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Abstract— This paper deals with compiler technology that aims on low-power DIGITAL SIGNAL PROCESSOR(DSP) architecture.The 

architecture includes obvious part of exploitation of data and Instruction Level Parallelism.For data manipulation it requires large register file 

with dynamically composed vectors.We also discuss how vector register file are used by optimizing compiler for data ccess pattern.We 

describe various new challenges that DSP architecture presents.It invokes various new opportunities for optimized compiler that is 

introduced.The optimized compiler aims such an architecture for achieving performance which must to be compared to hand generated 

code.Compiler technology in area of DSP compilation represents a state of art.The main motive is only to implement the process of 

vectorization by using vectorizing compiler.The most time consuming and error prone work is to write the vector codes in assembly 

language 

 
Index Terms — Loop unrolling, Multimedia extension, Modulo scheduling, Parallelism, Software pipelining, Vectorization, Vector-length 

 

 
1   INTRODUCTION 

——————————      ——————————

ULTIMEDIA    extensions are  the  biggest advancement 

in  processor architecture in  past  decade. Now  a  days 

they  are predominant in embedded systems and  also in 

general-purpose computers. The  structure of multimedia ap- 

plications often  contains compute-intensive kernels that  oper- 

ate  on  independent  streams of  data.   Multimedia extensions 

provide vector   instructions that   operate on  relatively short 

vectors. Vector instructions works on SIMD (single  instruction 

multiple data)  architecture. Common examples are MMX, SSE 

and  AltiVec  . Over  time  multimedia extensions have  grown 

increasingly complex. They  offer  extensive vector  instruction 

sets,  including support  for  floating-point  computation.  So, 

these  short-vector instructions need  some  kind  of    improve- 

ment.  Multimedia extensions may  contain combination of vec- 

tor  and  scalar  instructions. Automatic compilation faces  two 

major  challenges: identifying vector  instructions in sequential 

descriptions, and  using this  information to  deal  with  short- 

vector  instructions efficiently. There  are  two  important issues 

with  multimedia extensions- memory alignment and  selection 

of  vector   code.   This  paper  presents a  review  of  different 

schemes which are  available to  address selection of code  is- 

sues. 
 

 

2 CODE SELECTION 

When   targeting the  general-purpose  architectures, the  most 

important performance consideration is the  overall code  gen- 

eration scheme. There  are two  classic techniques for extracting 

parallelism: vectorization and software pipelining. 

Researchers first  developed  vectorizing technique [1],[2] for 

vector  supercomputers such as Cray-1[3]. More recently this 
 

 
 

technique is  adopted for  compilation to  multimedia exten- 

sions[4],[5],[6],[7],[8],[9],[10],[11]. Vectorization   identifies   the 

instructions in which the same  operations operate on multiple 

data  items concurrently. 

Software pipelining is a  method for  exploiting ILP  (instruc- 

tion-  level  parallelism). Modulo scheduling is a popular ap- 

proach of software pipelining. Most  software pipelining im- 

plementations are based on Rau’s iterative modulo scheduling 

heuristic. Iterative modulo scheduling was  first developed for 

one of the first VLIW machine Cyndra 5 [12],[13]. 
 

 

3 VECTORIZATION 

Vectorization is  a  process which converts a  sequential loop 

into  a  parallel version that  can  utilizes a  processor’s vector 

instruction set. This transformation involves reordering of 

instructions. As the main  work  of vector  instruction is to com- 

pute  multiple values before   committing any  of  the  results. 

In normal programming language we write  a loop as- 

 
execute  this loop 10 times 

read  the next instruction and decode it 

fetch first number 

fetch second number 

add  them 

store the result 

end loop 

After vectorization the above loop looks like- 

read  instruction and decode it 
fetch 10 numbers 
fetch another 10 numbers 

add  them 

store result 

 
Vectorization is only legal if it preserves dependencies in the 

original loop. Data flow analysis [14],[15] is a method which 

shows dependencies among scalar variables. There must be an 

accurate identification of dependences among memory opera- 

tions as they can prevent vectorization.



© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002 

  IJIRT 100606 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 512 
 

 

Allen  and  Kennedy [1] and  Wolfe  [2] had  provided overview 

of techniques for  memory dependence analysis. Data  depen- 

dences are of three  types- 

 
1. Flow  (or true)  dependences occur  when op1 writes a value 

which is read  by  op2.  If this  type  of dependency is present 

between instructions then  they  must be  execute  sequentially 

op1 and then op2. 

 
2. Antidependences occur  when op1  reads a location which 

op2 subsequently overwrites. 

 
3. Output dependences occur  when op1 writes a value  which 

op2 subsequently overwrites. 

 
Dependences in a loop  further classified as loop-carried and 

loop-independent, depending upon whether they  occur  be- 

tween operations in different iterations or the  same  iteration, 

respectively. For loop  carried dependence we  associate a dis- 

tance vector  with each loop. 

 
for (i=0;i<n;i++) 

for(j=0;j<n;j++) 

for(k=0;k<n;k++) 

x[i+1][j+3][k+2]=x[i][j][k]; 

 
The  above  loop  contains flow  dependence from  store  to load 

with   distance vector   (1, 3,  2). Vectorization operates  at  the 

source level  representation but  low  level  vectorization is also 

possible  if  the   compiler  computes  dependences  early   and 

saves the information. 

The basic steps  for vectorizing a loop  are as follows.  Consider 

the following loop- 

 
for(i=0;i<n;i++) 

{ 

1.a[i]=b[i]+c[i]; 

2.b[i+1]=a[i]+d[i]; 

3.c[i+1]=e[i]+f[i]; 

} 

 
The data  dependence graph of the above  loop is- 

3 
 

 
 
 
 

1,2 
 

 
Fig. 2. After combining strongly connected components 

The result after vectorization is 

c[1:n+1]=e[0:n]+f[0:n]; 

for(i=0;i<n;i++) 

{ 

a[i]=b[i]+c[i]; 

b[i+1]=a[i]+d[i]; 

} 

 
The vector  operation execute  first, even  though in the original 

code it appears later. This results from the topological sort and 

is necessary to preserve the  dependences from  statement 3 to 

statement 1. 

Maximum number of multimedia architectures does  not  pro- 

vide  specialized hardware support  for  transferring data   be- 

tween scalar  and  vector  registers. In this case the communica- 

tion overhead is unavoidable. 
 

 

4  SUPERWORD-LEVEL PARALLELISM 

Vector  supercomputer works more  efficiently when operates 

on  long  vector.  Superword-level parallelism is obtained from 

unrolling data-parallel loops.  Often,  it is present in multime- 

dia  codes  that  perform the  same  operation on  the  red,  green 

and blue components of a pixel, as in alpha bending 

 
for(i=0;i<n;i++) 

{ 

blend[i].r=a*fore[i].r+(1-a)*back[i].r; 

blend[i].g=a*fore[i].g+(1-a)*back[i].g; 

blend[i].b=a*fore[i].b+(1-a)*back[i].b; 

}

 

In cases  where data  parallelism is available across  loop  itera- 
1  tions,  unrolling converts loop-level parallelism to superword- 

level parallelism. Consider a loop 

2 
for(i=0;i<n;i++) 

3                                                                                       {

 
Fig. 1. Data dependence graph of the above loop 

 
Then  identify the  strongly connected components  in  graph. 

Statements involved in  cycle  must execute  sequentially and 

rests are vectorizable. 

Statement 1 and  2 form  a strongly connected component so 

must execute  sequentially. Statement 3 is vectorizable. 

a[i]=b[i]+c[i]; 

} 

Unrolling this loop by a factor of 2 

for(i=0;i<n;i+=2) 

{ 

a[i+0]=b[i+0]+c[i+0]; 

a[i+1]=b[i+1]+c[i+1];

}
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SLP can  be  implemented by  different algorithms. The  algo- 

rithm, using simple greedy heuristic [16], locates  groups of 

isomorphic  expressions  and   replaces them   with   vector   op- 

codes.  Isomorphic expressions are vectorizable when they  are 

independent. Data   dependence  analysis is  simpler for  SLP 

than  for  traditional vectorization because it can  ignore loop- 

carried  dependences.  Independent  isomorphic  expressions 

may not vectorizable in all cases. Consider the following loop: 

 
for(i=0;i<n;i++) 

{ 

a[i+1]=b[i]; 

b[i+1]=a[i]; 

} 

erations of an  inner  loop.  If we  schedule the  loop  in a tradi- 

tional  manner, the blocks must execute  sequentially in order to 

follow  dependences. Fig 3 (b) represents parallel execution of 

instructions with   software pipeline. The  schedule preserves 

dependences between instructions since each state  operates in 

a different iteration. The kernel executes repeatedly and  forms 

the  steady-state of the  software pipeline. The prolog and  epi- 

log fill and drain the pipeline, respectively. 

 
 

 
A                         A 

prolog

 

Suppose we have  architecture of vector  length of 2. So we can                     B                         A                 B 
unroll the loop by factor 2. 

 
for(i=0;i<n;i++) 

{

a[i+1]=b[i]; 

b[i+1]=a[i]; 

a[i+2]=b[i+1]; 

b[i+2]=a[i+1]; 

} 

C 
 

 
(a) 

A                   B                   C 

kernel 
 

 

B                     
C

 

In the above  code there  is no dependences from statement 1 to 

statement 3, a single  vector  can execute  both.  Same  is true  for 

statement 2 and  4. Combining both  pairs  wll  results the  fol- 

lowing code: 

 
for(i=0;i<n;i++) 

 
epilog 

 

 
 
 

C 

 
(b)

{ 

a[i+1:i+2]=b[i:i+1]; 

b[i+1:i+2]=a[i:i+1]; 

} 

 
There  is a dependence cycle in the original loop  which means 

full  vectorization is impossible. So the  above  code  is invalid. 

The SLP heuristic [16] might produce the following: 

 
for(i=0;i<n;i++) 

{ 

b[i+1]=a[i]; 

a[i+1:i+2]=b[i:i+1]; 

b[i+2]=a[i+1]; 

} 

 
To  determine  when  vectorizable is  profitable,  superword- 

parallelization employs an unsophisticated cost metric. 
 

 

5  SOFTWARE PIPELINING 

Software pipelining is a static  scheduling technique for over- 

lapping iterations of a loop.  The technique takes  advantage of 

ILP hardware to  execute  operations from  multiple iterations 

concurrently. 

The blocks  in Fig 3(a) represent the  dependence between op- 

 

Fig.3.(a) dependence graph of inner loop, (b) dependence graph after 

applying software pipelining 

 
Most  existing algorithms generate modulo schedules. A mod- 

ulo  schedule is an  ordering of instructions in  an  inner  loop 

which preserves dependences and  no resource conflicts.  Rau’s 

iterative modulo scheduling heuristic [19], [20] forms  the basis 

of many software pipelining implementations. Modulo sche- 

duling is applicable to  any  architecture providing ILP hard- 

ware.  When  available, however it benefits from rotating regis- 

ters  and   predication [12],  [13]. Rotating registers provide a 

mechanism to queue multiple writes to the same  nominal reg- 

ister.  If  they  are  unavailable in  the  target architecture, the 

compiler can employ unrolling and  scalar  renaming [18]. Pre- 

dication provides a means for modulo scheduling loops  with 

control flow. 
 

 

6  SELECTIVE VECTORIZATION [17] 

The  aim  of selective vectorization is to divide the  operations 

between scalar  and  vector   operations in  order to  maximize 

loop  performance. The  algorithm [22] is concerned with  ba- 

lancing resources and  ignores the  latency of all operations. If 

dependence cycle  is present in the  graph then  full  vectoriza- 

tion  is not  possible unless the  dependence distance is greater 

than  or equal  to the  vector  length. For example, a loop  state-
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

Cycle Slot1 Slot2 Slot3 

1 VLoad(1-2) Load(1)  

2  Load(2)  

3 VLoad(3-4) Load(3)  

4 VMul(1-2) Load(4)  

5 VLoad(5-6) Load(5) Add(1) 

6 VMul(3-4) Load(6) Add(2) 

… … … … 

 

Cycle Slot1 Slot2 Slot3 

1 Load(1) Load(2)  

2 Mul(1)   
3 Load(2) Load(2) Add(1) 

4 Mul(2)   

… … … … 

 

 

ment  a [i+3] =a[i]  has  a dependence cycle  but  can  be vecto- 

rized  for vector  lengths of four  or less. Selective  vectorization 

algorithm is based on Kernighan and  Lin’s two-cluster parti- 

tioning heuristic [21]. The  algorithm divides instructions be- 

tween scalar  and  vector  partition. All operations are originally 

placed in scalar  partition. Operations are moved one at a time 

between the partitions, searching for a division that  minimizes 

cost function. Once each operation has been  repartitioned, the 

configuration with  the lowest cost is used as the starting point 

for  the  next  iteration. The  algorithm stops  when an  iteration 

fails  to  improve the  starting point. Operations remaining in 

the  vector   partition are  vectorized.  Consider  the  following 

loop: 

 
for(i=0;i<n;i++) 

{ 

s=s+x[i]*y[i]; 

} 

 
Dependence graph of the above loop 

 
 
 
 

load                  load 

 
Modulo schedule table for full vectorization 
 

TABLE 2 
MODULO SCHEDULE USING FULL VECTORIZATON 

 

 
Cycle Slot1 Slot2 Slot3 

1 VLoad(1-2)   

2 VLoad(1-2)   

3 VMul(1-2)   

4 VLoad(3-4) Add(1)  

5 VLoad(3-4) Add(2)  

6 VMul(3-4)   

… … … … 

 
Table 2 shows that if we use full vectorization it gives an II of 1.5. 

Now  distribute the loop  into  vector  and  scalar  loops  by using 

selective vectorizaton. 

 
for(i=0;i<n;i+=2) 

{ 

t[i:i+1]=x[i:i+1]*y[i:i+1]; 

}

for(i=0;i< n;i++) 

{
 

 
 

mul 

s=s+t[i]; 

}

The modulo scheduling table for the above loop is 
 
 

 
add 

 

 
Fig. 4. Dependence graph of the loop 

 

Now we create modulo schedule of the above loop with an II of 

2. 

TABLE 3 
MODULO SCHEDULE USING SELECTIVE VECTORIZATION

 

TABLE 1 
MODULO SCHEDULE OF THE LOOP 

 
By analyzing table 3 we can say that it gives an II of 1.0. 

 

 

4   CONCLUSION 

We have  shown different techniques of compilation of short- 

vector  instructions. These  instructions are  common in multi- 

media extensions and  now  days  they  are  important part  of 

embedded and  general-purpose computers. These  techniques 

are differing in their  work  and  complexity. Selective vectoriza- 

tion  promises to give  the  best result but  the algorithm is very 

much complex. Different heuristics can  be  used in  selective 

vectorization. The selection of techniques depends on the  un- 

derlying architecture.
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