
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100686 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1336

Automatic Data Path Extraction in Large-Scale

Register-Transfer Level Designs

Himanshu Kapoor, Amritanshu Sharan,

Dronacharya College Of Engineering

Khentawas ,Gurgaon

Abstract—Extracting data paths in large-scale register-
transfer level designs has important usage in automatic
veri- fication of synchronous circuits and synthesis of
asynchronous circuits. Current tools rely on users to provide
the data/control partition or use state-space analyses to
extract data paths. Due to the explosion of state-space, the
latter method can be used in only small designs. To resolve
this problem, a graphic search and trim method, which can
extract data paths in large scale designs, is presented. A

design is first translated into a graphic representation,
namely a signal-level data flow graph (DFG), to reveal the
connections between signals. By estimating the types (control
or data) of these connections, a linear search algorithm can
then remove all control-related signals in the graph, which
effectively produces a DFG with pure data paths. Results
show that this method extracts data paths of large scale
designs in seconds.

I. INTRODUCTION

A large-scale digital system can be recognized as a large
set of heterogeneous function units dynamically connected,
loaded and scheduled by various local and global controllers.
These function units and their mutual connections comprise
data paths while the resource schedulers, including the local
and global controllers, constitute control paths. Data paths are
the hardware implementation of the behavioural-level data flow
whose correct operation relies on loading them with the right
data at the right time, which is scheduled by the control paths.

In behavioural-level synthesis, data flows are usually pro-
vided by users or extracted from an input design written
in behavioural-level (normally sequential) languages. Data
path synthesis [1] maps the flows to function units, explores
possible parallel operations and sharing resources among non-
overlapped operations. After data and control paths are imple-
mented into register-transfer level (RTL) descriptions, they are
blended with no explicit boundary. As a result, extracting data
paths from RTL descriptions is actually a reverse engineering
process which recovers the behavioural-level data flow buried
in the logical-level implementation.

Extracting data paths is not required in normal hardware
synthesis flows because RTL designs are mapped into gate-
level circuits using logical synthesis, which does not require
a clear view of the global data flow. However, it is useful
and even important in some other areas. Reuse of intellectual
properties (IPs) and legacy codes is one of those areas.
Assuming an undocumented soft IP is utilized, an automatic
extraction of data flows would be helpful for understanding its
behaviour and it is also crucial for automatically verifying its
functions [2].

Synthesis of asynchronous systems [3,4] is another area
where the extraction of data paths is important. Asynchronous
systems [5] is well-known for their low dynamic power and
tolerance to delay variations but their development is impeded
due to the lack of synthesis tools. Two of the most utilized tool
flows: de-synchronization [4] and behavioural synthesis [3,6],
require different treatments for data and control paths. There-
fore, data paths must be separated from control paths before
any circuit optimization. This reveals one of the limitations of
de-synchronization. It treats all registers as part of data paths
without differentiating the registers used as data buffers from
those used as state machines. The generated asynchronous
circuit is thus a direct mapping of the original synchronous
circuit, leading to large area and potentially low speed.

The usage of automatic extraction pursued by this paper is
related to the synthesis of globally asynchronous and locally
synchronous (GALS) [7] systems. Given a synchronous RTL
design, a tool is being designed to automatically re-partition
the design for low dynamic power. If a suitable partition is
found, an equivalent GALS system can be achieved by running
sub-modules at different clock frequencies and replacing the
synchronous buses between sub-modules with asynchronous
handshake circuits. Since the boundary of a suitable partition
should be located on infrequently utilized data links, an
accurate data path annotated with accurate data rates must be
extracted beforehand.

To our best knowledge, no method has been proposed for
extracting data paths in large-scale RTL designs. Existing syn-
thesis and verification tools either rely on the RTL designers to
provide a data flow or extract low-level data flows by analysing
the state space [2]. The explosive number of states limits the
use of the latter method in large-scale RTL designs. Rather
than analysing the state space of low-level data paths, the
method proposed in this paper extracts them in a signal-level
data flow graph (DFG) derived from the RTL design. Since
the arcs in the signal-level DFG are typed into control or
data, a recursive search algorithm is used to trim all control
nodes, which generates a DFG with pure data paths. Although
no estimation of data rates is provided yet, it can be done if
combined with state analyses of the control paths later in the
design cycle.

II. TOOL FLOW

The proposed tool flow [8] is illustrated in Fig. 1. A
Verilog HDL parser has been implemented using Bison and
Flex, which is able to read hierarchical RTL designs written

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100686 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1337

RTL RTL RTL

Parser

Abstract Syntax

Tree

Signal-Level DFG

Remove Control

Arcs

Graph Trimming

Data Paths

Fig. 1. The tool flow for data path extraction

in multi-file Verilog HDLs complying with the IEEE 1364-
2001 standard [9]. After the hierarchical design is successfully
elaborated, a graphic representation, namely a signal-level
data flow graph (DFG) [10] revealing the connections and
relations between all Verilog signals, is then extracted from the
parsed abstract syntax tree (AST). Depending on the logical
dependence between signals, arcs in the signal-level DFG are
annotated with four types: data, control, clock and reset.
To extract data paths, all control, clock and reset arcs are
removed from the signal-level DFG (remove control arcs in
Fig. 1). Then using a recursive search algorithm, all control-
related nodes and arcs are further removed (graph trimming in
Fig. 1), which leaves a DFG with pure data paths.

III. SIGNAL-LEVEL DATA FLOW GRAPH

To illustrate the details of signal-level DFGs, a RTL Verilog
implementation of the greatest common divisor (GCD) (listed
in Fig. 2) is used as an example. It has two flip-flops, A Hold
and B Hold, to store the two GCD operands, A and B. In
every cycle, the pair of operands are swapped if A Hold is less
than B Hold; otherwise, A Hold stores their difference.
When B equates zero, the value in A Hold is the greatest
common divisor and is output through port Y.

A signal-level DFG is a multi-graph revealing the internal
connections and relations between signals. The formal defini-
tion of a signal-level DFG is described as follow [10]:

Definition 1. A signal-level DFG is a directed multi-graph
denoted by a six-tuple DF G = (V, A, TA , FA , TV , FV), where
V is a finite set of nodes representing components in the AST;
A ⊆ V × V is a finite set of arcs denoting the connection
between components;
TA ∈ {control, data, clock, reset} is a finite set of available
arc types;
FA : A → TA is a function mapping types to arcs;
TV ∈ {seq block, combi block, i port, o port, module} is a
finite set of available component types;
FV : V → TV is another function mapping the types of all
components.

The corresponding signal-level DFG of the GCD is de-

picted in Fig. 3. Several steps are taken to translate a RTL
Verilog design into a signal-level DFG:

1) Every module is depicted in a separate DFG.

module GCD (Clock,Reset,Load,A,B,Done,Y);
input Clock,Reset,Load;
input [7:0] A,B;
output Done;
output [7:0] Y;
reg A_lessthan_B, Done;
reg [7:0] A_New, A_Hold, B_Hold, Y;

always @(posedge Clock)
if(Reset) begin

A_Hold = 0; B_Hold = 0;
end else if(Load) begin

A_Hold = A; B_Hold = B;
end else if(A_lessthan_B) begin

A_Hold = B_Hold;
B_Hold = A_New;

end else
A_Hold = A_New;

always @(A_Hold or B_Hold)
if(A_Hold >= B_Hold) begin

A_lessthan_B = 0;
A_New = A_Hold - B_Hold;

end else begin
A_lessthan_B = 1;
A_New = A_Hold;

end

always @(A_Hold or B_Hold)
if(B_Hold == 0) begin

Done = 1; Y = A_Hold;
end else begin

Done = 0; Y = 0;
end

endmodule

Fig. 2. Greatest Common Divisor (GCD)

2) Each signal (wire, reg, integer, etc.) is represented

as a node in the graph. Depending on the hardware
implementation, flip-flops (seq block) are drawn in
rectangles labelled with “FF”, combinational sig-
nals (combi block) are drawn in circles, input ports
(i port) are drawn in circles labelled with “I”, and
output ports (o port) are circled as well but labelled
“O”.

3) Each instance (module) is drawn in a rectangle
labelled “module” (for hierarchical support). It has
an internal link pointing to the corresponding DFG
of the sub-module.

4) To normalize the hierarchical connections, a dummy
node (drawn in a circle) is add for each port (name
the original port with a suffix “ P”).

5) Traverse all always and assign statements and con-
nect nodes with arcs annotated with estimated types.

In the final step of generating a signal-level DFG (step 5),
a relation tree is generated for each signal to estimate the types
of arcs. For example, after traversing the first always block,
a relation tree is built for signal A Hold as shown in Fig. 4.
The tree grows with the level of conditional statements. Each
if statement is converted into a condition node representing
the signals in the conditional expression and two sub-trees
denoting the two cases. The arc between the parent node
and the condition node is typed control. Other conditional
statements, such as case and for, are converted similarly. The
leaf nodes of the relation tree are signals appeared in the right-

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100686 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1338

Reset_P A_P

Load_P

B_P

Clock_P

Reset_P

A_P

Load_P

B_P

Clock_P

A_P

B_P

I I I I I I I I I I I I

Reset A

Load B

Clock

Reset A Load B Clock A B

A_Hold

A_lessthan_B

FF FF

A_New

B_Hold

I

O

i_port

o_port

combi_block

A_lessthan_B

A_Hold FF FF

B_Hold

A_New

Y Done

A_Hold FF FF

B_Hold

A_New

Y

Y Done

FF seq_block

Y_P

O O

Done_P

Y_P

OMODULE module

clock

(a)

(b)
Y_P

O O

Done_P control

data

Fig. 5. (A) the signal-level DFG with control arcs removed and (b) the
extracted data path

Fig. 3. The signal-level DFG of the GCD module

B_Hold A_New

A

the swap of A Hold and B Hold; input port Load controls
the load of initial values; output port Done signals the
completion

Clock

Load

A_lessthan_B

0

Reset

of the GCD calculation. They are all control signals that should
be removed as well. Thanks to the removal of all control arcs,
the nodes and arcs related to control signals are disconnected
from the data paths, which provides a possibility of trimming
them.

A_Hold

Fig. 4. Relation tree of A Hold

hand side of assignments and are connected using data arcs.

After a relation tree is generated for a DFG node, all ingress
arcs of in the DFG can be drawn accordingly. For all the non-
root and non-constant nodes in the relation tree, an arc is drawn
from each of them to the root in the DFG. The type of each
arc is set to the type of the single egress arc of its source in
the relation tree. In this way, all nodes in a signal-level DFG
are connected after all always and assign are traversed.

The type estimation of arcs in the signal-level DFG is
crucial for an accurate extraction of data paths. In general,
all signals appeared in the conditional expression of if, case,
for, while and ? are connected with a control arc, while
other non-control signals appeared in the right-hand side of
an assignment are connected using data arcs. The lack of else
or default in if or case is automatically checked and a self
data arc is added when the check results false. Signals in
the conditional expression of a ROM style case statement are
treated as data as this sort of case statements are usually used
in data paths.

IV. DATA PATH EXTRACTION

The extraction of data paths from the signal-level DFG is
done in two steps: removing all control arcs and trimming.

Since a pure data path should not contain any control
signals, all control-related nodes and arcs should be removed
from the signal-level DFG. As the result of the first step, the
DFG of the GCD module with all control arcs removed is
shown in Fig. 5a. Although all remaining arcs are typed data,
it still contains nodes and arcs that belong to control paths.
For example, the combinational node A lessthan B
controls

In the step of trimming a DFG, a recursive search algorithm
is utilized to remove all control-related nodes (along with all
ingress and egress arcs) which qualified with the following
criteria:

1) A combinational node with either no egress arc or no
ingress arc.

2) A register node without a non-self egress arc.
3) An input port without an egress arc.
4) An output port without an ingress arc.
5) A module without an egress arc.

Since the removal of control arcs separates control-related
nodes from data paths and leaves them dangling, criterion 1
and 2 would trim them from the graph and make the nodes
connected to them new dangling nodes. Using a recursive
search, all dangling flip-flops and combinational nodes are
trimmed. Criterion 3 and 4 removes the control-related I/O
ports. Criterion 5 further removes the modules containing pure
control circuits. The timing and memory complexity of the
recursive search is linear with the total number of arcs in the
DFG.

The DFG after trimming is shown in Fig. 5b, where a
clean data path is depicted: from the two data inputs, A and B,
through the two computation registers, A Hold and B hold,
to the final result port, Y. With no user intervention, the
extraction method has successfully found the data path and
trimmed away all control-related nodes and ports.

V. TEST CASES

A. Hierarchical data path
In the previous section, the data path of a single module

design, the greatest common divisor, is automatically extracted.
The proposed method can handle designs with multi-level
hierarchies. To demonstrate this capability, the data path of
the permutation module of a SHA-3 encoder [11] is extracted.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100686 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1339

 rconst rc round round_out

FF MODULE MODULE

in out

FF

only 10 seconds, demonstrating the scalability of the proposed
method.

counter

i

round
const

(a)

I

(b)

in_P

in

one
round

round_in

out_P

O

out

FF

VI. CONCLUSION

This paper presents a fast and scalable method which can
automatically extract data paths for large-scale RTL designs.
Using the parsed abstract syntax tree, the method translates
the design into a hierarchical signal-level DFG with the
connections between signals annotated with estimated control
or data types. Using these estimated types, the method is able
to remove all control-related signals, modules and ports in the
signal-level DFG leaving the graph purely with data paths.
Test cases show that the automatic extraction method can
successfully identify data paths in RTL designs. Thanks to the
use of data flow graphs, the proposed method can extract the
data paths of large-scale RTL designs in linear time, which has
not been achieved by traditional state-space analytic methods.
Utilizing this method, fully automatic tools could be built to

Fig. 6. (A) the block diagram of the permutation module in a SHA-3 encoder
and (b) the extracted data path

TABLE I. RE S U LT S O F DATA PAT H E X T R AC T I O N

Design
 Signal-level DFG Extracted data path

Running

I/O Module Signal I/O Module Signal time (s)

OR1200 52 37 2074 40 33 1142 1
RSD 7 24 1063 3 23 659 <1
NOVA 19 140 7043 9 103 4279 10

The block diagram provided in the user manual and the

automatically extracted data path are depicted in Fig. 6a and
6b respectively. In the extracted data path, two sub-modules
are drawn in rectangles labelled “MODULE”. Registers with
no ingress arcs, such as the counter register i, are retained as
they may produce cyclic data inputs. It is easy to see that the
extracted data path complies with the block diagram provided
by the author.
B. Large-scale designs

To demonstrate the scalability of the proposed method
for large scale circuits, three designs from the OpenCore
project repository are chosen as test cases: OR1200, a 5-
stage microprocessor [12]; RSD, an industrial standard Reed-
Solomon decoder [13]; NOVA, a FPGA proven H.264/AVC
baseline decoder [14]. Running the extraction program [8] on
an Intel Core™2 Due 3.00 GHz PC with 2 GB memory, Table I
reveals the results of the extracted data paths.

For each design, the total number of top-level I/O ports,
sub-modules and signals (including wires and registers) are
listed for the signal-level DFG and the extracted data path
graph respectively. As shown in the figures, the number of
signals has reduced significantly in the data path graph, along
with reduction in I/O ports. This indicates that the proposed
method successfully identifies the control-related signals and
I/O ports and simplifies the signal-level DFG with data paths
retained. All data path graphs are automatically extracted
without user intervention, although a more accurate extraction
can be achieved by explicitly specifying the top-level control
I/O ports. For all designs, the extraction process finishes in a
small number of seconds. As the largest design, NOVA takes
the longest time to extract but still the total calculation time is

verify the functions of large synchronous designs or synthesize
them into asynchronous ones.

ACKNOWLEDGEM ENT

The authors would like to thank the grant from
the Engineering and Physical Sciences Research Council
(EP/I038306/1).

REFERENCES

[1] G. D. Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill, Inc., 1994.

[2] I. Ghosh, A. Raghunathan, and N. K. Jha, “A design-for-testability
technique for register-transfer level circuits using control/data flow
extraction,” IEEE Trans. on CAD, vol. 17, no. 8, pp. 706–723, 1998.

[3] D. Shang, F. Burns, A. Koelmans, A. Yakovlev, and F. Xia, “Asyn-

chronous system synthesis based on direct mapping using VHDL and
Petri nets,” IEE Proceedings – Computers and Digital Techniques, vol.
151, no. 3, pp. 209–220, 2004.

[4] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, “Desyn-
chronization: synthesis of asynchronous circuits from synchronous
specifications,” IEEE Trans. on CAD, vol. 25, no. 10, pp. 1904–1921,
October 2006.

[5] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design —
A Systems Perspective. Kluwer Academic Publishers, Boston, U.S.A,
2001.

[6] D. Edwards and A. Bardsley, “Balsa: an asynchronous hardware syn-
thesis language,” The Computer Journal, vol. 45, no. 1, pp. 12–18,
2002.

[7] M. Krstić, E. Grass, F. K. Gü rkaynak, and P. Vivet, “Globally asyn-
chronous, locally synchronous circuits: overview and outlook,” IEEE
Design and Test of Computers, vol. 24, no. 5, pp. 430–441, 2007.

[8] W. Song. (2013) An asynchronous verilog synthesis (AVS) sys-
tem. [Online]. Available: https://github.com/wsong83/Asynchronous-
Verilog-Synthesiser

[9] IEEE Computer Society, IEEE Standard Verilog® Hardware Descrip-
tion Language, September 2001.

[10] W. Song and J. Garside, “Automatic controller detection for large scale
RTL designs,” in Proc. of DSD, September 2013, pp. 844–851.

[11] H. Hsing. (2012) SHA3 (KECCAK). [Online]. Available:
http://opencores.org/project,sha3

[12] OpenRISC Community. (2009) Or1200 openrisc processor. [Online].
Available: http://opencores.org/or1k/OR1200 OpenRISC Processor

[13] Varkon Semiconductors. (2010) Reed solomon decoder. [Online].
Available: http://opencores.org/project,reed solomon decoder

[14] K. Xu. (2009) H.264/avc baseline decoder. [Online]. Available:
http://opencores.org/project,nova

http://opencores.org/project
http://opencores.org/or1k/OR1200
http://opencores.org/project
http://opencores.org/project

