The example illustrates the
source embedding approach. We created a library called
Microsoft.Contracts. dll which contains a class Contract with
a number of static methods: Requires, Ensures, etc. These
methods return nothing and take a single boolean argument.
In this example, we use calls to these methods to “declare”
preconditions and postconditions. The C# compiler treats
them as ordinary method calls: it typechecks the arguments
and emits MSIL [4], an object oriented bytecode, which
evaluates the arguments and calls the methods. Such code
is not useful to run directly, but our tools extract the MSIL
that evaluates the expressions and the calls from the target
and use them to perform instrumentation, documentation
generation, or static analysis.

It is worth noting that the use of a library does not
preclude later making the special classes and methods of an
embedding approach a more integrated feature. For example,
in version v4.0 of the .NET Common Language Runtime
(CLR), the Contract class and methods were integrated into
the basic class library. Thus, starting with v4.0, the external
library was no longer necessary. The library can still be used
however to build for an older version of the CLR, as our

tools do not require the special classes to be in a particular
library.
tools do not require the special classes to be in a particular
library.

III. EMBEDDING AND TARGET REWRITING

Programming language extensions have used two main ap-
proaches in the past: 1) entirely new programming languages
or syntactic extensions of existing ones, or 2) stylized com-
ments in existing languages. In either case, these approaches
require entire compiler infrastructures to support tools acting
on the new language features. Specialized languages are
difficult to get into general usage, as the compilers and
support tools are usually not on par with commercial product
quality. Often such infrastructures need to track the evolution
of some original language (e.g., Spec# [5] vs. C# and
JML [6] vs. Java), which means they either don’t support
the same language, or lag several years behind the features
of the main language.

To side-step all these issues, we advocate language exten-
sions via an embedding [2] approach. The idea of embedding
a new feature in an existing programming language is to:

1) express the new feature as statements in the existing
language itself consisting of calls to a special library,

2) leverage the existing language compiler to perform
name and overloading resolution, type checking, and
code generation, and to

3) extract the use of the new language feature from the
compiled target code using decompilation to find the
calls (and arguments) to the special library.

The embedded approach for new language features pro-
vides numerous benefits to the programmer:

_ Not only can the existing editor and IDE be used to
author the new features, but the IDE actively supports
writing proper expressions by providing highlighting,
completion, intellisense, and early feedback on erro-
neous expressions (due to the fact that the existing
language will background check the expressions as
normal code).

_ Refactoring tools work properly on the new features
as well, e.g., renaming a parameter will rename any
parameter use inside a new feature as well. Contrast

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100605 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 506

this to having new features implemented via attributes

or special comments in code.

Thus, developers don’t have to learn a new language, a new

compiler, or a new IDE. Embedding is also beneficial to

writers of tools:

_ Since the features are compiled by the existing com-

piler, the tool writer has no need to duplicate the full

compiler infrastructure, such as the parser, type checker,

name and overloading resolution, etc., nor extend the

IDE to recognize the new constructs.

_ Extracting the new feature use from the compiled target

code as opposed to the source code allows the tool

writer to deal with a smaller and usually better specified

language than the original source language. In our

example, consider the difference in complexity between

the full C# language and the relative simplicity of the

Figure 2. Architecture

target MSIL intermediate language of .NET. Addition-

ally the new features may work on other languages that

compile to the same target (in our case VisualBasic).

_ The tool writer can typically reuse existing well tested

infrastructure to manipulate/analyze the target code,

such as .NET binary reader/writers, or similarly Java

byte code infrastructures.

Risk Mitigation

In the introduction, we alluded to the need to minimize

risk for adopters of new tools. In particular, it should be

possible for adopters to stop using the tools without negative

impact to the project (beyond the lack of the benefit of the

tool itself). In particular, this implies that dropping the tools

should not require any code changes.

With source embedding of new features it is thus a good
idea to employ techniques provided by the compiler or pre-
processor to make sure that all new feature use can be
erased by the compiler via suitable compiler options. In
our example of CodeContracts, we use conditional attributes

on our static methods1. These attributes act as an implicit
ifdef CONTRACTS ... #endif bracketing around every use
of our contract methods. As a result, if the CONTRACTS

symbol is not defined during a build, the code compiles
as if all extension usage had been syntactically erased. This
principle of erasure gives adopting teams a lot of confidence
in trying out new features and tools, since they know they
can flip the switch at any time without negative impact.

The same principle also allows teams to use new features

and tools for debugging only, but ship code that contains

no use of new features and requires no target rewriting.

Removing new tools from the critical path from source to

binaries mitigates risk and puts adopters at ease.

IV. VISUAL STUDIO AND MSBUILD

Visual Studio is a full-fledged integrated development en-

vironment from Microsoft. It supports various source lan-
1Conditional attributes are a standard C# and VisualBasic feature.

guages and target platforms, has language specific editors
with high-lighting and intellisense, and all the usual bells
and whistles one expects from a modern IDE today.

guages and target platforms, has language specific editors
with high-lighting and intellisense, and all the usual bells
and whistles one expects from a modern IDE today.

For C# and VisualBasic, code is grouped into projects,
where each project consists of a number of source files
and results in a single managed assembly containing the
metadata and IL code. These assemblies typically reside in
. dll or .exe files. Debugging information for assemblies is
stored in separate .pdb files.

Project information is stored in project files (. csproj

for C# and .vbproj for VisualBasic). These files contain
XML conforming to MSBuild [7] descriptions. MSBuild
descriptions are similar to the classic Unix Makefiles, and
the msbuild command corresponds to the classic make com-
mand [8]. Project files define source files, build flavor, refer-
ences to libraries, target names etc. as properties. The project
files don’t contain any actual build rules. Build rules are
factored separately in shared files such as CSharp.targets,
VisualBasic.targets, and Common.targets which are included
from every project file. These files also contain XML con-
forming to MSBuild descriptions. In this case, they contain
definitions of build steps that are parameterized by properties
defined in the project files. Fig. 2 illustrates this situation
for a C# project called X. The project file X.csproj is used
by MSBuild to create X. dll from the sources using the C#
compiler csc. The project file imports the general C# build
rules via CSharp.targets, which in turn include general build
rules (for both VisualBasic and C#) from Common.targets.

MSBuild is used to build project outputs from the com-
mand line as well as invoked by Visual Studio when a build
is triggered via the IDE. Visual Studio provides a graphical
user interface that exposes the standard project properties
of project files. Therefore, the way Visual Studio controls
the build works entirely by it changing the properties in the
project files and letting MSBuild do the build based on these
properties alone.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100605 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 507

Hooks

To influence the build process, the Common.targets pro-

vides a general hook to import additional MSBuild files.

The hook imports all MSBuild files located in a particular

configuration directory on disk. The Common.targets build

rules are written in such a way as to make it easy to

write additional rules that trigger during a build prior or

after certain other build steps. Therefore, extending and

modifying the standard build requires no changes to any

existing build files. Instead, one simply authors an additional

MSBuild description containing new rules and settings and

imports it using the existing build hook.

Figure 2 shows how this hook is used to import the

Contracts.targets file. It defines how to rewrite project out-

puts to instrument contracts or to run the static analysis. In

our example, it adds an extra build step after the compilation

via the C# compiler csc to invoke the contract rewriter

ccrewrite to instrument checks into the target IL of X. dll .

The approach of using the existing build hook provided
for all project types makes our approach independent of
project type and addresses some of our overall goals as
follows: the alternative approach (no common build hook)
would be to define a new kind of project type (C# with
contracts, and similarly for VB and other flavors) and create
new projects based on this type. The new project type can
have its own build rules and would not require an existing
hook. However, it would a) fail the easy adoption test, since
developers would not be able to use the tools on existing
projects, b) entail higher risk, as a development team would
have to change all their projects to switch back to not using
the tools. With our advocated approach, it is even possible
for some team members of a development team to use the
tools, and for other to not install them. The build works in
both scenarios, one with tools, the other without.

V. PLUG-IN ARCHITECTURE

With the build hook described in the previous section, we

can already influence the build in order to run extra tools. In

principle, we don’t need any additional integration into the

IDE. E.g., to perform the contract instrumentation step, the

project files simply need to set the property <CCRewrite>

to true and the build files handle the rest. Similarly, output

from the tools such as warnings are already printed as part

of the build log.

Additional integration into the IDE is really only needed

to make the tools more accessible. Normally, developers

don’t edit the XML in project files by hand, nor do they

look at the msbuild output log to see errors. Instead, the IDE

provides a graphical user interface to read and change project

settings and synchronizes them with the corresponding prop-

erties in the project files. Similarly, the IDE takes care of

nicely displaying warnings and errors in a sortable list, and

additionally may overlay squigglies or context menus over

the source code.

Thus, in order to make our tools more accessible, we

wrote two generic plug-ins for Visual Studio that we describe

in the next sections.
Thus, in order to make our tools more accessible, we

wrote two generic plug-ins for Visual Studio that we describe

in the next sections.
A. Property Manager

The property manager is a generic plug-in written as a

Visual Studio package. It provides an interface for additional

plug-ins to read and write tool specific project properties into

existing project files of C# and VisualBasic. Specific plug-

ins into the property manager consist of a UI component

typically showing check marks and other setting elements. In

our example, the contract settings plug-in shown in Figure 2

on the top-right plugs into the generic property manager to

read contract specific settings from the project file, display

them, and to write changes from user manipulations back to

the project file via the property manager.

The property manager provides an important level of iso-

lation and abstraction from the underlying IDE. Implement-

ing the property manager was quite difficult. To properly

interface with Visual Studio and display settings on existing

project types (such as C# or VisualBasic) required a rather

deep integration, which is beyond the casual plug-in writer.

The property manager thus encapsulates this complexity and

makes it possible to write many tool specific settings plug-

ins in a very easy way, well within the reach of anyone who

can write some simple C# or VisualBasic code. Additionally,

the property manager isolates tool specific plug-ins from

changes in the underlying IDE due to new versions.

Our plugin for CodeContract properties works for both

C# and VisualBasic. In fact, the same component is used for

both. The CodeContract properties show up after all standard

C#/VB project properties as shown in Fig. 3.
B. Feedback Manager

The feedback manager is our second generic plug-in

written as a Visual Studio package. It provides additional

plug-ins an interface to the error list maintained by the IDE,

to source code overlays (such as squigglies to underline parts

of code with warnings), and context menus on warnings

and squigglies. The feedback manager again is generic in

that it takes care of the complicated integration with Visual

Studio once and for all, and provides a simple interface

to plug-ins such as the one we wrote for CodeContracts.

The contract specific feedback plug-in uses context menus

to display related warning locations (such as the location of

the original precondition violated at a call site).

Additionally, the contract specific plug-in into the feed-

back manager allows background execution of the static

analysis (to avoid slowing down the build). The same ben-

efits of abstraction and isolation discussed for the property

manager apply equally to the feedback manager as well.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100605 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 508

Figure 3.

VI. LESSONS LEARNED

CodeContract Property User Interface
CodeContract Property User Interface

Due to our reuse of minimal custom integration, our tools

In this section, we reflect on our approach and discuss what
worked and why, and point out where our approach has
short-comings.

Source embedding of new features and target rewriting
worked really well for tracking language changes and sup-
porting the new features with the latest language versions.
The main reason for this advantage is that the target language
typically evolves much slower than the source language.
This was the case for .NET vs. C# and VisualBasic. E.g., in
v4.0, C# added variance for generics, dynamic types, named
arguments and optional parameters, among other features,
whereas the .NET IL didn’t change at all.

The reason why our build integration works well and is
stable is thanks to a good existing design and extensibility of
the common MSBuild rules in the shared Common.targets.

The languages supported by our approach are not really
dependent on the languages per se, but more by how
they integrate into Visual Studio and the build, and what
target binary language they support. VisualBasic and C# are
integrated very similarly into Visual Studio and thus our
tools work the same on both. C++ and F# on the other hand
have enough differences that the integration does not work.
For C++ it is the binary target language that is not .NET
and the build process is completely different. For F#, the
differences are small and our approach should work barring

a few technical difficulties.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100605 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 509

work for a surprising variety of .NET platform flavors.
There are Silverlight applications running in the browser,
or stand-alone, there are ASP.NET web sites and Azure
services with server side .NET code, and Windows Phone
applications. All these platforms have slight differences in
library support, but they share the same source
languages, target language, and build structure. Our

tools work with all of these without change2.
work for a surprising variety of .NET platform flavors.
There are Silverlight applications running in the browser,
or stand-alone, there are ASP.NET web sites and Azure
services with server side .NET code, and Windows Phone
applications. All these platforms have slight differences in
library support, but they share the same source
languages, target language, and build structure. Our

tools work with all of these without change2.
The integration work we did for CodeContracts can be
reused in future tools as most of our integrations are non-
tool specific and use existing hooks provided by Visual

Studio. In fact, we already have used essentially the
same approach for other tools, such as the concurrent

revision rewriter [9]. Our approach also has short-
comings. Target analysis and rewriting is at the mercy

of the precision of debugging information in .pdb

files. E.g., for .NET source mappings from target IL to
source is based on lines only, so precise intra-line
information is not available when highlighting an

expression with a warning. Target rewriting also has
the disadvantage of obscuring high-level constructs in the
source language. E.g., iterators are compiled away into

a number of helper classes and methods. Some
decompilation must be performed in order to extract

contracts from such methods. Another problem we ran
into with the build hooks is

2The only platform specific code is in selecting the appropriate
contract reference assemblies for the platform during the build

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100605 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 510

that they don’t provide any ordering/scheduling support for

multiple rewriters in the tool chain. This makes it difficult

to combine tools that don’t know about each other.

VII. RELATED WORK

The most comparable effort to the CodeContracts tool set

and its IDE integration are the various tools developed

for the Java Modeling Language JML [6]. JML uses a

comment-based syntax to augment Java programs with pre

and post conditions, and object invariants. JML has a long

history of tools for runtime checking, static checking, and

documentation generation, starting in 1999. As expounded

in [10], there are at least five distinct efforts and versions

of similar JML tools [11], [12]. All these tools seem to

be based on modified Java compilers that augment various

phases to parse the JML expressions and either translate

them to runtime checks, or to various static checking back-

ends. Some tools have various levels of Eclipse IDE [13],

[14] support.

The JML approach has some advantages over our source

embedding approach: the syntax for contracts can be more

concise due to the ability to step outside the underlying

language expression syntax (e.g., for referring to the result

and old-values). Furthermore, we are relying on conditional

compilation features to force erasure of contracts on builds

where they are not desired, comment-based approaches

obviously do not require such features as comments are

erased automatically.

The amount of effort that went into these numerous open-

source and community maintained tools over the years seems

disproportionately larger than our own efforts, and yet has

not resulted in a stable set of tools that has remained up-to-

date with the Java language. In contrast, our approach and

design has not changed since its beginning in 2007. Our tools

have been completely built and maintained by three project

members and two additional researchers, all on a part time

basis. Most of our work has been spent on the actual tooling,

such as the static checker engine, and the rewriting, and very

little effort overall went into the build and IDE integration

and its maintenance.

VIII. CONCLUSION

We identified three characteristics that stand out in our

effort to build and integrate a set of contract checking

tools into Visual Studio. 1) Use source embedding for new

language features in order to reuse existing compilers and

source editors as-is, 2) use target analysis and rewriting to

isolate from the evolution of source languages and to support

multiple source languages with a common set of tools, and

3) use generic plug-ins to isolate tools from the IDE.

Our tools and integration have survived three consecutive

versions of the C# and VisualBasic languages and compil-

ers, as well as three versions of Visual Studio with little

maintenance effort on our part.

If we were to embark on another language extension

project, we would proceed with the same design.

If we were to embark on another language extension

project, we would proceed with the same design.

ACKNOWLEDGMENT

The authors would like to thank Herman Venter for his

tireless efforts building the best .NET readers and writers.

REFERENCES

[1] M. Fahndrich, M. Barnett, and F. Logozzo, “CodeContract
Tools,” Mar. 2009. [Online]. Available: http://research.
microsoft.com/contracts

[2] M. Fahndrich, M. Barnett, and F. Logozzo, “Embedded Con-
tract Languages,” in ACM Symposium on Applied Computing,
2010.

[3] M. Fahndrich and F. Logozzo, “Static contract checking with
abstract interpretation,” in FoVeOOS, 2010, pp. 10–30.

[4] ECMA, “Standard ECMA-355, Common Language In-
frastructure,” http://www.ecma-international.org/publications/
standards/Ecma-335.htm, Jun. 2006.

[5] M. Barnett, K. R. M. Leino, and W. Schulte, “The Spec#
programming system: An overview.” in CASSIS, ser. LNCS,
vol. 3362. Springer, 2004.

[6] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design
of JML: A behavioral interface specification language for
Java,” SIGSOFT, vol. 31, no. 3, pp. 1–38, Mar. 2006. [Online].
Available: http://doi.acm.org/10.1145/1127878.1127884

[7] Microsoft, “Standard ECMA-355, Common Language Infras-
tructure,” http://msdn.microsoft.com/en-us/library/0k6kkbsd.
aspx, Jun. 2006.

[8] S. Feldman, “Unix make tool,” http://en.wikipedia.org/wiki/
Make (Unix).

[9] S. Burckhardt, A. Baldassin, and D. Leijen, “Concurrent
programming with revisions and isolation types,” in Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 2010.

[10] D. Cok, “OpenJML: JML for Java 7 by Extending OpenJDK,”
in NASA Formal Methods, ser. LNCS, vol. 6617. Springer,
Mar. 2011, pp. 472–479.

[11] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll, “An overview of JML
tools and applications,” in International Journal on Software
Tools for Technology Transfer, vol. 7, no. 3. Springer, Jun.
2005, pp. 212–232.

[12] A. Sarcar and Y. Cheon, “A new eclipse-based jml compiler
built using ast merging,” University of Texas at El Paso, Tech.
Rep. TR #10-08, 2010.

[13] “Eclipse,” http://eclipse.org, 2011.
[14] J. McAffer and J.-M. Lemieux, Eclipse Rich Client Platform:

Designing, Coding, and Packaging Java(TM) Applications.

Addison-Wesley Professional, 2005.

¨

¨

¨

