
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

 IJIRT 100606 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 511

M

Compiler Vectorization For Architecture

Himanshu Kapoor,Amritanshu Sharan

Dronacharya College Of Engineering

Khentawas,Gurgaon

Abstract— This paper deals with compiler technology that aims on low-power DIGITAL SIGNAL PROCESSOR(DSP) architecture.The

architecture includes obvious part of exploitation of data and Instruction Level Parallelism.For data manipulation it requires large register file

with dynamically composed vectors.We also discuss how vector register file are used by optimizing compiler for data ccess pattern.We

describe various new challenges that DSP architecture presents.It invokes various new opportunities for optimized compiler that is

introduced.The optimized compiler aims such an architecture for achieving performance which must to be compared to hand generated

code.Compiler technology in area of DSP compilation represents a state of art.The main motive is only to implement the process of

vectorization by using vectorizing compiler.The most time consuming and error prone work is to write the vector codes in assembly

language

Index Terms — Loop unrolling, Multimedia extension, Modulo scheduling, Parallelism, Software pipelining, Vectorization, Vector-length

1 INTRODUCTION

——————————  ——————————

ULTIMEDIA extensions are the biggest advancement

in processor architecture in past decade. Now a days

they are predominant in embedded systems and also in

general-purpose computers. The structure of multimedia ap-

plications often contains compute-intensive kernels that oper-

ate on independent streams of data. Multimedia extensions

provide vector instructions that operate on relatively short

vectors. Vector instructions works on SIMD (single instruction

multiple data) architecture. Common examples are MMX, SSE

and AltiVec . Over time multimedia extensions have grown

increasingly complex. They offer extensive vector instruction

sets, including support for floating-point computation. So,

these short-vector instructions need some kind of improve-

ment. Multimedia extensions may contain combination of vec-

tor and scalar instructions. Automatic compilation faces two

major challenges: identifying vector instructions in sequential

descriptions, and using this information to deal with short-

vector instructions efficiently. There are two important issues

with multimedia extensions- memory alignment and selection

of vector code. This paper presents a review of different

schemes which are available to address selection of code is-

sues.

2 CODE SELECTION

When targeting the general-purpose architectures, the most

important performance consideration is the overall code gen-

eration scheme. There are two classic techniques for extracting

parallelism: vectorization and software pipelining.

Researchers first developed vectorizing technique [1],[2] for

vector supercomputers such as Cray-1[3]. More recently this

technique is adopted for compilation to multimedia exten-

sions[4],[5],[6],[7],[8],[9],[10],[11]. Vectorization identifies the

instructions in which the same operations operate on multiple

data items concurrently.

Software pipelining is a method for exploiting ILP (instruc-

tion- level parallelism). Modulo scheduling is a popular ap-

proach of software pipelining. Most software pipelining im-

plementations are based on Rau’s iterative modulo scheduling

heuristic. Iterative modulo scheduling was first developed for

one of the first VLIW machine Cyndra 5 [12],[13].

3 VECTORIZATION

Vectorization is a process which converts a sequential loop

into a parallel version that can utilizes a processor’s vector

instruction set. This transformation involves reordering of

instructions. As the main work of vector instruction is to com-

pute multiple values before committing any of the results.

In normal programming language we write a loop as-

execute this loop 10 times

read the next instruction and decode it

fetch first number

fetch second number

add them

store the result

end loop

After vectorization the above loop looks like-

read instruction and decode it
fetch 10 numbers
fetch another 10 numbers

add them

store result

Vectorization is only legal if it preserves dependencies in the

original loop. Data flow analysis [14],[15] is a method which

shows dependencies among scalar variables. There must be an

accurate identification of dependences among memory opera-

tions as they can prevent vectorization.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

 IJIRT 100606 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 512

Allen and Kennedy [1] and Wolfe [2] had provided overview

of techniques for memory dependence analysis. Data depen-

dences are of three types-

1. Flow (or true) dependences occur when op1 writes a value

which is read by op2. If this type of dependency is present

between instructions then they must be execute sequentially

op1 and then op2.

2. Antidependences occur when op1 reads a location which

op2 subsequently overwrites.

3. Output dependences occur when op1 writes a value which

op2 subsequently overwrites.

Dependences in a loop further classified as loop-carried and

loop-independent, depending upon whether they occur be-

tween operations in different iterations or the same iteration,

respectively. For loop carried dependence we associate a dis-

tance vector with each loop.

for (i=0;i<n;i++)

for(j=0;j<n;j++)

for(k=0;k<n;k++)

x[i+1][j+3][k+2]=x[i][j][k];

The above loop contains flow dependence from store to load

with distance vector (1, 3, 2). Vectorization operates at the

source level representation but low level vectorization is also

possible if the compiler computes dependences early and

saves the information.

The basic steps for vectorizing a loop are as follows. Consider

the following loop-

for(i=0;i<n;i++)

{

1.a[i]=b[i]+c[i];

2.b[i+1]=a[i]+d[i];

3.c[i+1]=e[i]+f[i];

}

The data dependence graph of the above loop is-

3

1,2

Fig. 2. After combining strongly connected components

The result after vectorization is

c[1:n+1]=e[0:n]+f[0:n];

for(i=0;i<n;i++)

{

a[i]=b[i]+c[i];

b[i+1]=a[i]+d[i];

}

The vector operation execute first, even though in the original

code it appears later. This results from the topological sort and

is necessary to preserve the dependences from statement 3 to

statement 1.

Maximum number of multimedia architectures does not pro-

vide specialized hardware support for transferring data be-

tween scalar and vector registers. In this case the communica-

tion overhead is unavoidable.

4 SUPERWORD-LEVEL PARALLELISM

Vector supercomputer works more efficiently when operates

on long vector. Superword-level parallelism is obtained from

unrolling data-parallel loops. Often, it is present in multime-

dia codes that perform the same operation on the red, green

and blue components of a pixel, as in alpha bending

for(i=0;i<n;i++)

{

blend[i].r=a*fore[i].r+(1-a)*back[i].r;

blend[i].g=a*fore[i].g+(1-a)*back[i].g;

blend[i].b=a*fore[i].b+(1-a)*back[i].b;

}

In cases where data parallelism is available across loop itera-
1 tions, unrolling converts loop-level parallelism to superword-

level parallelism. Consider a loop

2
for(i=0;i<n;i++)

3 {

Fig. 1. Data dependence graph of the above loop

Then identify the strongly connected components in graph.

Statements involved in cycle must execute sequentially and

rests are vectorizable.

Statement 1 and 2 form a strongly connected component so

must execute sequentially. Statement 3 is vectorizable.

a[i]=b[i]+c[i];

}

Unrolling this loop by a factor of 2

for(i=0;i<n;i+=2)

{

a[i+0]=b[i+0]+c[i+0];

a[i+1]=b[i+1]+c[i+1];

}

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

 IJIRT 100606 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 513

SLP can be implemented by different algorithms. The algo-

rithm, using simple greedy heuristic [16], locates groups of

isomorphic expressions and replaces them with vector op-

codes. Isomorphic expressions are vectorizable when they are

independent. Data dependence analysis is simpler for SLP

than for traditional vectorization because it can ignore loop-

carried dependences. Independent isomorphic expressions

may not vectorizable in all cases. Consider the following loop:

for(i=0;i<n;i++)

{

a[i+1]=b[i];

b[i+1]=a[i];

}

erations of an inner loop. If we schedule the loop in a tradi-

tional manner, the blocks must execute sequentially in order to

follow dependences. Fig 3 (b) represents parallel execution of

instructions with software pipeline. The schedule preserves

dependences between instructions since each state operates in

a different iteration. The kernel executes repeatedly and forms

the steady-state of the software pipeline. The prolog and epi-

log fill and drain the pipeline, respectively.

A A

prolog

Suppose we have architecture of vector length of 2. So we can B A B
unroll the loop by factor 2.

for(i=0;i<n;i++)

{

a[i+1]=b[i];

b[i+1]=a[i];

a[i+2]=b[i+1];

b[i+2]=a[i+1];

}

C

(a)

A B C

kernel

B
C

In the above code there is no dependences from statement 1 to

statement 3, a single vector can execute both. Same is true for

statement 2 and 4. Combining both pairs wll results the fol-

lowing code:

for(i=0;i<n;i++)

epilog

C

(b)

{

a[i+1:i+2]=b[i:i+1];

b[i+1:i+2]=a[i:i+1];

}

There is a dependence cycle in the original loop which means

full vectorization is impossible. So the above code is invalid.

The SLP heuristic [16] might produce the following:

for(i=0;i<n;i++)

{

b[i+1]=a[i];

a[i+1:i+2]=b[i:i+1];

b[i+2]=a[i+1];

}

To determine when vectorizable is profitable, superword-

parallelization employs an unsophisticated cost metric.

5 SOFTWARE PIPELINING

Software pipelining is a static scheduling technique for over-

lapping iterations of a loop. The technique takes advantage of

ILP hardware to execute operations from multiple iterations

concurrently.

The blocks in Fig 3(a) represent the dependence between op-

Fig.3.(a) dependence graph of inner loop, (b) dependence graph after

applying software pipelining

Most existing algorithms generate modulo schedules. A mod-

ulo schedule is an ordering of instructions in an inner loop

which preserves dependences and no resource conflicts. Rau’s

iterative modulo scheduling heuristic [19], [20] forms the basis

of many software pipelining implementations. Modulo sche-

duling is applicable to any architecture providing ILP hard-

ware. When available, however it benefits from rotating regis-

ters and predication [12], [13]. Rotating registers provide a

mechanism to queue multiple writes to the same nominal reg-

ister. If they are unavailable in the target architecture, the

compiler can employ unrolling and scalar renaming [18]. Pre-

dication provides a means for modulo scheduling loops with

control flow.

6 SELECTIVE VECTORIZATION [17]

The aim of selective vectorization is to divide the operations

between scalar and vector operations in order to maximize

loop performance. The algorithm [22] is concerned with ba-

lancing resources and ignores the latency of all operations. If

dependence cycle is present in the graph then full vectoriza-

tion is not possible unless the dependence distance is greater

than or equal to the vector length. For example, a loop state-

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

 IJIRT 100606 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 514



Cycle Slot1 Slot2 Slot3

1 VLoad(1-2) Load(1)

2 Load(2)

3 VLoad(3-4) Load(3)

4 VMul(1-2) Load(4)

5 VLoad(5-6) Load(5) Add(1)

6 VMul(3-4) Load(6) Add(2)

… … … …

Cycle Slot1 Slot2 Slot3

1 Load(1) Load(2)

2 Mul(1)
3 Load(2) Load(2) Add(1)

4 Mul(2)

… … … …

ment a [i+3] =a[i] has a dependence cycle but can be vecto-

rized for vector lengths of four or less. Selective vectorization

algorithm is based on Kernighan and Lin’s two-cluster parti-

tioning heuristic [21]. The algorithm divides instructions be-

tween scalar and vector partition. All operations are originally

placed in scalar partition. Operations are moved one at a time

between the partitions, searching for a division that minimizes

cost function. Once each operation has been repartitioned, the

configuration with the lowest cost is used as the starting point

for the next iteration. The algorithm stops when an iteration

fails to improve the starting point. Operations remaining in

the vector partition are vectorized. Consider the following

loop:

for(i=0;i<n;i++)

{

s=s+x[i]*y[i];

}

Dependence graph of the above loop

load load

Modulo schedule table for full vectorization

TABLE 2
MODULO SCHEDULE USING FULL VECTORIZATON

Cycle Slot1 Slot2 Slot3

1 VLoad(1-2)

2 VLoad(1-2)

3 VMul(1-2)

4 VLoad(3-4) Add(1)

5 VLoad(3-4) Add(2)

6 VMul(3-4)

… … … …

Table 2 shows that if we use full vectorization it gives an II of 1.5.

Now distribute the loop into vector and scalar loops by using

selective vectorizaton.

for(i=0;i<n;i+=2)

{

t[i:i+1]=x[i:i+1]*y[i:i+1];

}

for(i=0;i< n;i++)

{

mul

s=s+t[i];

}

The modulo scheduling table for the above loop is

add

Fig. 4. Dependence graph of the loop

Now we create modulo schedule of the above loop with an II of

2.

TABLE 3
MODULO SCHEDULE USING SELECTIVE VECTORIZATION

TABLE 1
MODULO SCHEDULE OF THE LOOP

By analyzing table 3 we can say that it gives an II of 1.0.

4 CONCLUSION

We have shown different techniques of compilation of short-

vector instructions. These instructions are common in multi-

media extensions and now days they are important part of

embedded and general-purpose computers. These techniques

are differing in their work and complexity. Selective vectoriza-

tion promises to give the best result but the algorithm is very

much complex. Different heuristics can be used in selective

vectorization. The selection of techniques depends on the un-

derlying architecture.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

 IJIRT 100606 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 515

ACKNOWLEDGMENT

The authors would like to acknowledge MHRD, Govt. of India

for providing support by Teaching Assistantship scheme.

REFERENCES

[1] Randy Allen and Ken Kennedy, Optimizing Compilers for Modern Ar-

chitectures: A Dependence-based Approach. Morgan Kaufmann, San

Francisco, California, 2001.

[2] Michael J. Wolfe, High Performance Compilers for Parallel Computing .

Addison-Wesley, Redwood City, California, 1996

[3] Richard M. Russel, ―The CRAY-1 Computer System‖. Communica-

tions of the ACM,21(1):63{72, January 1978.

[4] Aart J.C.Bik, The Software Vectorization Handbook: Applying Multimedia

Extensions for Maximum Performance. Intel Press, Hillsboro, OR, 2004.

[5] Gerald Cheong and Monica Lam, ―An Optimizer for Multimedia

Instruction Sets”. In Second SUIF Compiler Workshop, August 1997.

[6] Derek J. DeVries, ―A Vectorizing SUIF Compiler: Implementation

and Performance,‖ Master's thesis, University of Toronto, June 1997.

[7] Alexandre E. Eichenberger, Peng Wu, and Kevin O'Brien, ―Vectoriza-

tion for SIMD Architectures with Alignment Constraints,‖ Proc.

SIGPLAN '04 Conference on Programming Language Design and Imple-

mentation, pp. 82-93, Washington,DC, June 2004.

[8] Dorit Naishlos,‖ Autovectorization in GCC,‖ Proc. of the 2004 GCC

Developers Summit, pp. 105-118, 2004.

[9] Dorit Naishlos, Marina Biberstein, Shay Ben-David,and Ayal Zaks,

―Vectorizing for a SIMD DSP Architecture,” Proc. of the 2003 Interna-

tional Conference on Compilers, Architecture and Synthesis for Embedded

Systems, pp. 2-11, San Jose,CA, October 2003.

[10] N. Sreraman and R. Govindarajan,‖ A Vectorizing Compiler for

Multimedia Extensions,‖International Journal of Parallel Programming ,

28(4):363-400, August 2000.

[11] Peng Wu, Alexandre E. Eichenberger, Amy Wang, and Peng Zhao ,

―An Integrated Simdization Framework Using Virtual Vectors,‖

Proc. of the 19th ACM Inter-national Conference on Supercomputing ,

pp.169-178, Cambridge, MA, June 2005.

[12] James C. Dehnert, Peter Y.T. Hsu, and Joseph P. Bratt,‖Overlapped

Loop Support in the Cydra 5,‖ Proc. of the Third International Confe-

rence on Architectural Support for Programming Languages and Operating

Systems, pp. 26-38, Boston, MA,April 1989.

[13] B. Ramakrishna Rau, David W.L.Yen, Wei Yen, and Ross A.Towle,

―The Cydra 5 Departmental Supercomputer: Design Philosophies,

Decisions and Trade-offs,‖ Computer, 22(l):12-35, Jan. 1989.

[14] Alfred V. Aho, Ravi Sethi, and J. D. Ullman, Compilers Principles,

Techniques,and Tools Addison-Wesley, 1986.
[15] Steven S. Muchnick, Advanced Compiler Design and Implementation

Morgan Kaufmann,San Francisco, California, 1997.

[16] Samuel Larsen and Saman Amarasinghe ―Exploiting Superword

Level Parallelism with Multimedia Instruction Sets,‖ Proc. of the SIG-

PLAN '00 Conference on Programming Language Design and Implementa-

tion, pp. 145-156, Vancouver, BC, June 2000.

[17] Samuel Larsen,‖Compilation Techniques for Short-Vector Instruc-

tions‖, Ph.D. Thesis,Dept. of Electrical Engg, & Computer Science,

Massschusetts institute of technology,April 2006

[18] Monica Lam,‖ Software Pipelining: An Effective Scheduling

Tech- nique for VLIW Machines,‖ Proc. of the SIGPLAN '88

Conference on Programming Language Design and Implementation, pp.

318-328, Atlan- ta, GA, June 1988.

[19] B. Ramakrishna Rau,‖Iterative Modulo Scheduling: An Algorithm for

Software Pipelining Loops,‖ Proc. of the 27th Annual Internationa l

Symposium on Microarchitecture, pp. 63-74, San Jose, CA, November

1994.

[20] B. Ramakrishna Rau,‖Iterative Modulo Scheduling,‖Technical Re-

port HPL-94-115, Hewlett Packard Company, November 1995

[21] B. Kernighan and S. Lin,‖An Efficient Heuristic Procedure for Parti-

tioning Graphs,‖ Bell System Technical Journal,49:291–307, February

1970.

[22] Samuel Larsen, Rodric Rabbah and Saman Amarasinghe,‖ Exploiting

Vector Parallelism in Software Pipelined Loops,‖Proc. of the 38th An-

nual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO’05), 2005.

