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Abstract—Extracting   data    paths    in   large-scale    register- 
transfer level  designs  has  important  usage  in  automatic  
veri- fication  of synchronous circuits  and  synthesis  of 
asynchronous circuits.  Current tools rely on users  to provide  
the  data/control partition or  use state-space  analyses  to 
extract  data  paths.  Due to  the  explosion  of state-space,  the  
latter method  can  be  used in only small designs. To resolve  
this problem,  a graphic  search and  trim  method,  which  can  
extract  data  paths  in  large  scale designs,  is presented. A 

design  is first  translated into a graphic representation, 
namely  a signal-level data  flow graph  (DFG), to reveal the  
connections  between  signals.  By estimating  the  types (control  
or data)  of these connections,  a linear  search  algorithm can  
then  remove all control-related signals  in the  graph,  which 
effectively produces  a DFG  with  pure  data  paths.  Results  
show that  this  method  extracts  data  paths  of large  scale  
designs  in seconds. 

 
I.    INTRODUCTION 

 

A large-scale digital system can be recognized as a large 
set of  heterogeneous function units dynamically connected, 
loaded and scheduled by various local and global controllers. 
These function units and their mutual connections comprise 
data paths while the resource schedulers, including the local 
and global controllers, constitute control paths. Data paths are 
the hardware implementation of the behavioural-level data flow 
whose correct operation relies on loading them with the right 
data at the right time, which is scheduled by the control paths. 

 

In behavioural-level synthesis, data flows are usually pro- 
vided  by  users  or  extracted  from  an  input  design  written 
in  behavioural-level  (normally  sequential)  languages.  Data 
path synthesis [1] maps the flows to function units, explores 
possible parallel operations and sharing resources among non- 
overlapped operations. After data and control paths are imple- 
mented into register-transfer level (RTL) descriptions, they are 
blended with no explicit boundary. As a result, extracting data 
paths from RTL descriptions is actually a reverse engineering 
process which recovers the behavioural-level data flow buried 
in the logical-level implementation. 

 

Extracting data paths is not required in normal hardware 
synthesis flows because RTL designs are mapped into gate- 
level circuits using logical synthesis, which does not require 
a clear view of the global data flow. However, it is useful 
and even important in some other areas. Reuse of intellectual 
properties (IPs) and legacy codes is one of those areas. 
Assuming an undocumented soft IP is utilized, an automatic 
extraction of data flows would be helpful for understanding its 
behaviour and it is also crucial for automatically verifying its 
functions [2]. 

Synthesis of asynchronous systems [3,4] is another area 
where the extraction of data paths is important. Asynchronous 
systems [5] is well-known for their low dynamic power and 
tolerance to delay variations but their development is impeded 
due to the lack of synthesis tools. Two of the most utilized tool 
flows: de-synchronization [4] and behavioural synthesis [3,6], 
require different treatments for data and control paths. There- 
fore, data paths must be separated from control paths before 
any circuit optimization. This reveals one of the limitations of 
de-synchronization. It treats all registers as part of data paths 
without differentiating the registers used as data buffers from 
those  used  as  state  machines. The  generated asynchronous 
circuit is thus a direct mapping of the original synchronous 
circuit, leading to large area and potentially low speed. 
 

The usage of automatic extraction pursued by this paper is 
related to the synthesis of globally asynchronous and locally 
synchronous (GALS) [7] systems. Given a synchronous RTL 
design, a tool is being designed to automatically re-partition 
the design for low dynamic power. If a suitable partition is 
found, an equivalent GALS system can be achieved by running 
sub-modules at different clock frequencies and replacing the 
synchronous buses between sub-modules with asynchronous 
handshake circuits. Since the boundary of a suitable partition 
should be located on infrequently utilized data links, an 
accurate data path annotated with accurate data rates must be 
extracted beforehand. 
 

To our best knowledge, no method has been proposed for 
extracting data paths in large-scale RTL designs. Existing syn- 
thesis and verification tools either rely on the RTL designers to 
provide a data flow or extract low-level data flows by analysing 
the state space [2]. The explosive number of states limits the 
use of the latter method in large-scale RTL designs. Rather 
than analysing the  state  space of  low-level data  paths, the 
method proposed in this paper extracts them in a signal-level 
data flow graph (DFG) derived from the RTL design. Since 
the arcs in the signal-level DFG are typed into control or 
data,  a recursive search algorithm is used to trim all control 
nodes, which generates a DFG with pure data paths. Although 
no estimation of data rates is provided yet, it can be done if 
combined with state analyses of the control paths later in the 
design cycle. 
 

II.    TOOL FLOW 
 

The  proposed  tool  flow [8]  is  illustrated  in  Fig.  1.  A 
Verilog HDL parser has been implemented using Bison and 
Flex, which is able to read hierarchical RTL designs written
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Fig. 1.    The tool flow for data path extraction 

 

 
in multi-file Verilog HDLs complying with the IEEE 1364- 
2001 standard [9]. After the hierarchical design is successfully 
elaborated,  a  graphic  representation,  namely  a  signal-level 
data flow graph (DFG) [10] revealing the  connections and 
relations between all Verilog signals, is then extracted from the 
parsed abstract syntax tree (AST). Depending on the logical 
dependence between signals, arcs in the signal-level DFG are 
annotated with four types: data,  control, clock and reset. 
To extract data paths, all control, clock and reset arcs are 
removed from the signal-level DFG (remove control arcs in 
Fig. 1). Then using a recursive search algorithm, all control- 
related nodes and arcs are further removed (graph trimming in 
Fig. 1), which leaves a DFG with pure data paths. 

 
III.    SIGNAL-LEVEL DATA FLOW GRAPH 

 

To illustrate the details of signal-level DFGs, a RTL Verilog 
implementation of the greatest common divisor (GCD) (listed 
in Fig. 2) is used as an example. It has two flip-flops, A  Hold 
and B  Hold, to store the two GCD operands, A and B. In 
every cycle, the pair of operands are swapped if A  Hold is less 
than B  Hold; otherwise, A  Hold stores their difference. 
When B equates zero, the value in A  Hold is the greatest  
common divisor and is output through port Y. 

 

A signal-level DFG is a multi-graph revealing the internal 
connections and relations between signals. The formal defini- 
tion of a signal-level DFG is described as follow [10]: 

 

Definition  1.  A signal-level DFG  is a  directed multi-graph 
denoted by a six-tuple DF G = (V, A, TA , FA , TV , FV ), where 
V  is a finite set of nodes representing components in the AST; 
A ⊆ V  × V   is a finite set of arcs  denoting the connection 
between components; 
TA  ∈ {control, data, clock, reset} is a finite set of available 
arc types; 
FA  : A → TA  is a function mapping types to arcs; 
TV  ∈ {seq  block, combi  block, i  port, o port, module} is a 
finite set of available component types; 
FV   : V   → TV   is another  function mapping the types of all 
components. 

 
The corresponding signal-level DFG of the GCD is de- 

picted in Fig. 3. Several steps are taken to translate a RTL 
Verilog design into a signal-level DFG: 

 

1)     Every module is depicted in a separate DFG. 

module GCD (Clock,Reset,Load,A,B,Done,Y); 
input   Clock,Reset,Load; 
input   [7:0]  A,B; 
output Done; 
output [7:0]  Y; 
reg A_lessthan_B, Done; 
reg [7:0]  A_New,  A_Hold, B_Hold, Y; 

 

always @(posedge Clock) 
if(Reset) begin 

A_Hold  = 0; B_Hold  = 0; 
end else  if(Load) begin 

A_Hold  = A; B_Hold  = B; 
end else  if(A_lessthan_B) begin 

A_Hold  = B_Hold; 
B_Hold  = A_New; 

end else 
A_Hold  = A_New; 

 

always @(A_Hold or B_Hold) 
if(A_Hold >= B_Hold) begin 

A_lessthan_B = 0; 
A_New  = A_Hold  - B_Hold; 

end else  begin 
A_lessthan_B = 1; 
A_New  = A_Hold; 

end 
 

always @(A_Hold or B_Hold) 
if(B_Hold == 0) begin 

Done = 1; Y = A_Hold; 
end else  begin 

Done = 0; Y = 0; 
end 

endmodule 
 

 
Fig. 2.    Greatest Common Divisor (GCD) 

 

 
2) Each signal (wire, reg, integer,  etc.) is represented 

as a node in the graph. Depending on the hardware 
implementation, flip-flops (seq  block) are drawn in 
rectangles  labelled  with  “FF”,  combinational  sig- 
nals (combi  block) are drawn in circles, input ports 
(i  port) are drawn in circles labelled with “I”, and 
output ports (o port) are circled as well but labelled 
“O”. 

3) Each  instance  (module)   is  drawn  in  a  rectangle 
labelled “module” (for hierarchical support). It has 
an internal link pointing to the corresponding DFG 
of the sub-module. 

4) To normalize the hierarchical connections, a dummy 
node (drawn in a circle) is add for each port (name 
the original port with a suffix “  P”). 

5) Traverse all always and assign statements and con- 
nect nodes with arcs annotated with estimated types. 

 

In the final step of generating a signal-level DFG (step 5), 
a relation tree is generated for each signal to estimate the types 
of arcs. For example, after traversing the first always block, 
a relation tree is built for signal A  Hold as shown in Fig. 4. 
The tree grows with the level of conditional statements. Each 
if statement is converted into a condition node representing 
the signals in the conditional expression and two sub-trees 
denoting  the  two  cases.  The  arc  between  the  parent  node 
and the condition node is typed control. Other conditional 
statements, such as case and for, are converted similarly. The 
leaf nodes of the relation tree are signals appeared in the right-
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Fig. 5.     (A) the signal-level DFG with control arcs removed and (b) the 
extracted data path

Fig. 3.    The signal-level DFG of the GCD module 
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of the GCD calculation. They are all control signals that should 
be removed as well. Thanks to the removal of all control arcs, 
the nodes and arcs related to control signals are disconnected 
from the data paths, which provides a possibility of trimming 
them.

 
A_Hold 

 

 
Fig. 4.    Relation tree of A Hold 

hand side of assignments and are connected using data  arcs. 
 

After a relation tree is generated for a DFG node, all ingress 
arcs of in the DFG can be drawn accordingly. For all the non- 
root and non-constant nodes in the relation tree, an arc is drawn 
from each of them to the root in the DFG. The type of each 
arc is set to the type of the single egress arc of its source in 
the relation tree. In this way, all nodes in a signal-level DFG 
are connected after all always and assign are traversed. 

 

The type  estimation of  arcs  in  the  signal-level DFG is 
crucial for an accurate extraction of data paths. In general, 
all signals appeared in the conditional expression of if, case, 
for,  while  and  ?  are  connected with  a  control  arc,  while 
other non-control signals appeared in the right-hand side of 
an assignment are connected using data  arcs. The lack of else 
or default  in if or case is automatically checked and a self 
data  arc is added when the check results false. Signals in 
the conditional expression of a ROM style case statement are 
treated as data  as this sort of case statements are usually used 
in data paths. 

IV.    DATA PATH EXTRACTION 
 

The extraction of data paths from the signal-level DFG is 
done in two steps: removing all control arcs and trimming. 

 

Since a pure data path should not contain any control 
signals, all control-related nodes and arcs should be removed 
from the signal-level DFG. As the result of the first step, the 
DFG of the GCD module with all control arcs removed is 
shown in Fig. 5a. Although all remaining arcs are typed data, 
it still contains nodes and arcs that belong to control paths. 
For example, the combinational node A  lessthan   B  
controls 

 

In the step of trimming a DFG, a recursive search algorithm 
is utilized to remove all control-related nodes (along with all 
ingress and egress arcs) which qualified with the following 
criteria: 
 

1) A combinational node with either no egress arc or no 
ingress arc. 

2)     A register node without a non-self egress arc. 
3)     An input port without an egress arc. 
4)     An output port without an ingress arc. 
5)     A module without an egress arc. 

 

Since the removal of control arcs separates control-related 
nodes from data paths and leaves them dangling, criterion 1 
and 2 would trim them from the graph and make the nodes 
connected to  them  new  dangling nodes.  Using  a  recursive 
search, all  dangling flip-flops and  combinational nodes are 
trimmed. Criterion 3 and 4 removes the control-related I/O 
ports. Criterion 5 further removes the modules containing pure 
control circuits. The timing and memory complexity of the 
recursive search is linear with the total number of arcs in the 
DFG. 
 

The DFG after trimming is shown in Fig. 5b, where a 
clean data path is depicted: from the two data inputs, A and B, 
through the two computation registers, A  Hold and B  hold, 
to the final result port, Y. With no user intervention, the 
extraction method has successfully found the data path and 
trimmed away all control-related nodes and ports. 

V.    TEST CASES 
 

A. Hierarchical  data path 
In the previous section, the data path of a single module 

design, the greatest common divisor, is automatically extracted. 
The proposed method can handle designs with multi-level 
hierarchies. To demonstrate this capability, the data path of 
the permutation module of a SHA-3 encoder [11] is extracted.
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VI.    CONCLUSION 
 

This paper presents a fast and scalable method which can 
automatically extract data paths for large-scale RTL designs. 
Using the parsed abstract syntax tree, the method translates 
the design into a hierarchical signal-level DFG with the 
connections between signals annotated with estimated control 
or data  types. Using these estimated types, the method is able 
to remove all control-related signals, modules and ports in the 
signal-level DFG leaving the graph purely with data paths. 
Test cases show that the automatic extraction method can 
successfully identify data paths in RTL designs. Thanks to the 
use of data flow graphs, the proposed method can extract the 
data paths of large-scale RTL designs in linear time, which has 
not been achieved by traditional state-space analytic methods. 
Utilizing this method, fully automatic tools could be built to

Fig. 6.   (A) the block diagram of the permutation module in a SHA-3 encoder 
and (b) the extracted data path 

 
TABLE I.        RE S U LT S O F DATA  PAT H E X T R AC T I O N 

 

Design     
          Signal-level  DFG                         Extracted  data  path            

Running 

I/O      Module      Signal             I/O      Module      Signal       time (s) 

OR1200       52           37            2074               40           33            1142             1 
RSD              7            24            1063                3            23             659            <1 
NOVA          19          140           7043                9           103           4279            10 

 
The block diagram provided in the user manual and the 

automatically extracted data path are depicted in Fig. 6a and 
6b respectively. In the extracted data path, two sub-modules 
are drawn in rectangles labelled “MODULE”. Registers with 
no ingress arcs, such as the counter register i, are retained as 
they may produce cyclic data inputs. It is easy to see that the 
extracted data path complies with the block diagram provided 
by the author. 
B. Large-scale designs 

 

To  demonstrate  the  scalability  of  the  proposed  method 
for  large  scale  circuits,  three  designs  from  the  OpenCore 
project  repository  are  chosen  as  test  cases:  OR1200,  a  5- 
stage microprocessor [12]; RSD, an industrial standard Reed- 
Solomon decoder [13]; NOVA, a FPGA proven H.264/AVC 
baseline decoder [14]. Running the extraction program [8] on 
an Intel Core™2 Due 3.00 GHz PC with 2 GB memory, Table I 
reveals the results of the extracted data paths. 

 

For each design, the total number of top-level I/O ports, 
sub-modules and signals (including wires and registers) are 
listed for the signal-level DFG and the extracted data path 
graph respectively. As shown in the figures, the number of 
signals has reduced significantly in the data path graph, along 
with reduction in I/O ports. This indicates that the proposed 
method successfully identifies the control-related signals and 
I/O ports and simplifies the signal-level DFG with data paths 
retained. All data path graphs are automatically extracted 
without user intervention, although a more accurate extraction 
can be achieved by explicitly specifying the top-level control 
I/O ports. For all designs, the extraction process finishes in a 
small number of seconds. As the largest design, NOVA takes 
the longest time to extract but still the total calculation time is 

verify the functions of large synchronous designs or synthesize 
them into asynchronous ones. 
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