
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100611 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 533

The RMI Mechanism by JAVA

Tarun Yadav, Rahul Yadav, Vishal Sharma
Computer Science and Engineering, Dronacharya College of Engineering, Haryana, India

Abstract- The team wants to describe about the RMI that is

Remote Method Invocation feature that Java programming

language offers to its programmers. Java is one of the mostly

used programming languages in today's world. It has almost all

the features that are required to make a simple program like say

“hello” to making GUI components for the Operating Systems.

Hence one of the feature in it is RMI, which is basically used

over a Network. Basically, the team wants to describe about this

RMI feature used in Java by a programmer who wants to access

an object available at some other Computer. We want to

elaborate on this Feature of Java and its effectiveness in the

transferring of data across a Network. It basically depends on the

RMI Layer model . The client appears to talk directly to the

server. In reality, the client program talks only to the a stub. The

stub passes that conversation along to the remote reference

layer. The remote reference layer talks to the transport layer.

The transport layer on the client passes the data across the

Internet to the transport layer on the server. The transport layer

on the server then communicates with the server’s remote

reference layer. The remote reference layer talks to the skeleton.

The skeleton communicates with the server. We access the RMI

mechanism whenever we have to access objects remotely, this

happens when the classes to be used are not present In the built-

in environment. The RMI is an improvement in a programming

language because Java happens to be the first of them all

Providing the mechanism for solving the accessing of a remote

object.

Index Terms- Stub, Skeleton, Remote Object.

I. INTRODUCTION

Java is one of the mostly used programming languages in

today's world. It has almost all the features that are required to

make a simple program like say “hello” to making GUI

components for the Operating Systems. Hence one of the

feature in it is RMI, which is basically used over a Network.

Basically, the team wants to describe about this RMI feature

used in Java by a programmer who wants to access an object

available at some other Computer. We want to elaborate on

this Feature of Java and its effectiveness in the transferring of

data across a Network because some memory would be taken

by tag array that is cache directory.

II.RMI- HISTORY

Basically all the computer application used in todays world

comprises of three basic fields.

* Client

* Server

* Database

Initially a Monolithic approach was subjected to the use of all

the three fields of the Computer Application. In this field, all

these fields were into a single place.

For example- MS Word.

Then came Two-Tier Architecture of the Computer

Application. Where a client would have different place and

Server/ Database would have a same place.

Example- In a Database, a client needs to update his

information.

Finally, came a true to its purpose architecture that is a three-

tier Architecture for the computer applications.

In this architecture Client, Server and Database, all had

different positions. Where Client would always contact the

respective Server to seek information through an Object.

And the Remote Object whose Interface has already been

declared or initialized in the Server can be accessed.

2.1Introduction to RMI

RMI basically stands for Remote Method Invocation, which

means it is a mechanism through which a program running on

a computer can access another method from some other

computer easily.

It is a personification of the Three-tier Architecture of the

Computer Application. It is effectively used between clients

and Servers to exchange information according to their needs.

III. RMI LAYER MODEL

The client appears to talk directly to the server

In reality, the client program talks only to the a stub.

*The stub passes that conversation along to the remote

reference layer

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100611 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 534

*The remote reference layer talks to the transport layer

*The transport layer on the client passes the data across the

*Internet to the transport layer on the server

*The transport layer on the server then communicates with the

server’s remote reference layer

*The remote reference layer talks to the skeleton

*The skeleton communicates with the server

RMI is an implementation of the of the Distributed Object

programming model—similar to CORBA, but simpler and

specialized to the Java language.

3.1.RMI- The Architecture

It’s architecture basically has 2 layers:

* Application : which comprises of the client and the server.

*RMI System: Which comprises of the system that performs

the functioning of the RMI.

Application layer

Client: Client is the one who sends the request to the server.

Server: Server is the end point that receives the request and

outputs the results.

RMI System Layer

Stub: The request sent by the Client is serialized for further

processing and is sent to the sending end of the RRL layer.

RRL: Remote Reference Layer, accepts the request from the

Stub and marshal it so that it can go through the Transport

layer without getting compromised.

Transport end is the point where the connection is established

between the client and server.

RRL(receiving): It Receives the message and it unmarshal it.

Skeleton: it receives the unmarshalled request and then it de-

serializes it so that the server can understand it.

IV. RMI WORKING

Now comes the difficult part where we would have to actually

develop an RMI.

There are a few steps that are involved in the developing of the

RMI.

Steps are:

* Create a Remote Interface

* Create a Remote Class that not only implements the Remote

interface but also extends the Remote class, so that we can

establish the Remote Object.

*Create a Remote Server

*Create a Remote Client

Step By Step working of the RMI.

Step-1. Creating a Remote Interface

//Must extend java.rmi.Remote Interface

//The Remote Interface must be declared public

//Each method must throw the RemoteException

//Hello Interface

import java.rmi.*;

public interface Hello extends Remote

{

public String sayHello() throws RemoteException

}

Step-2 Define the Remote Interface Implementation

import java.rmi.*;

import java.rmi.server.*;

public class HelloImpl extends UnicastRemoteObject

implements Hello //implementing remote server

{

public HelloImpl() throws RemoteException

{

super(); //Defining the constructor for the remote Object

}

public String sayHello() throws RemoteException

{

return "Hello! Neha malik";

C
li
e
n
t

S
e
r
v
e
r

S
t
u
b

S
k
el
et
o
n

Remote
Reference

Layer

Tr
a
ns
p
or
t

Tr
an
sp
or
t

Network

Application

RMI System

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100611 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 535

} //Providing Implementation for Remote methods

}

Step-3 Creating RMI Server class

import java.rmi.*;

import java.rmi.server.*;

public class HelloServer

{

public static void main(String args[])

{

try

{

System.setSecurityManager(new RMISecurityManager());

// creating and installing security manager

Hello h=new HelloImpl();

 //creating instance of remote object

Naming.rebind("server",h);

//Registering the Remote object using rebind() method

System.out.println("object is registered.");

System.out.println("Now server is waiting for client

request...");

}

catch(Exception e)

{

System.out.println("Error: "+e);

}}}

Step-4 Create Remote Client class

import java.rmi.*;

public class HelloClient

{

public static void main(String args[])

{

try

{

Hello h = (Hello)Naming.lookup("rmi://localhost/server");

// Obtaining reference of remote object from RMI registry

//using lookup() method

System.out.println("Client: Hello!");

System.out.println("Server: "+h.sayHello());

// invoke remote methods

}

catch(Exception e)

{

System.out.println("Error: "+e);

}}}

Step-5 Executing of the RMI Program

RMI is an implementation of the of the Distributed Object

programming model—similar to CORBA, but simpler and

specialized to the Java language.

4.1.RMI Layer model

The client appears to talk directly to the server

In reality, the client program talks only to the a stub.

The stub passes that conversation along to the remote

reference layer

The remote reference layer talks to the transport layer

The transport layer on the client passes the data across the

Internet to the transport layer on the server

The transport layer on the server then communicates with the

server’s remote reference layer

The remote reference layer talks to the skeleton

The skeleton communicates with the server.

import java.rmi.*;

import java.rmi.server.*;

public class HelloImpl extends UnicastRemoteObject

implements Hello //implementing remote server

{

public HelloImpl() throws RemoteException

{

super(); //Defining the constructor for the remote Object

}

public String sayHello() throws RemoteException

{

return "Hello! Neha malik";

} //Providing Implementation for Remote methods

}

import java.rmi.*;

import java.rmi.server.*;

public class HelloServer

{

public static void main(String args[])

{

try

{

System.setSecurityManager(new RMISecurityManager());

// creating and installing security manager

Hello h=new HelloImpl(); //creating instance of remote

object

Naming.rebind("server",h); //Registering the Remote object

using rebind() method

System.out.println("object is registered.");

System.out.println("Now server is waiting for client

request...");

}

catch(Exception e)

{

System.out.println("Error: "+e);

}}}

Step-1:Compile the four source files

Step 2: Generate the Stub & Skelton using:

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100611 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 536

 rmic HelloImpl

// As the Stub and Skeleton are used for the Serializing and de-

serializing of the request submitted by the Client.

Step 3: Start the RMI registry

 start rmiregistry

// This step registers the Object of the RMI interface

Implimentation class to the Server, so that it gets legitimate to

access it through the client.

Step 4: start the server

 java HelloServer

//This step executes the Server class and runs all the objects

declared in it.

Step 5: Start the client

 java HelloClient

//Finally the client access the objects that it needs to.

There are few points that needs to be understood whenever we

are performing the RMI mechanisms.

V. SECURITY MANAGER

A security manager is an object that defines a security policy

for an application. This policy specifies actions that are unsafe

or sensitive. Any actions not allowed by the security policy

cause a SecurityException to be thrown. An application can

also query its security manager to discover which actions are

allowed.

Typically, a web applet runs with a security manager provided

by the browser or Java Web Start plugin. Other kinds of

applications normally run without a security manager, unless

the application itself defines one. If no security manager is

present, the application has no security policy and acts without

restrictions.

5.2.INTERACTING WITH THE SECURITY MANAGER

The security manager is an object of type SecurityManager; to

obtain a reference to this object,

invoke System.getSecurityManager.

SecurityManager appsm = System.getSecurityManager();

If there is no security manager, this method returns null.

Once an application has a reference to the security manager

object, it can request permission to do specific things. Many

classes in the standard libraries do this. For

example, System.exit, which terminates the Java virtual

machine with an exit status,

invokes SecurityManager.checkExit to ensure that the current

thread has permission to shut down the application.

The SecurityManager class defines many other methods used

to verify other kinds of operations. For

example, SecurityManager.checkAccessverifies thread

accesses, and SecurityManager.checkPropertyAccess verifies

access to the specified property. Each operation or group of

operations has its own checkXXX() method.

In addition, the set of checkXXX() methods represents the set

of operations that are already subject to the protection of the

security manager. Typically, an application does not have to

directly invoke any checkXXX() methods.

5.3.RECOGNIZING A SECURITY VIOLATION

Many actions that are routine without a security manager can

throw a SecurityException when run with a security manager.

This is true even when invoking a method that isn't

documented as throwing SecurityException. For example,

consider the following code used to read a file:

reader = new FileReader("xanadu.txt");

In the absence of a security manager, this statement executes

without error, provided xanadu.txt exists and is readable

5.4.PERMISSIONS

A permission represents access to a system resource. In order

for a resource access to be allowed for an applet (or an

application running with a security manager), the

corresponding permission must be explicitly granted to the

code attempting the access.

Java uses Permission abstract class for representing access to a

system resource.

public abstract class Permission extends Object

implements Guard, Serializable

A permission typically has a name (often referred to as a

"target name") and, in some cases, a comma-separated list of

one or more actions. For example, the following code creates a

FilePermission object representing read access to the file

named abc in the /tmp directory:

perm = new java.io.FilePermission("/tmp/abc", "read");

In this, the target name is "/tmp/abc" and the action string is

"read".

The policy for a Java application environment is represented

by a Policy object. In the Policy reference implementation, the

policy can be specified within one or more policy

configuration files. The policy file(s) specify what permissions

are allowed for code from specified code sources. A sample

policy file entry granting code from

the /home/sysadmin directory read access to the

file /tmp/abc is

grant codeBase "file:/home/sysadmin/" {

 permission java.io.FilePermission "/tmp/abc", "read";

};

Permission objects are similar to String objects in that they are

immutable once they have been created. Subclasses should not

provide methods that can change the state of permission once

it has been created.

VI. CONCLUSION

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100611 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 537

After reviewing about RMI mechanism, we concluded that

RMI is although a difficult task to implement but it gets easier

through the JAVA programming language.

ACKNOWLEDGEMENT

The team acknowledges that the review given about the above

topic is purely out of our own views and that we preferred

only the References when needed.

REFERENCES

[1]. Power Point Presentation by Mrs. Neha Malik

[2]. Professional Java programming by Brett Spell, WROX

Publication.

[3]. Advance Java by Gajendra Gupta, Firewall Media.

[4]. Advance java 2 platform, how to program, 2
nd

 edition,

Harvey M. Deital, Prentice Hall.

