

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100623 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 558

The paper aims at providing a complete survey of contem-

porary distributed systems of that time. The authors de-

fine a distributed operating system distinguishing it from

below:

Model

Workload

Client/Server

General purpose
networked systems. The paper endeavours to also explain Membership Static

in detail the key design issues involved in the building of Scale 10’s of machines

such systems. A few examples of research projects are Network Local-area

considered in light of the issues discussed. Homogenity/Heterogenity Clients/servers heterogeneous

A distributed system is defined to be one that looks to of machines Clients homogeneous

Distributed Operating Systems

Himanshu, Amritanshu

Dronacharya College Of Engineering, Khetawas, Gurgaon

I. OVERVIEW

its users like an ordinary centralized operating system but

runs on multiple, independent CPUs. In other words, a

distributed operating system appears to users as a single

coherent system. In a networked system, users are aware

that they are using a specific system for a given service,

with each computer running its own private operating sys-

tem, with little fault tolerance. The distinguishing charac-

teristic is hence that of transparency.It can be argued as to

how transparent the system needs to be. A utility, to dis-

play information of where processes are getting executed,

or where files are stored, does not necessarily have to be

enough to brand the system as non-transparent.

II. GOALS AND ASSUMPTIONS

Distributed Operating systems tend to leverage the avail-

ability of cheap microprocessor technology to achieve

performance similar to their more expensive counterparts.

Obtaining computing power proportionate to processors

added to the system, reliability and availability in the face

of failure of certain system components are other key ad-

vantages of distributed operating systems.

Some of the characteristics of the system are listed

The attributes listed in the above table differ from those

of P2P distributed systems in that, in P2P systems, each

host is both a client and a server, workload is application

specific, membership is dynamic, scale is much larger

(millions), WAN is usually involved, and resources at

hosts are heterogeneous.

III. DESIGN ISSUES

3.1 Communication Primitives

Due to the availability of high bandwidth network links,

the price (computationally) for the ISO model is too pro-

hibitive to be used in distributed systems. The use of stan-

dard protocols like TCP and UDP was probably avoided

due to the same reason (for having to go through the

protocol stack), and perhaps because of the addition of

a larger number of bytes as headers or checksum data.

The paper discusses the fundamental tradeoffs between

reliable vs unreliable primitives, and blocking vs non-

blocking primitives. Not all operations in a system are

idempotent, and hence can cause problems with the se-

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100623 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 559

mantics that can be guaranteed by RPC (since exactly

once semantics is almost impossible to achieve). In order

to make message passing efficient, RPC needs to avoid

copying data if possible between different levels. Mes-

sages need to be made longer to amortize overhead. Al-

lowing ACKs to be replaced by subsequent request/reply

messages (higher-level knowledge) saves on the number

of messages sent over the network. Hence, the RPC im-

plementation avoids using a reliable connection oriented

protocol like TCP.

3.2 Naming and Protection

The problem of naming is to associate logical names to

actual physical storage locations in the system (the phys-

ical names). The simplest model of having a centralized

name server creates a bottleneck in the case of systems of

a larger scale.

Problems arise in the domain of protection because

names/identifiers are not derived from a global name

space. This allows for the possibility of having more than

one entity with the same identifying attributes, making it

difficult to enforce protection.

3.3 Resource Management

This mostly deals with the capability to balance

load/execute processes by picking appropriate processor

to execute processes on. The objective could be either to

minimize communication costs (requiring knowledge of

future behaviour of processes) or load balancing assum-

ing that nothing about the future behaviour of processes

are unknown. Jobs need to be typically run on the lo-

cal machine if interactive (attributes being fast response

time, and short completion times). Detection of an inter-

active job could be based on statistics measured about the

process like whether it is CPU bound or I/O bound (inter-

active).

Migration vs Remote Execution is a tradeoff that

needs to be explored. It is harder to do migration. His-

tory needs to be maintained and analyzed before deciding

whether a job is short or not.

To perform processor allocation suitably, Load Infor-

mation needs to be maintained/propagated. Due to the

constantly changing nature of the system information, in-

formation tends to be inaccurate. Ways such as averaging

number of runnable processes, computing residual run-

ning time provide fair estimates of the load. Information

can be propageted through:

• Frequent broadcasts - This takes up too much band-

width, a processor may become heavily loaded at

once.

• Diffusion (Pairwise Exchange) - Processors pick a

machine at random and share load information.

• Polling - Requesting load information from another

processor.

Events such as Distributed deadlocks cannot be de-

tected readily due to the absence of centralized tables giv-

ing the status of all resources.

The problem of Scheduling is more complex due to

possible dependencies between the processes on differ-

ent machines which communicate to continue doing use-

ful work. Coscheduling works by having communicating

processes being allocated the same time slices (the same

row), such that one process will not be blocked waiting

on another that does not have a time slice at that instant.

This requires:

• Synchronized time slices. This in turn requires that

there is a master timer, which becomes a single point

of failure.

• It is also important that the latency is small com-

pared to the time-slice for scheduling. Since time

slices are in the range 20-500 ms for typical systems,

this is usually the case.

3.4 File System

The distributed file system involves the decision of

whether to keep the file service stateless or virtual-circuit

oriented. Having the server connection oriented causes

clients to be susceptible to failure in case of a server fail-

ure. However, in the stateless case, though each message

needs to contain more information, this kind of a failure

is accounted for. Here, Idempotency of read and write

operations is utilized. The fundamental trade-off between

stateless vs connection oriented is that of robustness vs

performance.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100623 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 560

IV. RESEARCH SYSTEM IMPLEMENTA-

TIONS

The most interesting features of the described systems are

described below. All systems use a mechanism similar to

RPC for communication. They all use their own protocols

rather than established protocols like TCP/UDP. Perfor-

mance was the primary goal of all systems.

Cambridge:

• Naming done using centralized name server. Protec-

tion by active name table.

Amoeba:

• Naming and protection achieved through capabili-

ties. Access rights to an object and the checksum

constant are encrypted using random keys from an

internal table. Hence, the kernel need not be trusted

to establish protection. Replay attacks using ob-

tained capabilities are possible, but new capabili-

ties/rights cannot be created using the obtained ca-

pability.

• Allows for dynamic allocation of processors from

pool.

• Allows servers to charge for services (bank account

scheme) and limit resource usage.

V:

• Does not address fault tolerance.

Eden:

• Protection through capabilities in unencrypted form.

• Provides most reliability among all systems. Com-

plete objects are checkpointed from time to time. In-

cremental checkpointing of objects would have been

more efficient.

The usage of capabilities, etc. represents compo-

nents of centralized OS research in distributed systems

research. The applications for all these distributed sys-

tems has been limited to parallelized compilation. A par-

allelized version of the travelling salesman problem could

be implemented using Amoeba.

The Cambridge distributed system project was the most

practical in that it accomodated the most number of users

for the system, while creating a fairly stable system.

The communication primitives used made the systems

potentially capable of achieving reliability, but the sys-

tems themselves did not address reliability to a very large

extent.

V. SUMMARY

The paper presents a comprehensive summary of the ide-

als of a distributed operating system. The ideas of fault

tolerance have received little attention in the systems de-

scribed. The systems also implement only basic versions

of required features like naming and protection.

The first half of the paper was about general objec-

tives/guidelines for distributed systems. Not all systems

described in the paper actually addressed the range of is-

sues discussed in the first part.

