
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100631 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 576

A Fast Incremental Algorithm for Maintaining

Dispatchability of

Partially Controllable Plans

Deepak Kumar, Divanshu Kaushik

Department of Information Technology

Dronacharya college of engineering, Gurgaon , Haryana, India

Abstract- Compilers are perceived to be magical

artifacts, carefully crafted by the wizards, and

unfathomable by the mere mortals. Books on

compilers are better described as wizard-talk:

written by and for a clique of all-knowing

practitioners. Real-life compilers are too complex

to serve as an educational tool. And the gap

between real-life compilers and the educational toy

compilers is too wide. The novice compiler writer

stands puzzled facing an impenetrable barrier,

“better write an interpreter instead.” Compilers

are perceived to be magical artifacts, carefully

crafted by the wizards, and unfathomable by the

mere mortals. Books on compilers are better

described as wizard-talk: written by and for a

clique of all-knowing practitioners. Real-life

compilers are too complex to serve as an

educational tool. And the gap between real-life

compilers and the educational toy compilers is too

wide. The novice compiler writer stands puzzled

facing an impenetrable barrier, “better write an

interpreter instead.” The development of the

compiler is described in detail in an extended

tutorial. Supporting material for the tutorial such

as an automated testing facility coupled with a

comprehension.

I. INTRODUCTION

Often, autonomous agents that operate in real-

world

environments must be able to plan, schedule, and

execute

missions while robustly anticipating and

adapting to

uncertainty and disturbances. Typically an agent

only

controls the timing of a subset of a plan’s events;

timing of

the other events is controlled exogenously by

nature or

other agents. For example, a Mars rover can

control when

it starts driving to a rock; however, its precise

arrival time

is influenced by environmental factors. To

achieve

successful execution of a partially controllable

plan, the

scheduler must guarantee that all temporal

constraints are

satisfied, even though some events are

uncontrollable.

Since it is difficult to provide such a guarantee

without any

knowledge about the behavior of uncontrollable

events, the

scheduler exploits a model, called a simple

temporal

network with uncertainty (STNU) [Vidal 1996,

Vidal and

Fargier 1999], to explicitly represent plan

uncertainty by

bounding the behavior of uncontrollable events.

 The domain of application for STNUs is

embedded

systems, such as airplanes and robotic systems,

which

perform scheduling within their controller. The

field ofSTNU dispatching focuses on embedded

control

applications in which the scheduler must satisfy

hard

scheduling constraints while accommodating

disturbances.

Applications include scheduling within the

avionics

processor of commercial aircraft [Tsamardinos et

al. 1998],

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100631 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 577

and control of space probes [Muscettola et al.

1998b],

autonomous air vehicles [Stedl 2004], and

walking robots

[Hofmann et al. 2006].

 For a given STNU, it may not be possible to

generate a

static schedule a priori that guarantees successful

plan

execution over all possible execution times of

uncontrollable events. If a static schedule does

exist, it may

be overly conservative in plan completion time.

This

problem is addressed through dynamic control

[Vidal

2000], a strategy that schedules controllable

events online

just before they are executed. This strategy

exploits the fact

that uncertainty associated with past

uncontrollable events

is eliminated, allowing the scheduler to be less

conservative in the schedules it generates. Given

a set of

temporal constraints over controllable and

uncontrollable

events, and observations of past events, a

dynamic control

strategy generates a schedule online that

guarantees the

temporal constraints of the plan are satisfied.

 Dynamic control is achieved through

dispatchable

execution [Muscettola 1998, Morris et al. 2000],

the

incremental computation of feasible schedules

performed

through constraint propagation, to update the

network as

new information is received. The timing of

executed events

is propagated throughout the network to ensure

that time

windows of later events are appropriately

narrowed to

satisfy timing constraints of the plan. Dynamic

control of

STNUs, achieved through dispatchable

execution, is

domain independent, and applicable to online

scheduling

for systems that have uncontrollable events and

must

satisfy hard scheduling constraints.

 To achieve the goal of scheduling STNUs in

real-time,

[Morris et al. 2001] introduced a dynamic

controllability

(DC) algorithm to 1) determine if a dynamic

control

strategy exists for an STNU, and if so, 2)

compile the

STNU to a dispatchable form which reduces the

amount of

propagation necessary during execution, making

it possible

to schedule in real-time. The dispatchable plan is

precompiled before plan execution, and is then

used by a

dispatcher to schedule quickly online.

 This paper focuses on the additional technical

challenge

of responding, in real-time, to disturbances that

require a

mission phase, the agent may need a way to

quickly replan

and then recompile the modified plan into a

dispatchable

form. Significant progress has been made on the

first

problem – fast replanning. Efficient solutions

include the

use of local repair [Zweben 1993, Rabideau et al.

1999],

and incremental search [Shu 2003, Effinger

2006].

However, existing compilation algorithms are

insufficient

for real-time performance.

 We confront the challenge of real-time

compilation

based on the observation that during replanning,

typically

only a small portion of a plan is modified. Our

compilation

algorithm improves efficiency substantially by

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100631 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 578

incrementally updating the dispatchable plan in

response to

plan changes in the spirit of other incremental

algorithms

for truth maintenance [Doyle 1979] and

informed search

[Koenig et al. 2001]. Current DC compilation

algorithms

repeatedly compute an all-pairs shortest path

(APSP) graph

and then check all possible triangles in the

network for

reductions. In contrast, our IDC algorithm

maintains

dispatchability as constraints in the plan are

tightened (or

added) and loosened (or removed). This is

achieved

through a set of incremental update rules that

exploit the

causal structure of the plan to efficiently

propagate the

effect of each changed constraint throughout the

network.

 This paper presents our incremental compilation

algorithm and its empirical validation. First, we

describe a

practical scenario involving the coordination of

rovers as

an example for the rest of the paper. Next we

review

STNUs and the DC algorithm. We then develop

our

incremental algorithm in two parts: we present

how to

maintain dispatchability for the case when a

constraint is

tightened or added to the plan, and then for the

case where

constraints are loosened or removed from the

plan. Finally,

we present empirical results comparing the

incremental

algorithm to the DC algorithm and conclude.

II. PRACTICAL SCENARIO

Consider a two rover scenario used to

demonstrate online

replanning, DC compilation and dispatching on a

hardware

test-bed [Robertson and Williams 2005] (Fig.1).

In this

scenario, the two rovers cooperatively search for

science

targets in a simulated Martian environment.

Rover 1

drives to location 3, via a route through location

1. At

location 3, Rover 1 surveys the area for

interesting science

targets. Simultaneously, Rover 2 drives to

location 4, via a

route through location 2. At location 4, Rover 2

surveys the

area for interesting science targets. When both

rovers

finish surveying their respective areas, they

rendezvous at

the same time at location 0. The plan

corresponding to this

description involves uncontrollable events; for

example,

the time the rovers spend “finding targets” is

uncertain

since the rovers may find a target right away or

use the

maximum allotted time without finding a target.

III. BACKGROUND

A Simple Temporal Network with Uncertainty

(STNU)

[Vidal and Fargier 1999] is an extension of an

STN

[Dechter 1991] that distinguishes between

controllable and

uncontrollable events. An STNU is a directed

graph,

consisting of a set of nodes, representing

timepoints, and a

set of edges, called links, constraining the

duration between

the timepoints. The links fall into two categories:

requirement links and contingent links. A

requirement link

specifies a constraint on the duration between

two

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100631 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 579

timepoints. A contingent link models an

uncontrollable

process whose uncertain duration, !, may last any

duration

between the specified lower and upper bounds.

All

contingent links terminate on a contingent

timepoint whose

timing is controlled exogenously. All other

timepoints are

called requirement timepoints and are controlled

by the

agent. Fig.2 presents an STNU representing the

cooperative rover scenario of the preceding

section.

 Figure 2: STNU for Cooperative Rover Scenario

 This STNU must be checked to determine if a

dynamically controllable execution strategy

exists, and

then compiled into a dispatchable form. Once the

plan is

dispatchable, the dispatcher consistently and

efficiently

schedules timepoints through local propagation

of

timebounds [Muscettola 1998, Morris et al.

2000]. We now

review how STNUs are compiled into

dispatchable form

and present the dispatchable form for the rover

scenario

(Fig.5).

 To support efficient inference, an STNU is

mapped to an

equivalent distance graph [Dechter 1991], which

we call a

Distance Graph with Uncertainty (DGU). Each

link of the

STNU, containing both lower and upper bounds,

is

converted to a pair of edges in the DGU. One

edge in the

forward direction is labeled with the value of the

upper

time bound, and one edge in the reverse direction

is labeled

with the negative of the lower time bound. The

distinction

between contingent and requirement edges is

maintained.

Fig.3 presents the cooperative rover scenario

DGU. Edge

BC [5, 7] in Fig.2 is converted to a pair of edges

in Fig.3,

where the forward edge BC value is 7, and the

reverse edge

CB value is -5.

 An STNU is consistent only if its associated

distance

graph contains no negative cycles [Dechter

1991]. This can

be efficiently checked by applying the Bellman-

Ford SSSP

algorithm [CLR 1990] on the DGU. However,

consistency

is not sufficient to guarantee dynamic

controllability,

meaning that there is enough flexibility in the

plan to

compensate at execution time for temporal

uncertainty in

the plan. The dynamic controllability (DC)

algorithm introduced

by [Morris et al. 2001] reformulates the DGU to

ensure

that each uncontrollable duration, !i, is free to

finish any

time between [li,ui], as specified by the

contingent link, Ci.

We review the three steps of the DC algorithm.

The first

step (1) computes the APSP-graph of the DGU

using the

Floyd-Warshall algorithm [CLR 1990] in order

to expose

implicit temporal constraints. Exposing implicit

constraints

is necessary to ensure events are scheduled in the

proper

order, and with requisite temporal distances

between

events. If the exposed constraints imply strictly

tighter

bounds on an uncontrollable duration, then that

uncontrollable duration is squeezed [Morris et al.

2001]

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100631 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 580

and the plan is not dynamically controllable. In

this case

there exists a situation [Vidal 1999] where the

outcome of

the uncontrollable duration results in no feasible

schedule

of controllable events to satisfy the STNU. An

STNU is

pseudo-controllable [Morris et al. 2001] if it is

both

temporally consistent and none of its

uncontrollable

durations are squeezed.

 However, even if an STNU is pseudo-

controllable, the

uncontrollable durations may be squeezed at

execution

time [Morris et al. 2001] as follows. When the

dispatcher

executes a timepoint, it fixes the value of the

timepoint.

Updating the implicit constraints based on this

value may

then squeeze, meaning imply tighter bounds, on

a

contingent link. To avoid squeezing

uncontrollable

durations, the DC algorithm, Step (2) adds

constraints to

the plan. The constraints take the form of simple

temporal

constraints and conditional constraints (or “wait”

constraints) and are applied according to the

precede,

unordered, and unconditional unordered

reduction rules

described in [Morris et al. 2001]. We review the

reduction

rules since they are important to understanding

our

incremental update rules.

 Consider the triangular DGU shown in Fig.4.

Assume

the DGU is both pseudo-controllable and in

APSP-form.

 When C is executed before B (v"0, u<0), the

dispatcher

will never know the execution of the contingent

timepoint

B when it needs to schedule timepoint C. To

maintain

dynamic controllability, the dispatcher must

avoid a

situation in which uncontrollable duration AB is

squeezed

due to propagations from CB and BC during

dispatching.

To ensure this does not happen, the dispatcher

must

constrain the temporal relationship between

timepoints A

and C such that, no matter how long

uncontrollable

duration AB takes within [x, y], timepoint C can

be

executed to satisfy constraints CB and BC. The

precede

reduction achieves this by tightening constraints

AC and

CA as follows. When the execution of B and C

are unordered (v # 0 and

u"0), the unordered reduction uses a conditional

constraint

to prevent propagations from possibly squeezing

the

uncontrollable duration AB during dispatching.

If C is

executed before B (as in the precede reduction),

constraint

CA must be tightened to ensure that no matter

how long

uncontrollable duration AB takes within [x, y],

constraint

CB will be satisfied. If B is executed before C,

then the

dispatcher knows the execution time of B when

scheduling

timepoint C, and tightening CA is not necessary.

 Figure 4: Triangular Distance Graph with

Uncertainty (DGU) Definition (Unordered

Reduction [Morris et al. 2001])

If v # 0 and u ! 0, apply a conditional constraint

CA of <B,

v-y>.

For example, in Fig.5 conditional edge GC

labeled <-3, D>

specifies that G must wait at least 3 time units

after C

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100631 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 581

executes or until D executes, whichever comes

first. We

call a DGU containing a set of conditional

constraints a

Conditional Distance Graph with Uncertainty

(CDGU).

 If the conditional edge created by the unordered

reduction requires that C is always executed

before B, then

the edge is unconditional. The unconditional

unordered

reduction describes when to convert the

conditional edge

into a requirement edge.

Definition (Unconditional Unordered Reduction

[Morris et al. 2001]) Given an STNU with

contingent link

AB [x,y], and associated CDGU with a

conditional

constraint CA of <B,-t>, if x>t, then convert the

conditional constraint into a requirement edge

CA with

distance –x.

 Step (3) of the DC algorithm applies the rules

for

regression to the conditional constraints in the

CDGU. The

rules for regression, described in [Morris et al.

2001], add

constraints to the CDGU to ensure that the

conditional

constraints created by the reduction rules are not

violated

at execution and are satisfied for all outcomes of

uncontrollable events. We review the regression

rules since

they are also important to understanding our

incremental

update rules.

Lemma (Regression [Morris et al. 2001]): Given

a

conditional constraint CA of <B,t>, where -t is

less than or

equal to the upper bound of contingent link AB.

Then (in a

schedule resulting from a dynamic strategy):

i.) If there is a requirement edge DC with

distance w,

where w # 0 and D $ B, we can deduce a

conditional

constraint DA of <w+t, B>.

ii.) If t < 0 and if there is a contingent link DC

with bounds

[x,y] and B " C, then we can deduce a

conditional

constraint DA of <x+t, B>.

The rules for regression are applied recursively

to all

conditional constraints in the CDGU, until no

more

regressions are possible.

IV. INCREMENTAL ALGORITHM

In this section, we present our incremental

algorithm, IDC,

which enables the agent to quickly maintain

dispatchability

after a fast replanner modifies a subset of the

constraints.

IDC uses incremental update rules in the spirit of

incremental search algorithms [Koenig and

Likhachev

2001], and employs a set of support similar to

truth

maintenance systems [Doyle 1979]. The key

innovation of

our algorithm is a unified set of incremental

update rules

that exploit the causal structure of the plan to

interleave

and efficiently apply the different types of

propagation in

the DC algorithm. This is in contrast to how the

DC

algorithm repeatedly computes the all-pairs

shortest path

(APSP) graph and repeatedly checks all possible

triangles

in the network for reductions.

 Our IDC algorithm maintains dispatchability

when

constraints in the plan are both tightened (or

added) and

loosened (or removed). We first address the

problem of

maintaining dispatchability when constraints are

tightened.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100631 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 582

We then provide an intuitive explanation for the

difference

between maintaining dispatchability when

constraints are

tightened versus loosened, and address the

problem of

maintaining dispatchability when constraints are

loosened.

V. CONSTRAINT TIGHTENING

The speed of our IDC algorithm is derived from

exploiting

the causal structure of a dispatchable plan to

propagate

constraint modifications throughout the plan. We

introduce

a technique we call dispatchability back-

propagation

(DBP) to resolve STN constraint tightening. We

then

present a unified set of incremental update rules

derived

from DBP, reduction, and regression rules to

resolve the

constraint tightening in an STNU; by resolve we

mean toConstraint Tightening

T(C) - d(BC), which implies T(C) - T(A) <

d(AB) +

d(BC). Adding an edge AC of d(AB) + d(BC) to

G

encodes this constraint. Similar reasoning applies

for case

(ii) when a negative edge changes.

Recursively applying rules (i) and (ii), when an

edge is

tightened in a dispatchable distance graph, will

either

expose a direct inconsistency or result in a

dispatchable

graph1

. The key feature of DBP is that it only requires a

subset of the edges be checked to ensure the

modified

constraint is consistent, rather than all edges

when the

APSP-graph is computed.

For the DC algorithm, in addition to computing

implied

constraints by generating the APSP-graph, the

algorithm

applies reduction and regression rules to ensure

that

uncontrollable durations are not squeezed at

execution

time. Likewise, to resolve squeezing in our IDC

algorithm,

we interleave the DBP rules with incremental

updates rules

derived from the reduction and regression rule

sets. This

unified set of incremental update rules (described

in Table

1) is used to ensure dynamic control. Each

incremental

update rule differs, depending on the types of

edges

involved, the signs of the edge distances, and the

relative

direction of the edges. A DGU consists of five

types of

edges: positive and negative requirement edges,

positive

and negative contingent edges, and negative

conditional

edges. The incremental update rules describe the

propagation of three of these edge types:

negative

requirement edges, positive requirement edges,

and

negative conditional edges - these are the only

three types

of edges that may be added or modified during

compilation. (Any positive conditional edge is

converted to

a requirement edge by the unconditional

unordered

reduction rule.)

 TIGHTEN, which uses the unified set of

incremental

update rules to maintain dispatchability of a

conditional

distance graph with uncertainty (G) when a

subset (e1…en)

of edges are tightened or added to the graph.

Since the

incremental update rules propagate edge updates

towards

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100631 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 583

the start of the plan, we reduce the amount of

redundant

work in BACKPROPAGATE-TIGHTEN by

initiating

propagations near the end of the plan first. In

Line 1, the

relevant timepoint for each new or modified edge

is

ordered according to single-destination shortest-

path

(SDSP), from lowest to highest. IDC chooses the

relevant

timepoint based on how the edge is back-

propagated, it:

(1)

uses the source timepoint of the edge if the edge

is

conditional or the edge value is less than or equal

to zero,

and

 (2)

uses the target timepoint if the edge value is

greater

than zero. Then, for each edge in the ordered list,

IDC

checks if edge ei is a loop (i.e. starts and ends at

the sameTIGHTEN, which uses the unified set of

incremental

update rules to maintain dispatchability of a

conditional

distance graph with uncertainty (G) when a

subset (e1…en)

VI. TIGHTENING VS. LOOSENING

CONSTRAINTS

In this section, we use a simple STN example to

provide an

intuitive explanation for the difference between

maintaining dispatchability when constraints are

tightened

versus loosened. Consider the distance graph of a

STN

shown in Fig.7a. The associated APSP graph is

shown in

Fig.7b. The APSP computation is used to reduce

a STN

into dispatchable form [Muscettola 1998].

 When a constraint is tightened, this change

needs only to

be made consistent with the past scheduling

decisions and

the dispatcher will then ensure that this

constraint change

is consistent with the future at execution time.

To illustrate

this, consider what happens when edge AB is

tightened

from 5 to 4 (Fig.7c). As long as this change is

consistent

with the past (it is), then the dispatcher is able to

compensate for the tightening of AB by choosing

the

appropriate execution time of C within the range

[11, 13]

after B.

 In contrast, consider what happens when edge

AB is

loosened from 5 to 6 (shown in Fig.7d).

Timepoint C must

now be executed with a new lower bound of 9

time units

after B to ensure that C occurs exactly 15 time

units after

A. The value 9 is not within the range [10, 13]; a

situation

may arise where the dispatcher cannot

compensate for the

loosening of AB using the dispatchable form.

However,

remember that the BC timebound before the

APSP

computation was [9, 13]. The value of edge CB

was

tightened from -9 to -10 during the APSP

computation

using edge values CA and AB as support. Since

the value

of AB has changed, CB can revert back to -9.

Dispatchability is maintained as long as the AB

value of 6

and CB value of -9 are consistent with previous

timepoints.

 This simple STN example shows that it is

necessary to

maintain a list of edge value support to identify

the

influence of loosening a temporal constraint. A

similar

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100631 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 584

argument can be made for maintaining a list of

dominated

edge support. Support lists are also used if a

constraint is

removed from a network, since this is an edge

loosening

from a finite value to positive or negative

infinity.

 Support lists, also called set of support, were

first used

for incremental updates in truth-maintenance

systems

[Doyle 1979], in order to record justification,

recognize

inconsistencies, and remember derivations. In

this spirit,

IDC, like other incremental graph algorithms,

uses support

when constraints are loosened to identify edge

values that

are no longer valid and revert them to supported

values.

IDC is unique in that it also uses support to .

REFRENCES

[Demestrescu, C., Emiliozzi, S., Italiano, G.

2004]

Experimental analysis of dynamic all pairs

shortest path

algorithms. Proc. SODA’04, pp. 362-271.

[Doyle 1979] A truth maintenance system. AI,

12:231-272.

[Effinger 2006] Optimal Temporal Planning at

Reactive

Time Scales via Dynamic Backtracking Branch

and

Bound, S.M. Thesis, MIT.

[Hofmann, A., Williams, B. 2006] Robust

execution of

temporally flexible plans for bipedal walking

devices.

Proc. ICAPS-06.

[Koenig, S., Likhachev, M. 2001] Incremental

A*.

Advances in Neural Information Processing

Systems (14).

[Morris, P., Muscettola, N. 2000] Execution of

temporal

plans with uncertainty. In: Proc. AAAI-00.

[Morris, P., Muscettola, N., Vidal, T. 2001]

Dynamic

Control of plans with temporal uncertainty. In:

Proc.

IJCAI-01.

[Muscettola, N., Morris, P., Tsmardinos, I.

1998].

Reformulating temporal plans for efficient

execution. Proc.

KRR-98.

[Muscettola, N., Nayak, P., Pell, B., Williams, B.

1998b]

To boldly go where no AI system has gone

before. AI

103(1):5-48.

[Radibeau, G., Knight, R., Chien, S., Fukunaga,

A, et

al. 1999] Iterative Repair Planning for Spacecraft

Operations in the ASPEN System, Proc. i-

SAIRAS.

[Robertson, P., Williams, B. 2005] A Model-

Based

System Supporting Automatic Self-Regeneration

of

Critical Software, Proceedings of the IFIP/IEEE

Intl

Workshop on Self-Managed Systems &

Services, France.

[Shu, I., Effinger, R., Williams, C. 2005]

Enabling Fast

Flexible Planning through Incremental

Temporal.

