

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100624 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 561

Abstract— CPU cache is a cache which used by the central

processing unit of computer to decrease the average time which

is taken to access the data from main memory. The cache is

smaller and faster memory which stores the copies of data from

commonly used main memory locations. Most of the CPUs have

dissimilar independent caches, which includes the instructions

and data caches where data cache is generally organized as

hierarchy of more cache levels.

Index Terms—Cache,Heuristic,Multiprocessors,Write-through

I. INTRODUCTION

CPU cache is a cache which used by the central processing

unit of computer to decrease the average time which is taken

to access the data from main memory. The cache is smaller

and faster memory which stores the copies of data from

commonly used main memory locations. Most of the CPUs

have dissimilar independent caches, which includes the

instructions and data caches where data cache is generally

organized as hierarchy of more cache levels.When processor

requires reading from or writing to a site in the main memory.

It first examines in case a copy of that particular data is in

cache. If so, processor then instantly reads from or writes to

cache, and this is much faster than writing to or reading from

the main memoryMany modern desktops and server CPUs

have somewhat three independent caches: one is instruction

cache which is used to speed up executable instruction fetch,

data cache is used to speed up data fetching and storing of

data, and translation look aside buffer i.e. TLB is used for

speeding up virtual-to-physical address translation for data

and executable instructions.

II. CACHE ENTRIES

The data is shifted between the memory and cache in the

blocks which are of fixed size, and are known as cache lines.

When cache line is copied from the memory into cache, then a

cache entry is made. The cache entry includes the data which

is copied as well as the memory location which is requested

and it is now called a tag.When processor wants to read or

write to a location in the main memory then it first inquires for

an equivalent entry in cache. The cache inquires for contents

of requested memory location in any of the cache lines which

might contain that particular address. If processor discovers

that memory location is in the cache then a cache hit occurs.

On the other hand, if the processor does not find memory

location in cache then a cache miss occurs. In case of:

 a cache hit, processor instantly reads or writes data in

cache line

 a cache miss, cache assigns a new entry, and copies

the data from the main memory; and then the appeal

is fulfilled from the contents of cache.

III. REPLACEMENT POLICIES

In order to make room for new entries on cache miss, cache

may have to expel one of those current entries. The heuristic

that is used to choose the entry to expel and this is called

replacement policy. The basic problem with any of the

replacement policy is that: it must forsee which of the existing

cache entry will be used least in future. Predicting future is

hard to do, so there is no excellent way to choose between the

replacement policies which are available.One of the popular

replacement policies is the least-recently used or LRU which

replaces the entry which is least recently accessed.

Marking of some of the memory ranges as non-cacheable

memory can improve the performance, by preventing caching

of the memory regions which are hardly re-accessed. This

prevents the overhead of loading into cache, without any

reuse.

 The entries of cache could also be locked or disabled

depending on the circumstances.

IV. WRITE POLICIES

If the data is written to cache then at some point it should also

be written to the main memory. The timing which is used in

this write is known as write policy.

 In write-through cache, every write which is given to

cache causes write to the main memory.

Rather, in write-back or copy-back cache, write is not

instantly mirrored to main memory. Alternatively, cache

tracks the locations which have been written over and then

these locations are marked as dirty. Data in these dirty

locations are written back to main memory only when the data

which was present is evicted from cache. For this particular

CACHE MEMORY

Yashika Arora, Tanushree, Shilpa Yadav

 Computer Science, Maharishi Dayanand University

http://en.wikipedia.org/wiki/Translation_lookaside_buffer

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100624 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 562

reason, read miss in write-back cache sometimes might

require two memory accesses to provide the service:

 one is to the first write the dirty location to the memory

and then the another one to read a new location from the

memory.

There are some intermediate policies also. The cache could be

write-through, but the write might be held in store data queue for

some limited time, usually so that numerous stores can be processed

together and this reduces bus turnarounds and also improve

utilization of bus.

Data in the main memory which is being cached can be changed by

the other entities like peripherals using multi-core processor or

direct memory access, in which case copy in cache might become

out-of-date or we can say, stale. Rather, when a CPU in the

multiprocessor system updates the data in cache, copies of the data

in the cache is correlated with other CPUs that will become stale.

The communication protocols between cache managers which keeps

the data consistent are called as cache coherence protocols.

V. CONCLUSION

This paper forms part of the guideline for future work for

researchers interested in optimization of memory hierarchy

for scalable multi core processors, as it presents a survey of all

such techniques proposed in recent publications. The

techniques are also presented along with the comments about

their effectiveness.. The effect of the mechanisms and policies

of operating system on the memory hierarchy, especially the

on-chip cache hierarchy is another direction of research that

can be explored. High coherence traffic gives rise to

congestion at the first level cache. Directory-based coherence

protocols may reduce the overall coherence traffic but this

comes with the cost of maintaining the directory and keeping

it updated. These and other research directions shall be

explored in future research.

REFERENCES

[1] Rolản, D., B. Fraguela, R. Doallo, (2009), Adaptive Line

Placement

[2] with the Set balancing Cache, 42nd Annual IEEE/ACM

International

[3] Symposium on Micro-architecture (MICRO-42), p.

529-540

[4] Salapura, Blumrich, Gara, (2008), Design and

Implementation of Blue

[5] Gene/P Snoop Filter, Proceedings of the 14th

International Symposium

[6] on High Performance Computer Architecture (HPCA),

p.5-14

[7] Sun, G., X. Dong, Y. Xie, J. Li, (2009), A Novel

Architecture of the

[8] 3D Stacked MRAM L2 Cache for CMPs, IEEE 15th

International

[9] Symposium on High Performance Computer

Architecture (HPCA), p.

First Author personal profile which contains their

education details, their publications, research work,

membership, achievements, with photo that will be maximum

200-400 words.

 Tanushree, Pursuing Btech in computer science ,

published Five research paper in different journalsand having

membership of various societies like

CSI,ISOC,UNICEF,ISTE, etc,

Third Author personal profile which contains their

education details, their publications, research work,

membership, achievements, with photo that will be maximum

200-400 words.

