
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100618 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 543

Mach: A New Kernel Foundation For UNIX

Development

Sarthak Budhiraja, Rochan Mehrotra

Information Technology , Dronacharya College Of Engineering, Haryana,India

Abstract- Mach is a multiprocessor operating

system kernel and environment under development

at Carnegie Mellon University. Mach provides a

new foundation for UNIX development that spans

networks of uniprocessors and multiprocessors.

This paper describes Mach and the motivations that

led to its design. Also described are some of the

details of its implementation and current status.

I. INTRODUCTION

Mach is a multiprocessor operating system kernel

currently under development at Carnegie-Mellon

University. In addition to binary compatibility with

Berkeley’s current UNIX 4.3BSD release, Mach

provides a number of new facilities not available in

4.3:

• Support for multiprocessors including:

– provision for both tightly-coupled and loosely-

coupled general purpose multiprocessors and

– separation of the process abstraction into tasks

and threads, with the ability to execute multiple

threads within a task simultaneously.

• A new virtual memory design which provides:

– large, sparse virtual address spaces,

– copy-on-write virtual copy operations,

– copy-on-write and read-write memory sharing

between tasks,

– memory mapped files and

– user-provided backing store objects and pagers.

• A capability-based interprocess communication

facility:

– transparently extensible across network

boundaries with preservation of capability

protection and

– integrated with the virtual memory system and

capable of transferring large amounts of data up to

the size of an address space via

copy-on-write techniques.

• A number of basic system support facilities,

including:

– an internal adb-like kernel debugger,

– support for transparent remote file access

between autonomous systems,

– language support for remote-procedure call style

interfaces between tasks written in C, Pascal, and

Common Lisp.

The basic Mach abstractions are intended not

simply as extensions to the normal UNIX facilities

but as a new foundation upon which UNIX

facilities can be built and future development of

UNIX-like systems for new architectures can

continue. The computing environment for which

Mach is targeted spans a wide class of systems,

providing basic support for large, general purpose

multiprocessors, smaller multiprocessor networks

and individual workstations (see figure 1. As of

April 1986, all Mach facilities, with the exception

of threads, are operational and in production use on

uniprocessors and multiprocessors by both

individuals and research projects at CMU. In this

paper we describe the Mach design, some details of

its implementation and its current status.

II. DESIGN: AN EXTENSIBLE KERNEL

Early in its development, UNIX supported the

notion of objects represented as file descriptors

with a small set of basic operations on those objects

(e.g., read, write and seek) [9]. With pipes serving

as a program composition tool, UNIX offered the

advantages of simple implementation and

extensibility to a variety of problems. Under the

weight of changing needs and technology, UNIX

has been modified to provide a staggering number

of different mechanisms for managing objects and

resources. In addition to pipes, UNIX versions now

support facilities such as System V streams, 4.2

BSD sockets, pty’s, various forms of semaphores,

shared memory and a mind-boggling array of ioctl

operations on special files and devices. The result

has been scores of additional system calls and

options

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100618 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 544

with less than uniform access to different resources

within a single UNIX system and within a network

of UNIX machines.

As the complexity of distributed environments and

multiprocessor architectures increases, it becomes

increasingly important to return to the original

UNIX model of consistent interfaces to system

facilities. Moreover, there is a clear need to allow

the underlying system to be transparently extended

to allow user-state processes to provide services

which in the past could only be fully integrated into

UNIX by adding code to the operating system

kernel.

The Mach kernel supports four basic abstractions:

1. A task is an execution environment in which

threads may run. It is the basic unit of resource

allocation. A task includes a paged virtual address

space and protected access to system resources

(such as processors, port

capabilities and virtual memory). The UNIX notion

of a process is , in Mach, represented by a task with

a single thread of control.

2. A thread is the basic unit of CPU utilization. It is

roughly equivalent to an independent program

counter operating within a task. All threads within

a task share access to all task resources.

3. A port is a communication channel – logically a

queue for messages protected by the kernel. Ports

are the reference objects of the Mach design. They

are used in much the same way that object

references could be

used in an object oriented system. Send and

Receive are the fundamental primitive operations

on ports.

4. A message is a typed collection of data objects

used in communication between threads. Messages

may be of any size and may contain pointers and

typed capabilities for ports. Operations on objects

other than messages are performed by sending

messages to ports which are used to represent them.

The act of creating a task or thread, for example,

returns access rights to the port which represents

the new object and which can be used to

manipulate it. The Mach kernel acts in that case as

a server which implements task and thread objects.

It receives incoming

messages on task and thread ports and performs the

requested operation on the appropriate object. This

allows a thread to suspend another thread by

sending a suspend message to that thread’s thread

port even if the requesting thread is on another

node in a network.

The design of Mach draws heavily on CMU’s

previous experience with the Accent [8] network

operating system, extending that system’s facilities

into the multiprocessor domain:

• the underlying port mechanism for

communication provides support for

object-style access to resources and capability

based protection as well as

network transparency,

• all systems abstractions allow extensibility both to

multiprocessors and to

networks of uniprocessor or multiprocessor nodes,

• support for parallelism (in the form of tasks with

shared memory and

threads) allows for a wide range of tightly coupled

and loosely coupled

multiprocessors and

• access to virtual memory is simple, integrated

with message passing, and

introduces no arbitrary restrictions on allocation,

deallocation and virtual copy operations and yet

allows both copy-on-write and read-write sharing.

The Mach abstractions were chosen not only for

their simplicity but also for performance reasons. A

performance evaluation study done on Accent

demonstrated the substantial performance benefits

gained by integrating virtual memory

management and interprocess communication.

Using similar virtual memory and IPC primitives,

Accent was able to achieve performance

comparable to UNIX systems on equivalent

hardware [3].

III. TASKS AND THREADS

It has been clear for some time that the UNIX

process abstraction is insufficient to meet the needs

of modern applications. The definition of a UNIX

process results in high overhead on the part of the

operating system. Typical server applications,

which use the fork operation to create a server for

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100618 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 545

each client, tend to use far more system resources

than are required. In UNIX this includes process

slots, file descriptor slots and page tables. To

overcome this problem, many application

programmers make use of coroutine packages to

manage multiple contexts within a single process

(see, for example, [2]).

Application parallelism in Mach can thus be

achieved in any of three ways:

• through the creation of a single task with many

threads of control executing in a shared address

space, using shared memory for communication

and synchronization,

• through the creation of many tasks related by task

creation which share restricted regions of memory

or

• through the creation of many tasks

communicating via messages.

These alternatives reflect as well the different

multiprocessor architectures to which Mach is

targeted:

• uniform access, shared memory multiprocessors

such as the VAX3 11/784, VAX 8300 and Encore

MultiMax4,

• differential access shared memory machines such

as the BBN Butterfly and IBM RP3,

• loosely-coupled networks of computers.

In fact, the Mach abstractions of task, thread and

port correspond to the physical realization of many

multiprocessors as nodes with shared memory, one

or more processors and external communication

ports.

IV. VIRTUAL MEMORY MANAGEMENT

The Mach virtual memory design allows tasks to:

• allocate regions of virtual memory,

• deallocate regions of virtual memory,

• set the protections on regions of virtual memory,

• specify the inheritance of regions of virtual

memory. It allows for both copy-on-write and

read/write sharing of memory between

tasks. Copy-on-write virtual memory often is the

result of form operations or large message

transfers. Shared memory is created in a controlled

fashion via an inheritance mechanism. Virtual

memory related functions, such as pagein and

pageout, may be performed by non-kernel tasks.

Mach does not impose restrictions on what regions

may be specified for these operations, except that

they be aligned on system page boundaries (where

the definition of the page size is a boot-time

parameter of the system).

The way Mach implements the UNIX fork is an

example of Mach’s virtual memory operations.

When a fork operation is invoked, a new (child)

address map is created based on the old (parent)

address map’s inheritance values.

Inheritance may be specified as shared, copy or

none, and may be specified on a per-page basis.

Pages specified are shared, are shared for read and

write access by both the parent and child address

maps. Those pages specified as copy are effectively

copied in the child map, however; for efficiency,

copy-onwrite techniques are typically employed.

An inheritance specification of none signifies that

the page is not passed to the child at all. In this

case, the child’s corresponding address is left

unallocated. By default, newly allocated memory is

inherited copy-on-write.

Like inheritance, protection may be specified on a

per-page basis. For each group of pages there exist

two protection values: the current and maximum

protection. The current protection controls actual

hardware permissions. The maximum protection

specifies the maximum value that the current

protection may take. The maximum protection may

never be raised, it may only be lowered.

If the maximum protection is lowered to a level

below the current protection, the current protection

is also lowered to that level. Either protection is a

combination of read, write, and execute

permissions. Enforcement of these

permissions is dependent on hardware support (for

example, many machines do not allow for explicit

execute permissions, but those that do will be

properly enforced).

V. VIRTUAL MEMORY

IMPLEMENTATION

Given the wide range of virtual memory

management built by hardware engineers,

it was important to separate machine dependent and

machine independent data structures and

algorithms in the Mach virtual memory

implementation.

In addition, the complexity of potential sharing

relationships between tasks dictated clean

separation between kernel data structures which

manage physical resources and those which

manage backing store objects.

The basic data structures used in the virtual

memory implementation are:

address maps: doubly linked lists of map entries,

each entry describing the properties of a region of

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100618 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 546

virtual memory. There is a single address map

associated with each task.

share maps: special address maps that describe

regions of memory that are shared between tasks. A

sharing map provides a level of indirection from

address maps, allowing operations that affect

shared memory to affect all maps without back

pointers.

VM objects: units of backing storage. A VM object

specifies resident pages as well as where to find

non-resident pages. VM objects are pointed at by

address maps. Shadow objects are used to hold

pages that have been

copied after a copy-on-write fault.

page structures: specify the current attributes for

physical pages in the system (e.g., mapped in what

object, active/reclaimable/free).

The virtual memory implementation is split

between machine independent and machine

dependent sections. The machine independent

portion of the implementation has full knowledge

of all virtual memory related information.

The machine dependent portion, on the other hand,

has a simple page validate/ invalidate/protect

interface, and has no outside knowledge of other

machine independent related data structures.

In addition to the normal demand paging of tasks,

the Mach virtual memory

implementation allows portions of the kernel to be

paged. In particular, address

map entries are pageable in the current

implementation.

VI. INTERPROCESS COMMUNICATION

Interprocess communication in 4.3BSD can occur

through a variety of mechanisms: pipes, pty’s,

signals, and sockets [7]. The primary mechanism

for network communication, internet domain

sockets, has the disadvantage of using global

machine specific names (IP based addresses) with

no location independence and no protection. Data is

passed uninterpreted by the kernel as streams of

bytes.

The Mach interprocess communication facility is

defined in terms of ports and messages and

provides both location independence, security and

data type tagging.

The port is the basic transport abstraction provided

by Mach. A port is a protected kernel object into

which messages may be placed by tasks and from

which messages may be removed. A port is

logically a finite length queue of messages sent by

a task. Ports may have any number of senders but

only one receiver. Access to a port is granted by

receiving a message containing a port capability (to

either send or receive).

Messages may be sent and received either

synchronously or asynchronously.

Currently, signals can be used to handle incoming

messages outside the flow of

control of a normal UNIX style process. A task

could create or assign separate

threads to handle asynchronous events.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100618 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 547

Figure 4 shows a typical message interaction. A

task A sends a message to a port P2. Task A has

send rights to P2 and receive rights to a port P1. At

some later time, task B which has receive rights to

port P2 receives that message which may in turn

contain send rights to port P1 (for the purposes of

sending a reply message back to task A). Task B

then (optionally) replies by sending a message to

P1.

Should port P2 have been full, task A would have

had the option at the point of sending the message

to: (1) be suspended until the port was no longer

full, (2) have the message send operation return a

port full error code, or (3) have the kernel accept

the message for future transmission to port P2 with

the proviso that no further message can be sent by

that task to port P2 until the kernel sends a message

to A telling it the current message has been posted.

Figure 5 shows Task A sending a large (for

example, 24 megabyte) message to a port P1. At

the point the message is posted to P1, the part of

A’s address space containing the message is

marked copy-on-write – meaning any page

referenced for writing will be copied and the copy

placed instead into A’s virtual memory table. The

copy-on-write data then resides in a temporary

kernel address map

until task B receives the message. At that point the

data is removed from the temporary address map.

The operating system kernel determines where in

the address space of B the newly received message

data is placed, allowing the kernel to minimize

memory mapping overhead. Any attempt by either

A or B to change a page of this copy-on-write data

results in a copy of that page being made and

placed into that task’s address space.

VII. SYSTEM SUPPORT FACILITIES

In addition to the basic system support facilities

provided by 4.3, Mach provides a kernel debugger

and a transparent remote file system.

7.1 Kernel Debugger

Kernel debugging has always been a tedious

undertaking. UNIX systems traditionally have no

support for kernel debugging, requiring kernel

implementers to “debug with printfs” or other ad

hoc methods. The Mach kernel has a builtin kernel

debugger (kdb) based on adb7. All adb commands

are implemented including support for breakpoints,

single instruction step, stack tracing and symbol

table translation.

In order to aid debugging, as well as study the

performance of the kernel, the Mach debugger also

supports functions not available in adb. For

example: enhanced stack traces: stack traces may

contain the values of local variables and registers

for each stack frame. call/return trace support:

single stepping may continue without intervention

until the next call or return instruction.

instruction counting: the number of instructions

executed between regions of code may be counted.

During the implementation of the system these

features have proved invaluable in both debugging

and performance tuning.

7.2 Transparent Remote File system

The remote file system available in Mach was

originally available in 1982 as part of CMU’s

locally maintained version of 4.1 UNIX. At that

time, it supported only a small set of the functions

required of a file system: it could read and/or write

publicly accessible files. Over the years, the remote

filesystem has undergone a steady increase in

functionality. Currently, all UNIX functions, such

as remote current directories and execution of

remote files, are supported. The remote filesystem

is completely transparent to the user. Users may

effectively login to a remote filesystem connection

to receive all of their normal privileges on the

remote filesystem, or they may elect to not login,

and receive only “anonymous” access to the remote

filesystem. A small set of kernel hooks redirects

remote file operations to remote servers

transparently. Each machine wishing to allow

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100618 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 548

remote requests runs a usermode server process.

The kernel sends requests corresponding to

operations such as read, write, open and close. The

client then performs the appropriate operation, and

returns with a reply code and/or data. Data is not

cached with one exception: remote execution of

files causes a cached copy of the entire file to be

read into an inode on a local disk. Subsequent

executions of this file cause the kernel to check for

a modification of the remote file; if no such

modification

has been made, then the locally cached copy is

executed.

VIII. IMPLEMENTATION: A NEW

FOUNDATION FOR UNIX

The Mach kernel currently supplants most of the

basic system interface functions of the UNIX

4.3BSD kernel: trap handling, scheduling,

multiprocessor synchronization, virtual memory

management and interprocess communication.

4.3BSD functions are provided by kernel-state

threads which are scheduled by the Mach kernel

and share communication queues with it.

The spectacular growth in size of the Berkeley

UNIX kernel over the last few years has made it

apparent that continued expansion of UNIX

functionality threatens to undercut the advantages

of simplicity and modifiability which mad UNIX

an attractive operating system alternative for

research and development.

Work is underway to remove non-Mach UNIX

functionality from kernel-state and provide these

services through user-state tasks. The goal of this

effort is to “kernelize” UNIX is a substantially less

complex and more easily modifiable basic

operating system. This system would be better

adapted to new uniprocessor and multiprocessor

architectures as well as the demands of a large

network

environment. The success of this transition will

depend heavily on the fact that the basic Mach

abstractions allow kernel facilities such as memory

object management and interprocess

communication to be transparently extended.

Figure 6 shows the eventual relationship between

the Mach kernel and UNIX.

IX. CURRENT STATUS: MACH-1

Mach is still under development and extensive

performance comparisons with other systems have

not yet been done. Although the system has yet to

be tuned, current performance appears to be in line

with 4.3BSD. Some early simplistic measures of

virtual memory performance are encouraging. The

MicroVAX II cost of touching newly allocated

memory is less than 0.7 milliseconds per 1024

bytes of data (versus approximately 1.2

milliseconds for 4.3BSD). Operations typically

expensive in UNIX, e.g. fork, are substantially

faster with the new virtual memory support. Mach

is currently in production use by CMU researchers

on a number of projects including a multiprocessor

speech recognition system

called Agora and a project to build parallel

production systems.

As of April 1986, Mach runs on most VAX

architecture machines: VAX 11/750, 11/780,

11/785, 8600, MicroVAX I, and MicroVAX II. In

addition, Mach runs on four (11/780 or 11/785)

processor VAX 11/784 with 8 MB of shared

memory and the IBM RT/PC. The same binary

kernel image runs on all VAX uniprocessors and

multiprocessors. The same kernel source is used for

both VAX and RT/PC systems. Work has begun on

ports to the uniprocessor

SUN 3, multiprocessor Encore MultiMax and

VAX 8300. Implementation of the Mach thread

mechanism is expected by Summer 1986.

REFERENCES

[1] Wikipedia : Mach for UNIX

[2] D. R. Brownbridge, L.F. Marshall, and B.

Randell. The newcastle connection, or UNIXes of

the world unite! Software - Practice and

Experience, 20, 1982.

[3] M. Satyanarayanan et al. The ITC distributed

file ssystem: Principles and design. pages 35–50.

ACM, December 1985.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100618 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 549

[4] R. Fitzgerald and R. F. Rashid. The integration

of virtual memory management and interprocess

communication in accent. ACM Transactions on

Computer Systems, 4(2), May 1986.

[5] A. K. Jones. The object model: A conceptual

tool for structuring systems. Operating Systems:

An Advanced Course, pages 7–16, 1978.

[6] M. B. Jones, R. F. Rashid, and M. Thompson.

Matchmaker: An interprocess specification

language. ACM, January 1985.

