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Abstract- Mach is a multiprocessor operating 

system kernel and environment under development 

at Carnegie Mellon University. Mach provides a 

new foundation for UNIX development that spans 

networks of uniprocessors and multiprocessors. 

This paper describes Mach and the motivations that 

led to its design. Also described are some of the 

details of its implementation and current status. 

I. INTRODUCTION 

Mach  is a multiprocessor operating system kernel 

currently under development at Carnegie-Mellon 

University. In addition to binary compatibility with 

Berkeley’s current UNIX 4.3BSD release, Mach 

provides a number of new facilities not available in 

4.3: 

• Support for multiprocessors including: 

– provision for both tightly-coupled and loosely-

coupled general purpose multiprocessors and 

– separation of the process abstraction into tasks 

and threads, with the ability to execute multiple 

threads within a task simultaneously. 

• A new virtual memory design which provides: 

– large, sparse virtual address spaces, 

– copy-on-write virtual copy operations, 

– copy-on-write and read-write memory sharing 

between tasks, 

– memory mapped files and 

– user-provided backing store objects and pagers. 

• A capability-based interprocess communication 

facility:  

– transparently extensible across network 

boundaries with preservation of capability 

protection and 

– integrated with the virtual memory system and 

capable of transferring large amounts of data up to 

the size of an address space via 

copy-on-write techniques. 

• A number of basic system support facilities, 

including: 

– an internal adb-like kernel debugger, 

– support for transparent remote file access 

between autonomous systems, 

– language support for remote-procedure call style 

interfaces between tasks written in C, Pascal, and 

Common Lisp. 

 

The basic Mach abstractions are intended not 

simply as extensions to the normal UNIX facilities 

but as a new foundation upon which UNIX 

facilities can be built and future development of 

UNIX-like systems for new architectures can 

continue. The computing environment for which 

Mach is targeted spans a wide class of systems, 

providing basic support for large, general purpose 

multiprocessors, smaller multiprocessor networks 

and individual workstations (see figure 1. As of 

April 1986, all Mach facilities, with the exception 

of threads, are operational and in production use on 

uniprocessors and multiprocessors by both 

individuals and research projects at CMU. In this 

paper we describe the Mach design, some details of 

its implementation and its current status. 

II. DESIGN: AN EXTENSIBLE KERNEL 

Early in its development, UNIX supported the 

notion of objects represented as file descriptors 

with a small set of basic operations on those objects 

(e.g., read, write and seek) [9]. With pipes serving 

as a program composition tool, UNIX offered the 

advantages of simple implementation and 

extensibility to a variety of problems. Under the 

weight of changing needs and technology, UNIX 

has been modified to provide a staggering number 

of different mechanisms for managing objects and 

resources. In addition to pipes, UNIX versions now 

support facilities such as System V streams, 4.2 

BSD sockets, pty’s, various forms of semaphores, 

shared memory and a mind-boggling array of ioctl 

operations on special files and devices. The result 

has been scores of additional system calls and 

options 
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with less than uniform access to different resources 

within a single UNIX system and within a network 

of UNIX machines. 

As the complexity of distributed environments and 

multiprocessor architectures increases, it becomes 

increasingly important to return to the original 

UNIX model of consistent interfaces to system 

facilities. Moreover, there is a clear need to allow 

the underlying system to be transparently extended 

to allow user-state processes to provide services 

which in the past could only be fully integrated into 

UNIX by adding code to the operating system 

kernel. 

The Mach kernel supports four basic abstractions: 

1. A task is an execution environment in which 

threads may run. It is the basic unit of resource 

allocation. A task includes a paged virtual address 

space and protected access to system resources 

(such as processors, port 

capabilities and virtual memory). The UNIX notion 

of a process is , in Mach, represented by a task with 

a single thread of control. 

2. A thread is the basic unit of CPU utilization. It is 

roughly equivalent to an independent program 

counter operating within a task. All threads within 

a task share access to all task resources. 

3. A port is a communication channel – logically a 

queue for messages protected by the kernel. Ports 

are the reference objects of the Mach design. They 

are used in much the same way that object 

references could be 

used in an object oriented system. Send and 

Receive are the fundamental primitive operations 

on ports. 

4. A message is a typed collection of data objects 

used in communication between threads. Messages 

may be of any size and may contain pointers and 

typed capabilities for ports. Operations on objects 

other than messages are performed by sending 

messages to ports which are used to represent them. 

The act of creating a task or thread, for example, 

returns access rights to the port which represents 

the new object and which can be used to 

manipulate it. The Mach kernel acts in that case as 

a server which implements task and thread objects. 

It receives incoming 

messages on task and thread ports and performs the 

requested operation on the appropriate object. This 

allows a thread to suspend another thread by 

sending a suspend message to that thread’s thread 

port even if the requesting thread is on another 

node in a network. 

The design of Mach draws heavily on CMU’s 

previous experience with the Accent [8] network 

operating system, extending that system’s facilities 

into the multiprocessor domain: 

• the underlying port mechanism for 

communication provides support for 

object-style access to resources and capability 

based protection as well as 

network transparency, 

• all systems abstractions allow extensibility both to 

multiprocessors and to 

networks of uniprocessor or multiprocessor nodes, 

• support for parallelism (in the form of tasks with 

shared memory and 

threads) allows for a wide range of tightly coupled 

and loosely coupled 

multiprocessors and 

• access to virtual memory is simple, integrated 

with message passing, and 

introduces no arbitrary restrictions on allocation, 

deallocation and virtual copy operations and yet 

allows both copy-on-write and read-write sharing. 

The Mach abstractions were chosen not only for 

their simplicity but also for performance reasons. A 

performance evaluation study done on Accent 

demonstrated the substantial performance benefits 

gained by integrating virtual memory 

management and interprocess communication. 

Using similar virtual memory and IPC primitives, 

Accent was able to achieve performance 

comparable to UNIX systems on equivalent 

hardware [3]. 

III. TASKS AND THREADS 

It has been clear for some time that the UNIX 

process abstraction is insufficient to meet the needs 

of modern applications. The definition of a UNIX 

process results in high overhead on the part of the 

operating system. Typical server applications, 

which use the fork operation to create a server for 



© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002 

IJIRT 100618 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 545 
 

each client, tend to use far more system resources 

than are required. In UNIX this includes process 

slots, file descriptor slots and page tables. To 

overcome this problem, many application 

programmers make use of coroutine packages to 

manage multiple contexts within a single process 

(see, for example, [2]). 

Application parallelism in Mach can thus be 

achieved in any of three ways: 

• through the creation of a single task with many 

threads of control executing in a shared address 

space, using shared memory for communication 

and synchronization, 

• through the creation of many tasks related by task 

creation which share restricted regions of memory 

or 

• through the creation of many tasks 

communicating via messages. 

These alternatives reflect as well the different 

multiprocessor architectures to which Mach is 

targeted: 

• uniform access, shared memory multiprocessors 

such as the VAX3 11/784, VAX 8300 and Encore 

MultiMax4, 

• differential access shared memory machines such 

as the BBN Butterfly and IBM RP3, 

• loosely-coupled networks of computers. 

In fact, the Mach abstractions of task, thread and 

port correspond to the physical realization of many 

multiprocessors as nodes with shared memory, one 

or more processors and external communication 

ports. 

IV. VIRTUAL MEMORY MANAGEMENT 

The Mach virtual memory design allows tasks to: 

• allocate regions of virtual memory, 

• deallocate regions of virtual memory, 

• set the protections on regions of virtual memory, 

• specify the inheritance of regions of virtual 

memory. It allows for both copy-on-write and 

read/write sharing of memory between 

tasks. Copy-on-write virtual memory often is the 

result of form operations or large message 

transfers. Shared memory is created in a controlled 

fashion via an inheritance mechanism. Virtual 

memory related functions, such as pagein and 

pageout, may be performed by non-kernel tasks. 

Mach does not impose restrictions on what regions 

may be specified for these operations, except that 

they be aligned on system page boundaries (where 

the definition of the page size is a boot-time 

parameter of the system). 

The way Mach implements the UNIX fork is an 

example of Mach’s virtual memory operations. 

When a fork operation is invoked, a new (child) 

address map is created based on the old (parent) 

address map’s inheritance values. 

Inheritance may be specified as shared, copy or 

none, and may be specified on a per-page basis. 

Pages specified are shared, are shared for read and 

write access by both the parent and child address 

maps. Those pages specified as copy are effectively 

copied in the child map, however; for efficiency, 

copy-onwrite techniques are typically employed. 

An inheritance specification of none signifies that 

the page is not passed to the child at all. In this 

case, the child’s corresponding address is left 

unallocated. By default, newly allocated memory is 

inherited copy-on-write. 

Like inheritance, protection may be specified on a 

per-page basis. For each group of pages there exist 

two protection values: the current and maximum 

protection. The current protection controls actual 

hardware permissions. The maximum protection 

specifies the maximum value that the current 

protection may take. The maximum protection may 

never be raised, it may only be lowered. 

If the maximum protection is lowered to a level 

below the current protection, the current protection 

is also lowered to that level. Either protection is a 

combination of read, write, and execute 

permissions. Enforcement of these 

permissions is dependent on hardware support (for 

example, many machines do not allow for explicit 

execute permissions, but those that do will be 

properly enforced). 

V. VIRTUAL MEMORY 

IMPLEMENTATION 

Given the wide range of virtual memory 

management built by hardware engineers, 

it was important to separate machine dependent and 

machine independent data structures and 

algorithms in the Mach virtual memory 

implementation. 

In addition, the complexity of potential sharing 

relationships between tasks dictated clean 

separation between kernel data structures which 

manage physical resources and those which 

manage backing store objects. 

The basic data structures used in the virtual 

memory implementation are: 

address maps: doubly linked lists of map entries, 

each entry describing the properties of a region of 
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virtual memory. There is a single address map 

associated with each task. 

 
 

share maps: special address maps that describe 

regions of memory that are shared between tasks. A 

sharing map provides a level of indirection from 

address maps, allowing operations that affect 

shared memory to affect all maps without back 

pointers. 

 

VM objects: units of backing storage. A VM object 

specifies resident pages as well as where to find 

non-resident pages. VM objects are pointed at by 

address maps. Shadow objects are used to hold 

pages that have been 

copied after a copy-on-write fault. 

 

page structures: specify the current attributes for 

physical pages in the system (e.g., mapped in what 

object, active/reclaimable/free). 

The virtual memory implementation is split 

between machine independent and machine 

dependent sections. The machine independent 

portion of the implementation has full knowledge 

of all virtual memory related information. 

The machine dependent portion, on the other hand, 

has a simple page validate/ invalidate/protect 

interface, and has no outside knowledge of other 

machine independent related data structures. 

In addition to the normal demand paging of tasks, 

the Mach virtual memory 

implementation allows portions of the kernel to be 

paged. In particular, address 

map entries are pageable in the current 

implementation. 

VI. INTERPROCESS COMMUNICATION 

Interprocess communication in 4.3BSD can occur 

through a variety of mechanisms: pipes, pty’s, 

signals, and sockets [7]. The primary mechanism 

for network communication, internet domain 

sockets, has the disadvantage of using global 

machine specific names (IP based addresses) with 

no location independence and no protection. Data is 

passed uninterpreted by the kernel as streams of 

bytes. 

The Mach interprocess communication facility is 

defined in terms of ports and messages and 

provides both location independence, security and 

data type tagging. 

 

The port is the basic transport abstraction provided 

by Mach. A port is a protected kernel object into 

which messages may be placed by tasks and from 

which messages may be removed. A port is 

logically a finite length queue of messages sent by 

a task. Ports may have any number of senders but 

only one receiver. Access to a port is granted by 

receiving a message containing a port capability (to 

either send or receive). 

Messages may be sent and received either 

synchronously or asynchronously. 

Currently, signals can be used to handle incoming 

messages outside the flow of 

control of a normal UNIX style process. A task 

could create or assign separate 

threads to handle asynchronous events. 
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Figure 4 shows a typical message interaction. A 

task A sends a message to a port P2. Task A has 

send rights to P2 and receive rights to a port P1. At 

some later time, task B which has receive rights to 

port P2 receives that message which may in turn 

contain send rights to port P1 (for the purposes of 

sending a reply message back to task A). Task B 

then (optionally) replies by sending a message to 

P1. 

 

Should port P2 have been full, task A would have 

had the option at the point of sending the message 

to: (1) be suspended until the port was no longer 

full, (2) have the message send operation return a 

port full error code, or (3) have the kernel accept 

the message for future transmission to port P2 with 

the proviso that no further message can be sent by 

that task to port P2 until the kernel sends a message 

to A telling it the current message has been posted. 

 
 

Figure 5 shows Task A sending a large (for 

example, 24 megabyte) message to a port P1. At 

the point the message is posted to P1, the part of 

A’s address space containing the message is 

marked copy-on-write – meaning any page 

referenced for writing will be copied and the copy 

placed instead into A’s virtual memory table. The 

copy-on-write data then resides in a temporary 

kernel address map 

until task B receives the message. At that point the 

data is removed from the temporary address map. 

The operating system kernel determines where in 

the address space of B the newly received message 

data is placed, allowing the kernel to minimize 

memory mapping overhead. Any attempt by either 

A or B to change a page of this copy-on-write data 

results in a copy of that page being made and 

placed into that task’s address space. 

VII. SYSTEM SUPPORT FACILITIES 

In addition to the basic system support facilities 

provided by 4.3, Mach provides a kernel debugger 

and a transparent remote file system. 

 

7.1 Kernel Debugger 

Kernel debugging has always been a tedious 

undertaking. UNIX systems traditionally have no 

support for kernel debugging, requiring kernel 

implementers to “debug with printfs” or other ad 

hoc methods. The Mach kernel has a builtin kernel 

debugger (kdb) based on adb7. All adb commands 

are implemented including support for breakpoints, 

single instruction step, stack tracing and symbol 

table translation. 

In order to aid debugging, as well as study the 

performance of the kernel, the Mach debugger also 

supports functions not available in adb. For 

example: enhanced stack traces: stack traces may 

contain the values of local variables and registers 

for each stack frame. call/return trace support: 

single stepping may continue without intervention 

until the next call or return instruction. 

instruction counting: the number of instructions 

executed between regions of code may be counted. 

During the implementation of the system these 

features have proved invaluable in both debugging 

and performance tuning. 

 

7.2 Transparent Remote File system 

The remote file system available in Mach was 

originally available in 1982 as part of CMU’s 

locally maintained version of 4.1 UNIX. At that 

time, it supported only a small set of the functions 

required of a file system: it could read and/or write 

publicly accessible files. Over the years, the remote 

filesystem has undergone a steady increase in 

functionality. Currently, all UNIX functions, such 

as remote current directories and execution of 

remote files, are supported. The remote filesystem 

is completely transparent to the user. Users may 

effectively login to a remote filesystem connection 

to receive all of their normal privileges on the 

remote filesystem, or they may elect to not login, 

and receive only “anonymous” access to the remote 

filesystem. A small set of kernel hooks redirects 

remote file operations to remote servers 

transparently. Each machine wishing to allow 
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remote requests runs a usermode server process. 

The kernel sends requests corresponding to 

operations such as read, write, open and close. The 

client then performs the appropriate operation, and 

returns with a reply code and/or data. Data is not 

cached with one exception: remote execution of 

files causes a cached copy of the entire file to be 

read into an inode on a local disk. Subsequent 

executions of this file cause the kernel to check for 

a modification of the remote file; if no such 

modification 

has been made, then the locally cached copy is 

executed. 

VIII. IMPLEMENTATION: A NEW 

FOUNDATION FOR UNIX 

The Mach kernel currently supplants most of the 

basic system interface functions of the UNIX 

4.3BSD kernel: trap handling, scheduling, 

multiprocessor synchronization, virtual memory 

management and interprocess communication. 

4.3BSD functions are provided by kernel-state 

threads which are scheduled by the Mach kernel 

and share communication queues with it. 

The spectacular growth in size of the Berkeley 

UNIX kernel over the last few years has made it 

apparent that continued expansion of UNIX 

functionality threatens to undercut the advantages 

of simplicity and modifiability which mad UNIX 

an attractive operating system alternative for 

research and development. 

Work is underway to remove non-Mach UNIX 

functionality from kernel-state and provide these 

services through user-state tasks. The goal of this 

effort is to “kernelize” UNIX is a substantially less 

complex and more easily modifiable basic 

operating system. This system would be better 

adapted to new uniprocessor and multiprocessor 

architectures as well as the demands of a large 

network 

environment. The success of this transition will 

depend heavily on the fact that the basic Mach 

abstractions allow kernel facilities such as memory 

object management and interprocess 

communication to be transparently extended. 

Figure 6 shows the eventual relationship between 

the Mach kernel and UNIX. 

IX. CURRENT STATUS: MACH-1 

Mach is still under development and extensive 

performance comparisons with other systems have 

not yet been done. Although the system has yet to 

be tuned, current performance appears to be in line 

with 4.3BSD. Some early simplistic measures of 

virtual memory performance are encouraging. The 

MicroVAX II cost of touching newly allocated 

memory is less than 0.7 milliseconds per 1024 

bytes of data (versus approximately 1.2 

milliseconds for 4.3BSD). Operations typically 

expensive in UNIX, e.g. fork, are substantially 

faster with the new virtual memory support. Mach 

is currently in production use by CMU researchers 

on a number of projects including a multiprocessor 

speech recognition system 

called Agora and a project to build parallel 

production systems. 

 

 
 

As of April 1986, Mach runs on most VAX 

architecture machines: VAX 11/750, 11/780, 

11/785, 8600, MicroVAX I, and MicroVAX II. In 

addition, Mach runs on four (11/780 or 11/785) 

processor VAX 11/784 with 8 MB of shared 

memory and the IBM RT/PC. The same binary 

kernel image runs on all VAX uniprocessors and 

multiprocessors. The same kernel source is used for 

both VAX and RT/PC systems. Work has begun on 

ports to the uniprocessor 

SUN 3, multiprocessor  Encore MultiMax and 

VAX 8300. Implementation of the Mach thread 

mechanism is expected by Summer 1986. 
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