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Abstract- Compilers are perceived to be magical 

artifacts, carefully crafted by the wizards, and 

unfathomable by the mere mortals. Books on 

compilers are better described as wizard-talk: 

written by and for a clique of all-knowing 

practitioners. Real-life compilers are too complex 

to serve as an educational tool. And the gap 

between real-life compilers and the educational toy 

compilers is too wide. The novice compiler writer 

stands puzzled facing an impenetrable barrier, 

“better write an interpreter instead.” Compilers 

are perceived to be magical artifacts, carefully 

crafted by the wizards, and unfathomable by the 

mere mortals. Books on compilers are better 

described as wizard-talk: written by and for a 

clique of all-knowing practitioners. Real-life 

compilers are too complex to serve as an 

educational tool. And the gap between real-life 

compilers and the educational toy compilers is too 

wide. The novice compiler writer stands puzzled 

facing an impenetrable barrier, “better write an 

interpreter instead.” The development of the 

compiler is described in detail in an extended 

tutorial. Supporting material for the tutorial such 

as an automated testing facility coupled with a 

comprehension. 

I. INTRODUCTION 

Often, autonomous agents that operate in real-

world  

environments must be able to plan, schedule, and 

execute  

missions while robustly anticipating and 

adapting to  

uncertainty and disturbances. Typically an agent 

only  

controls the timing of a subset of a plan’s events; 

timing of  

the other events is controlled exogenously by 

nature or  

other agents. For example, a Mars rover can 

control when  

it starts driving to a rock; however, its precise 

arrival time  

is influenced by environmental factors. To 

achieve  

successful execution of a partially controllable 

plan, the  

scheduler must guarantee that all temporal 

constraints are  

satisfied, even though some events are 

uncontrollable.  

Since it is difficult to provide such a guarantee 

without any  

knowledge about the behavior of uncontrollable 

events, the  

scheduler exploits a model, called a simple 

temporal  

network with uncertainty (STNU) [Vidal 1996, 

Vidal and  

Fargier 1999], to explicitly represent plan 

uncertainty by  

bounding the behavior of uncontrollable events.  

 The domain of application for STNUs is 

embedded  

systems, such as airplanes and robotic systems, 

which  

perform scheduling within their controller. The 

field ofSTNU dispatching focuses on embedded 

control  

applications in which the scheduler must satisfy 

hard  

scheduling constraints while accommodating 

disturbances.  

Applications include scheduling within the 

avionics  

processor of commercial aircraft [Tsamardinos et 

al. 1998],  
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and control of space probes [Muscettola et al. 

1998b], 

autonomous air vehicles [Stedl 2004], and 

walking robots 

[Hofmann et al. 2006].  

 For a given STNU, it may not be possible to 

generate a  

static schedule a priori that guarantees successful 

plan  

execution over all possible execution times of  

uncontrollable events. If a static schedule does 

exist, it may  

be overly conservative in plan completion time. 

This  

problem is addressed through dynamic control 

[Vidal  

2000], a strategy that schedules controllable 

events online  

just before they are executed. This strategy 

exploits the fact  

that uncertainty associated with past 

uncontrollable events  

is eliminated, allowing the scheduler to be less  

conservative in the schedules it generates. Given 

a set of  

temporal constraints over controllable and 

uncontrollable  

events, and observations of past events, a 

dynamic control 

strategy generates a schedule online that 

guarantees the  

temporal constraints of the plan are satisfied.  

 Dynamic control is achieved through 

dispatchable  

execution [Muscettola 1998, Morris et al. 2000], 

the  

incremental computation of feasible schedules 

performed  

through constraint propagation, to update the 

network as  

new information is received. The timing of 

executed events  

is propagated throughout the network to ensure 

that time  

windows of later events are appropriately 

narrowed to  

satisfy timing constraints of the plan. Dynamic 

control of  

STNUs, achieved through dispatchable 

execution, is  

domain independent, and applicable to online 

scheduling  

for systems that have uncontrollable events and 

must  

satisfy hard scheduling constraints.  

 To achieve the goal of scheduling STNUs in 

real-time,  

[Morris et al. 2001] introduced a dynamic 

controllability  

(DC) algorithm to 1) determine if a dynamic 

control  

strategy exists for an STNU, and if so, 2) 

compile the  

STNU to a dispatchable form which reduces the 

amount of  

propagation necessary during execution, making 

it possible  

to schedule in real-time. The dispatchable plan is  

precompiled before plan execution, and is then 

used by a  

dispatcher to schedule quickly online.  

 This paper focuses on the additional technical 

challenge  

of responding, in real-time, to disturbances that 

require a 

mission phase, the agent may need a way to 

quickly replan  

and then recompile the modified plan into a 

dispatchable  

form. Significant progress has been made on the 

first  

problem – fast replanning. Efficient solutions 

include the  

use of local repair [Zweben 1993, Rabideau et al. 

1999],  

and incremental search [Shu 2003, Effinger 

2006].  

However, existing compilation algorithms are 

insufficient  

for real-time performance.  

 We confront the challenge of real-time 

compilation  

based on the observation that during replanning, 

typically  

only a small portion of a plan is modified. Our 

compilation  

algorithm improves efficiency substantially by  
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incrementally updating the dispatchable plan in 

response to  

plan changes in the spirit of other incremental 

algorithms  

for truth maintenance [Doyle 1979] and 

informed search  

[Koenig et al. 2001]. Current DC compilation 

algorithms  

repeatedly compute an all-pairs shortest path 

(APSP) graph  

and then check all possible triangles in the 

network for  

reductions. In contrast, our IDC algorithm 

maintains  

dispatchability as constraints in the plan are 

tightened (or  

added) and loosened (or removed). This is 

achieved  

through a set of incremental update rules that 

exploit the  

causal structure of the plan to efficiently 

propagate the  

effect of each changed constraint throughout the 

network.  

 This paper presents our incremental compilation  

algorithm and its empirical validation. First, we 

describe a  

practical scenario involving the coordination of 

rovers as  

an example for the rest of the paper. Next we 

review  

STNUs and the DC algorithm. We then develop 

our  

incremental algorithm in two parts: we present 

how to  

maintain dispatchability for the case when a 

constraint is  

tightened or added to the plan, and then for the 

case where  

constraints are loosened or removed from the 

plan. Finally,  

we present empirical results comparing the 

incremental  

algorithm to the DC algorithm and conclude. 

II. PRACTICAL SCENARIO 

Consider a two rover scenario used to 

demonstrate online  

replanning, DC compilation and dispatching on a 

hardware  

test-bed [Robertson and Williams 2005] (Fig.1). 

In this  

scenario, the two rovers cooperatively search for 

science  

targets in a simulated Martian environment. 

Rover 1  

drives to location 3, via a route through location 

1. At  

location 3, Rover 1 surveys the area for 

interesting science  

targets. Simultaneously, Rover 2 drives to 

location 4, via a  

route through location 2. At location 4, Rover 2 

surveys the  

area for interesting science targets. When both 

rovers  

finish surveying their respective areas, they 

rendezvous at  

the same time at location 0. The plan 

corresponding to this  

description involves uncontrollable events; for 

example,  

the time the rovers spend “finding targets” is 

uncertain  

since the rovers may find a target right away or 

use the  

maximum allotted time without finding a target. 

III. BACKGROUND 

A Simple Temporal Network with Uncertainty 

(STNU)  

[Vidal and Fargier 1999] is an extension of an 

STN  

[Dechter 1991] that distinguishes between 

controllable and  

uncontrollable events. An STNU is a directed 

graph,  

consisting of a set of nodes, representing 

timepoints, and a  

set of edges, called links, constraining the 

duration between  

the timepoints. The links fall into two categories:  

requirement links and contingent links. A 

requirement link  

specifies a constraint on the duration between 

two  



© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002 

IJIRT 100631 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 579 
 

timepoints. A contingent link models an 

uncontrollable  

process whose uncertain duration, !, may last any 

duration  

between the specified lower and upper bounds. 

All  

contingent links terminate on a contingent 

timepoint whose  

timing is controlled exogenously. All other 

timepoints are  

called requirement timepoints and are controlled 

by the  

agent. Fig.2 presents an STNU representing the  

cooperative rover scenario of the preceding 

section.  

  

 Figure 2: STNU for Cooperative Rover Scenario  

 This STNU must be checked to determine if a  

dynamically controllable execution strategy 

exists, and  

then compiled into a dispatchable form. Once the 

plan is  

dispatchable, the dispatcher consistently and 

efficiently  

schedules timepoints through local propagation 

of  

timebounds [Muscettola 1998, Morris et al. 

2000]. We now  

review how STNUs are compiled into 

dispatchable form  

and present the dispatchable form for the rover 

scenario  

(Fig.5).  

 To support efficient inference, an STNU is 

mapped to an  

equivalent distance graph [Dechter 1991], which 

we call a  

Distance Graph with Uncertainty (DGU). Each 

link of the  

STNU, containing both lower and upper bounds, 

is  

converted to a pair of edges in the DGU. One 

edge in the  

forward direction is labeled with the value of the 

upper  

time bound, and one edge in the reverse direction 

is labeled  

with the negative of the lower time bound. The 

distinction  

between contingent and requirement edges is 

maintained.  

Fig.3 presents the cooperative rover scenario 

DGU. Edge  

BC [5, 7] in Fig.2 is converted to a pair of edges 

in Fig.3,  

where the forward edge BC value is 7, and the 

reverse edge  

CB value is -5.  

 An STNU is consistent only if its associated 

distance  

graph contains no negative cycles [Dechter 

1991]. This can  

be efficiently checked by applying the Bellman-

Ford SSSP  

algorithm [CLR 1990] on the DGU. However, 

consistency  

is not sufficient to guarantee dynamic 

controllability,  

meaning that there is enough flexibility in the 

plan to  

compensate at execution time for temporal 

uncertainty in  

the plan. The dynamic controllability (DC) 

algorithm introduced  

by [Morris et al. 2001] reformulates the DGU to 

ensure  

that each uncontrollable duration, !i, is free to 

finish any  

time between [li,ui], as specified by the 

contingent link, Ci.  

We review the three steps of the DC algorithm. 

The first  

step (1) computes the APSP-graph of the DGU 

using the  

Floyd-Warshall algorithm [CLR 1990] in order 

to expose  

implicit temporal constraints. Exposing implicit 

constraints  

is necessary to ensure events are scheduled in the 

proper  

order, and with requisite temporal distances 

between  

events. If the exposed constraints imply strictly 

tighter  

bounds on an uncontrollable duration, then that  

uncontrollable duration is squeezed [Morris et al. 

2001]  
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and the plan is not dynamically controllable. In 

this case  

there exists a situation [Vidal 1999] where the 

outcome of  

the uncontrollable duration results in no feasible 

schedule  

of controllable events to satisfy the STNU. An 

STNU is  

pseudo-controllable [Morris et al. 2001] if it is 

both  

temporally consistent and none of its 

uncontrollable  

durations are squeezed. 

 However, even if an STNU is pseudo-

controllable, the  

uncontrollable durations may be squeezed at 

execution  

time [Morris et al. 2001] as follows. When the 

dispatcher  

executes a timepoint, it fixes the value of the 

timepoint.  

Updating the implicit constraints based on this 

value may  

then squeeze, meaning imply tighter bounds, on 

a  

contingent link. To avoid squeezing 

uncontrollable  

durations, the DC algorithm, Step (2) adds 

constraints to  

the plan. The constraints take the form of simple 

temporal  

constraints and conditional constraints (or “wait”  

constraints) and are applied according to the 

precede,  

unordered, and unconditional unordered 

reduction rules 

described in [Morris et al. 2001]. We review the 

reduction  

rules since they are important to understanding 

our  

incremental update rules.  

 Consider the triangular DGU shown in Fig.4. 

Assume  

the DGU is both pseudo-controllable and in 

APSP-form.  

 When C is executed before B (v"0, u<0), the 

dispatcher  

will never know the execution of the contingent 

timepoint  

B when it needs to schedule timepoint C. To 

maintain  

dynamic controllability, the dispatcher must 

avoid a  

situation in which uncontrollable duration AB is 

squeezed  

due to propagations from CB and BC during 

dispatching.  

To ensure this does not happen, the dispatcher 

must  

constrain the temporal relationship between 

timepoints A  

and C such that, no matter how long 

uncontrollable  

duration AB takes within [x, y], timepoint C can 

be  

executed to satisfy constraints CB and BC. The 

precede  

reduction achieves this by tightening constraints 

AC and  

CA as follows. When the execution of B and C 

are unordered (v # 0 and  

u"0), the unordered reduction uses a conditional 

constraint  

to prevent propagations from possibly squeezing 

the  

uncontrollable duration AB during dispatching. 

If C is  

executed before B (as in the precede reduction), 

constraint  

CA must be tightened to ensure that no matter 

how long  

uncontrollable duration AB takes within [x, y], 

constraint  

CB will be satisfied. If B is executed before C, 

then the  

dispatcher knows the execution time of B when 

scheduling  

timepoint C, and tightening CA is not necessary.  

 Figure 4: Triangular Distance Graph with 

Uncertainty (DGU) Definition (Unordered 

Reduction [Morris et al. 2001])  

If v # 0 and u ! 0, apply a conditional constraint 

CA of <B,  

v-y>.  

For example, in Fig.5 conditional edge GC 

labeled <-3, D>  

specifies that G must wait at least 3 time units 

after C  
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executes or until D executes, whichever comes 

first. We  

call a DGU containing a set of conditional 

constraints a  

Conditional Distance Graph with Uncertainty 

(CDGU).  

 If the conditional edge created by the unordered  

reduction requires that C is always executed 

before B, then  

the edge is unconditional. The unconditional 

unordered  

reduction describes when to convert the 

conditional edge  

into a requirement edge.  

Definition (Unconditional Unordered Reduction  

[Morris et al. 2001]) Given an STNU with 

contingent link  

AB [x,y], and associated CDGU with a 

conditional  

constraint CA of <B,-t>, if x>t, then convert the  

conditional constraint into a requirement edge 

CA with  

distance –x. 

 Step (3) of the DC algorithm applies the rules 

for  

regression to the conditional constraints in the 

CDGU. The  

rules for regression, described in [Morris et al. 

2001], add  

constraints to the CDGU to ensure that the 

conditional  

constraints created by the reduction rules are not 

violated  

at execution and are satisfied for all outcomes of  

uncontrollable events. We review the regression 

rules since  

they are also important to understanding our 

incremental  

update rules.  

Lemma (Regression [Morris et al. 2001]): Given 

a  

conditional constraint CA of <B,t>, where -t is 

less than or  

equal to the upper bound of contingent link AB. 

Then (in a  

schedule resulting from a dynamic strategy):  

i.) If there is a requirement edge DC with 

distance w,  

where w # 0 and D $ B, we can deduce a 

conditional  

constraint DA of <w+t, B>.  

ii.) If t < 0 and if there is a contingent link DC 

with bounds  

[x,y] and B " C, then we can deduce a 

conditional  

constraint DA of <x+t, B>.  

The rules for regression are applied recursively 

to all  

conditional constraints in the CDGU, until no 

more  

regressions are possible. 

IV. INCREMENTAL ALGORITHM 

In this section, we present our incremental 

algorithm, IDC,  

which enables the agent to quickly maintain 

dispatchability  

after a fast replanner modifies a subset of the 

constraints.  

IDC uses incremental update rules in the spirit of  

incremental search algorithms [Koenig and 

Likhachev  

2001], and employs a set of support similar to 

truth  

maintenance systems [Doyle 1979]. The key 

innovation of  

our algorithm is a unified set of incremental 

update rules  

that exploit the causal structure of the plan to 

interleave  

and efficiently apply the different types of 

propagation in  

the DC algorithm. This is in contrast to how the 

DC  

algorithm repeatedly computes the all-pairs 

shortest path  

(APSP) graph and repeatedly checks all possible 

triangles  

in the network for reductions.  

 Our IDC algorithm maintains dispatchability 

when  

constraints in the plan are both tightened (or 

added) and  

loosened (or removed). We first address the 

problem of  

maintaining dispatchability when constraints are 

tightened.  
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We then provide an intuitive explanation for the 

difference  

between maintaining dispatchability when 

constraints are  

tightened versus loosened, and address the 

problem of  

maintaining dispatchability when constraints are 

loosened. 

V. CONSTRAINT TIGHTENING 

The speed of our IDC algorithm is derived from 

exploiting  

the causal structure of a dispatchable plan to 

propagate  

constraint modifications throughout the plan. We 

introduce  

a technique we call dispatchability back-

propagation  

(DBP) to resolve STN constraint tightening. We 

then  

present a unified set of incremental update rules 

derived  

from DBP, reduction, and regression rules to 

resolve the  

constraint tightening in an STNU; by resolve we 

mean toConstraint Tightening  

T(C) - d(BC), which implies T(C) - T(A) < 

d(AB) +  

d(BC). Adding an edge AC of d(AB) + d(BC) to 

G  

encodes this constraint. Similar reasoning applies 

for case  

(ii) when a negative edge changes.  

Recursively applying rules (i) and (ii), when an 

edge is  

tightened in a dispatchable distance graph, will 

either  

expose a direct inconsistency or result in a 

dispatchable  

graph1 

. The key feature of DBP is that it only requires a  

subset of the edges be checked to ensure the 

modified  

constraint is consistent, rather than all edges 

when the  

APSP-graph is computed.  

For the DC algorithm, in addition to computing 

implied  

constraints by generating the APSP-graph, the 

algorithm  

applies reduction and regression rules to ensure 

that  

uncontrollable durations are not squeezed at 

execution  

time. Likewise, to resolve squeezing in our IDC 

algorithm,  

we interleave the DBP rules with incremental 

updates rules  

derived from the reduction and regression rule 

sets. This  

unified set of incremental update rules (described 

in Table  

1) is used to ensure dynamic control. Each 

incremental  

update rule differs, depending on the types of 

edges  

involved, the signs of the edge distances, and the 

relative  

direction of the edges. A DGU consists of five 

types of  

edges: positive and negative requirement edges, 

positive  

and negative contingent edges, and negative 

conditional  

edges. The incremental update rules describe the  

propagation of three of these edge types: 

negative  

requirement edges, positive requirement edges, 

and  

negative conditional edges - these are the only 

three types  

of edges that may be added or modified during  

compilation. (Any positive conditional edge is 

converted to  

a requirement edge by the unconditional 

unordered  

reduction rule.)  

 TIGHTEN, which uses the unified set of 

incremental  

update rules to maintain dispatchability of a 

conditional  

distance graph with uncertainty (G) when a 

subset (e1…en)  

of edges are tightened or added to the graph. 

Since the  

incremental update rules propagate edge updates 

towards  
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the start of the plan, we reduce the amount of 

redundant  

work in BACKPROPAGATE-TIGHTEN by 

initiating  

propagations near the end of the plan first. In 

Line 1, the  

relevant timepoint for each new or modified edge 

is  

ordered according to single-destination shortest-

path  

(SDSP), from lowest to highest. IDC chooses the 

relevant  

timepoint based on how the edge is back-

propagated, it:  

(1)  

uses the source timepoint of the edge if the edge 

is  

conditional or the edge value is less than or equal 

to zero,  

and 

 (2)  

uses the target timepoint if the edge value is 

greater  

than zero. Then, for each edge in the ordered list, 

IDC  

checks if edge ei is a loop (i.e. starts and ends at 

the sameTIGHTEN, which uses the unified set of 

incremental  

update rules to maintain dispatchability of a 

conditional  

distance graph with uncertainty (G) when a 

subset (e1…en)  

VI. TIGHTENING VS. LOOSENING 

CONSTRAINTS 

In this section, we use a simple STN example to 

provide an  

intuitive explanation for the difference between  

maintaining dispatchability when constraints are 

tightened  

versus loosened. Consider the distance graph of a 

STN  

shown in Fig.7a. The associated APSP graph is 

shown in  

Fig.7b. The APSP computation is used to reduce 

a STN  

into dispatchable form [Muscettola 1998].  

 When a constraint is tightened, this change 

needs only to  

be made consistent with the past scheduling 

decisions and  

the dispatcher will then ensure that this 

constraint change  

is consistent with the future at execution time. 

To illustrate  

this, consider what happens when edge AB is 

tightened  

from 5 to 4 (Fig.7c). As long as this change is 

consistent  

with the past (it is), then the dispatcher is able to  

compensate for the tightening of AB by choosing 

the  

appropriate execution time of C within the range 

[11, 13]  

after B.  

 In contrast, consider what happens when edge 

AB is  

loosened from 5 to 6 (shown in Fig.7d). 

Timepoint C must  

now be executed with a new lower bound of 9 

time units  

after B to ensure that C occurs exactly 15 time 

units after  

A. The value 9 is not within the range [10, 13]; a 

situation  

may arise where the dispatcher cannot 

compensate for the  

loosening of AB using the dispatchable form. 

However,  

remember that the BC timebound before the 

APSP  

computation was [9, 13]. The value of edge CB 

was  

tightened from -9 to -10 during the APSP 

computation  

using edge values CA and AB as support. Since 

the value  

of AB has changed, CB can revert back to -9.  

Dispatchability is maintained as long as the AB 

value of 6  

and CB value of -9 are consistent with previous 

timepoints.  

 This simple STN example shows that it is 

necessary to  

maintain a list of edge value support to identify 

the  

influence of loosening a temporal constraint. A 

similar  
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argument can be made for maintaining a list of 

dominated  

edge support. Support lists are also used if a 

constraint is  

removed from a network, since this is an edge 

loosening  

from a finite value to positive or negative 

infinity.  

 Support lists, also called set of support, were 

first used  

for incremental updates in truth-maintenance 

systems  

[Doyle 1979], in order to record justification, 

recognize  

inconsistencies, and remember derivations. In 

this spirit,  

IDC, like other incremental graph algorithms, 

uses support  

when constraints are loosened to identify edge 

values that  

are no longer valid and revert them to supported 

values.  

IDC is unique in that it also uses support to . 
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