
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100693 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1367

Communication in DOS

Rajeev Ranjan, Rahul Yadav

Student, Department of Information Technology

Dronacharya College of Engineering

Abstract- The paper discusses issues related to

distributing operating system along with its security

over the remote server. Also we will discuss the

implementation and designing of distributed system. In

this paper we will discuss the issues related to message

passing techniques, speed of communication ,

reliability etc. and the protocols used in communicating

the processes across the web.

Index Terms- message passing,parallel computing,

synchronous or asynchronous, multicasting,

redundancy, datagram, handshake.

I. INTRODUCTION

A distributed operating system is an operating system

which manages a collection of independent

computers and makes them appear to the users of the

system as a single computer.

Usually a distributed operating system utilizes the

resources of multiple computers and devices and

allows for remote execution . You can run a program

on one machine, but send the output to a different

one. So in theory you have the computing power of

every computer in the network at your disposal, not

just one.

A distributed OS will share the scheduling of

processes as a collective group for the networked

machines. A program running on one system may

have subprocesses running on other systems in the

network, all cooperating and running as if on the

same computer.

In a distributed system, there’s no shared memory, so

the entire nature of interprocess communication must

be completely rethought from scratch.

All communication in distributed system is based on

message passing.

Communication (IPC)in distributed system is related

to a set of methods for the exchange of data among

multiple threads and/or processes. Processes may be

running on one or more computers connected by a

network.

II. ISSUES

1. Processes which execute on CPUs sharing

memory can easily communicate, but what

about processes executing on CPUs which

don't share memory?

2. How to implement message passing

(communication)

3. Speed of communication

4. Reliability of communication

5. Transparency of communication

6. Locating the right process to communicate

with

7. Consistency of Communication unified

 1.Message passing in computer science is a form

of communication used in concurrent

computing, parallel computing, object-oriented

programming, and interprocess communication. In

this model, processes or objects can send and receive

messages (comprising zero or more bytes, complex

data structures, or even segments of code) to other

processes. By waiting for messages, processes can

also synchronize.

Message passing is the paradigm of communication

where messages are sent from a sender to one or

more recipients. Forms of messages include (remote)

method invocation, signals, and data packets. When

designing a message passing system several choices

are made:

 Whether messages are transferred reliably

 Whether messages are guaranteed to be

delivered in order

 Whether messages are passed one-to-one

(unicast), one-to-many (multicast or

broadcast), many-to-one (client–server), or

many-to-many (All-to-All).

 Whether communication is synchronous or

asynchronous.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100693 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1368

III. SPEED OF COMMUNICATION

we consider very high-speed, connection-oriented

communication in distributed systems where each

node system has a limited-size queue for connection

requests. An important example of this type of

system is an HIPPI-based interconnection system of a

supercomputer complex. For such systems, we

present a distributed connection management policy

and propose several possible service disciplines. We

develop an analytic model to evaluate the

interconnection system under different system

configurations, connection management policies, and

service disciplines. In this evaluation, we consider

separately systems where nodes want to communicate

with any one of a pool of identical servers, and

systems where a node needs to access a specific one

of a set of distinct servers.

The recent advent of Smart Grid has given rise to

advances in communication systems for distribution

systems. Modern numerical overcurrent relays have

the technology available to utilize these

communication channels for both high speed-assisted

tripping and sectionalizing. Assisted tripping and

sectionalizing allows the utility to operate their

distribution system in a network as opposed to radial

feeders. A networked system is much more reliable

and customers experience fewer outages since there

are multiple sources readily available. Assisted

tripping and sectionalizing quickly isolates the fault

and eliminates the need for long clearing times and

complex coordination typically associated with

classical time overcurrent protection.

Several Problem Areas in high speed neworks

used to efficiently implement logical channels for

multicast switching in a network with many

subscribers, in order to support applications ranging

from selective distribution to dynamically

reconfigurable group communication?

protocols, addressing, routing and clock distribution

be provided for distributed switching? What network

structures are suitable for interconnecting switching

elements? What are the advantages and disadvantages

with using circuits, cells, and packets as the basis for

switching, and how can variable length packet

switching be provided in cell-based networks?

Network resource management and routing: What

traffic control policies are most suitable; can feed-

back schemes react fast enough, and are reservation-

based policies cost-efficient? How are resources

managed to support real-time multicast transmission?

 Fault-tolerance in high-speed networks: How are

networks organized to be resilient to link and node

failures? What are the best ways to reconfigure high-

speed networks after faults, and how are faults

detected and located in optical networks?

f new optical components on protocols:

What medium access and switching techniques are

best suited for multi-wavelength distribution

techniques? How are protocols best designed for

cost-efficient use of optical switches and amplifiers?

-system integration: Does the close integration

of communication and computation impose new

requirements on optical fiber access techniques,

switching, and network protocols? Is it possible and

advantageous to combine network resource

management with management of resources in the

end-equipment (e.g. CPU scheduling)? How are

protocols designed to enable efficient end-system

interfaces?

-speed switching: How will switching fabrics

and circuit architectues change when moving from

current low and medium rate switching systems

towards 10 Gbit/s and 40 Gbit/s per port switching

systems? How to dimension and design such

switching systems? What impact will C&C

environment applications have on switch

architectures and switch dimensioning. Due to high

operational speed, what constraints will

implementations pose, and how are such constraints

coupled to system design of switching systems and

architectures? What implemtation techqniques and

architectures need to be used for optical interfaces to

such switches as well as to the overall switch fabric

itself?

IV. RELIABILITY OF COMMUNICATION

 Making a distributed system reliable is very

important. The failure of a distributed system can

result in anything from easily repairable errors to

catastrophic meltdowns. A reliable distributed

system is designed to be as fault tolerant as possible.

Fault tolerance deals with making the system

function in the presence of faults (see Fault-Tolerant

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100693 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1369

Systems). Faults can occur in any of the components

of a distributed system

This article gives a brief overview of the different

types of faults in a system and some of their solutions

Component Faults

There are three types of component faults: transient

faults, intermittent faults and permanent faults. A

transient fault occurs once and then disappears. If the

operation is repeated then the system will behave

normally. An intermittent fault arises, then goes

away, rises again and so on. A common cause of an

intermittent fault is a loose contact on a connector.

These faults are very annoying and hard to fix

because of their sporadic nature. Lastly there are

permanent faults caused by faulty components. The

system will not work until the component is replaced.

Burnt out chips, software bugs and processor failure

(explored in Processor Faults) are all examples of

permanent faults.

Processor Faults

 A special type of component is the processor, and it

can fail in three ways, fail-silent, Byzantine and

slowdown. All lead to a different kind of failure. A

fail-silent, also known as fail-stop, fault occurs when

a processor stops functioning. It no longer accepts

input and outputs nothing, except perhaps to say it is

no longer functioning. Byzantine faults occur when a

faulty processor continues to run, giving wrong

answers and maybe working with other faulty

processors to give the impression that they are

working correctly. Compared with fail-silent faults,

Byzantine faults are hard to diagnose and more

difficult to deal with. A slowdown fault occurs when

a certain processor executes very slowly. That

processor might be labeled as failed by the other

processors. However the “failed” processor may

return to its normal speed and begin to issue orders,

causing problems within the distributed systems.

Network Failures

Network failures keep processors from

communicating with each other. We will look at the

failures resulting in total loss of communication

along parts of the network. Two problems arise from

this: one-way links and network partitions. One-way

links cause problems similar to processor slowdown

(see Processor Faults). For example, processor A can

send messages to processor B but cannot receive

messages from B. Processor C can talk to both A and

B. So each processor has a different idea of which

processors have failed. Processor A might think that

B has failed since it does not receive any messages

from it. Processor C thinks both A and B are

working properly since it can send and receive

messages from both.

Network partitions occur when a line connecting two

sections of a network fail. So processors A and B can

communicate with each other but cannot

communicate with processors C and D and visa

versa. Let us say processor A updates a file and

processor C updates the same file but in a different

way. When the partition is fixed, the file will not be

consistent among all processors. It is not clear to the

processors how to make the data consistent again.

Solutions To System Failures

 Before we explore some of the common solutions to

system failures, we must learn the difference between

synchronous and asynchronous systems. In a

synchronous system the amount of time required for a

message to be sent from one system to another has a

known upper bound. Therefore, processor A sends a

message to processor B and waits a given time for a

response. If A does not receive a response within that

time, it knows an error has occurred and it will send

the message again. After a set number of resends, B

is labeled as failed. In an asynchronous system, none

of this is true. A processor will wait an infinite time

for a response from the other processor. Many

solutions for fault tolerance cannot be implemented

in an asynchronous system. A processor

experiencing slowdown is impossible to differentiate

from a dead processor (see Impossibility of

Consensus).

The most common approach to handling faults is

redundancy. There are three types of redundancy:

information redundancy, time redundancy, and

physical redundancy. Information redundancy

involves adding extra bits to allow recovery from

distorted bits. An example is adding a Hamming

code to data in order to recover from noise in the

transmission line. With time redundancy an action is

performed and if need be it is performed again. An

aborted transaction can be redone without harm to the

system. For more information refer to Chapter 3 of

Tanenbaum [2]. Time redundancy is the most

frequently used solution for intermittent and transient

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100693 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1370

faults. Physical redundancy involves adding more

components to a system in case a component fails.

Physical Redundancy

There are two types of physical redundancy: active

replication and primary backup. The advantages and

disadvantages of each must be weighed when

determining which type of physical redundancy will

be implemented.

First we will try to understand active replication by

looking at Triple Modular Redundancy (TMR) in a

circuit. Consider a circuit with devices A, B, and C

linked in sequence. If all devices are working

properly then the final result will be correct. But if

one of the devices is faulty then the final result will

probably be incorrect.

Now we will look at a circuit utilizing TMR. First

devices A, B and C are replicated three times and then

three voters are added after each stage of the circuit.

Why are three voters required in this system?

The answer is that the voters are components too and

might fail. Each voter has three inputs but only one

output. The majority of inputs become the output of

the voter. If two or all inputs are the same then that

becomes the output. If all three inputs are different

then the output is undefined.

Now let us see if the system will be fault tolerant

when different components fail. First, consider a

simple case where A1 fails. The voters will pass on

the value of A2 and A3 since that value is in the

majority. The voters pass on this value to B1, B2 and

B3, which receive the same value as they would have

if no fault had occurred. The system is fault tolerant.

Now we will see what happens if one voter, V1, fails.

This would mean that B1 would get the wrong input

but B2 and B3 would have the correct input. So in

the next series of voters, the error will be ruled out

and the circuit will act like there was no failure. One

should note that an error in V1 behaves exactly the

same as an error in B1.

Now let A1 and A2 fail. Assuming they fail with the

same result, this result will be passed through the

voter so B1, B2 and B3 contain the wrong value. If

A1 and A2 fail with different results then there will be

three different inputs to the voter. The output of V1,

V2 and V3 will be undefined. So the TMR system is

not perfect but what is?

When considering active replication, it is important to

consider how much replication is needed. The

answer is related to the amount of fault tolerance

wanted. A system is said to be k fault tolerant if

faults in k processors can produce the same outputs

as a fully functioning system. With fail silent faults,

k + 1 processors are needed to achieve k fault

tolerance. But with Byzantine failures, 2k + 1

processors are required. Refer to Tanenbaum [2] for

an application of active replication in a distributed

system.

The other type of physical redundancy is called

primary backup. This type of fault tolerance involves

one server, which is the primary server, and an

unused backup server. If the primary fails, then the

backup server becomes the primary. The client

operating system but not the application programs

will notice the switch of control. When compared to

active replication, primary backup has one main

advantage: simplicity. Messages are sent to the

primary server only, as opposed to a whole group of

servers. Second, this type of physical redundancy

only requires two machines, a primary and a backup.

Of course when a backup server becomes a primary

server, a new backup is needed instantly. A large

disadvantage to primary backup fault tolerance is that

it handles Byzantine failures poorly. There is no

check routine to make sure the primary is functioning

correctly. Another disadvantage is that a primary

backup system must always be in agreement so that

the backup can take over the functions of primary.

Also recovery from a primary failure is time

consuming and complex.

An important decision involving the primary backup

approach is when and how to switch to the backup

server. One solution is for the backup server to send

messages asking if the primary server is still

functioning. If the server does not respond in a

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100693 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1371

certain time then the backup will become the

primary. This is not an ideal solution for

asynchronous systems because the server could be

running slowly resulting in repeated actions. Another

solution is a hardware mechanism that the backup can

use to reboot the primary. An alternate solution is to

use a dual-ported disk shared by the primary and

backup. The primary server will write the request to

the disk then do the work and then write the results to

the disk. This way if the primary fails at any time,

the backup can read the disk and find out where the

primary crashed. It can finish the job for the primary

and there will not be any repeated messages. For

further information on redundancy see Replicated

Objects.

V. TRANSPARACY IN DISTRIBUTED

SYSTEM

4.1 Integrating system components and resources into

what appears to the user as a single local system

Goal of Transparency

Hide all irrelevant system-dependent details from the

user and system programmer and create the illusion

of a simple and easy to use system

Make system simple and effective

Conflicting goals requires trade-offs:

An overly simple system does not allow the user to

take full advantage of the system preventing its use to

be as effective as possible. Giving the user access to

all system level details will maximize the potential

effectiveness of the system but greatly adding to the

complexity of its use.

ACCESS TRANSPARACY

Access to the system is the same regardless whether

it is local or remote. The physical separation is

concealed from the user.

MIGRATION TRANSPARACY

Resource may move yet access is identical as it was

before. Also referred to as Location Independence.

CONCURRENCY TRANSPARACY

Allows sharing of objects without interference.

SIZE TRANSPARACY

Incremental growth of the system is kept hidden from

the user and has no effect on the user’s perception of

the system.

PERFORMANCE TRANSPARACY

Attempt to achieve consistent and predictable

performance levels so the user is unaware of changes

in system structure or workload.

FAILURE TRANSPARACY

Failures are handled gracefully minimizing impact on

user and hiding most of its effects.

VI. PROTOCOL S USED IN

COMMUNICATIONS IN DISTRIBUTED

NETWORK

5.1 TCP

The Transmission Control Protocol (TCP) is one

of the core protocols of the Internet protocol suite

(IP), and is so common that the entire suite is often

called TCP/IP. TCP provides reliable, ordered, error-

checked delivery of a stream of octets between

programs running on computers connected to a local

area network, intranet or the public Internet. It resides

at the transport layer.

TCP PROTOCOL OPERATION

TCP protocol operations may be divided into three

phases. Connections must be properly established in a

multi-step handshake process (connection

establishment) before entering the data transfer

phase. After data transmission is completed, the

connection termination closes established virtual

circuits and releases all allocated resources.

A TCP connection is managed by an operating

system through a programming interface that

represents the local end-point for communications,

the Internet socket. During the lifetime of a TCP

connection the local end-point undergoes a series of

state changes:
[12]

LISTEN

(server) represents waiting for a connection

request from any remote TCP and port.

SYN-SENT

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100693 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1372

(client) represents waiting for a matching

connection request after having sent a

connection request.

SYN-RECEIVED

(server) represents waiting for a confirming

connection request acknowledgment after

having both received and sent a connection

request.

ESTABLISHED

(both server and client) represents an open

connection, data received can be delivered to

the user. The normal state for the data

transfer phase of the connection.

FIN-WAIT-1

(both server and client) represents waiting

for a connection termination request from

the remote TCP, or an acknowledgment of

the connection termination request

previously sent.

FIN-WAIT-2

(both server and client) represents waiting

for a connection termination request from

the remote TCP.

CLOSE-WAIT

(both server and client) represents waiting

for a connection termination request from

the local user.

CLOSING

(both server and client) represents waiting

for a connection termination request

acknowledgment from the remote TCP.

LAST-ACK

(both server and client) represents waiting

for an acknowledgment of the connection

termination request previously sent to the

remote TCP (which includes an

acknowledgment of its connection

termination request).

TIME-WAIT

(either server or client) represents waiting

for enough time to pass to be sure the remote

TCP received the acknowledgment of its

connection termination request. [According

to RFC 793 a connection can stay in TIME-

WAIT for a maximum of four minutes

known as a MSL (maximum segment

lifetime).]

CLOSED

(both server and client) represents no

connection state at all.

Connection establishment

To establish a connection, TCP uses a three-way

handshake. Before a client attempts to connect with a

server, the server must first bind to and listen at a port

to open it up for connections: this is called a passive

open. Once the passive open is established, a client

may initiate an active open. To establish a

connection, the three-way (or 3-step) handshake

occurs:

1. SYN: The active open is performed by the

client sending a SYN to the server. The

client sets the segment's sequence number to

a random value A.

2. SYN-ACK: In response, the server replies

with a SYN-ACK. The acknowledgment

number is set to one more than the received

sequence number i.e. A+1, and the sequence

number that the server chooses for the

packet is another random number, B.

3. ACK: Finally, the client sends an ACK back

to the server. The sequence number is set to

the received acknowledgement value i.e.

A+1, and the acknowledgement number is

set to one more than the received sequence

number i.e. B+1.

At this point, both the client and server have received

an acknowledgment of the connection. The steps 1, 2

establish the connection parameter (sequence

number) for one direction and it is acknowledged.

The steps 2, 3 establish the connection parameter

(sequence number) for the other direction and it is

acknowledged. With these, a full-duplex

communication is established.

Connection termination

http://en.wikipedia.org/wiki/File:TCP_CLOSE.svg
http://en.wikipedia.org/wiki/File:TCP_CLOSE.svg

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100693 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1373

Connection termination

The connection termination phase uses a four-way

handshake, with each side of the connection

terminating independently. When an endpoint wishes

to stop its half of the connection, it transmits a FIN

packet, which the other end acknowledges with an

ACK. Therefore, a typical tear-down requires a pair

of FIN and ACK segments from each TCP endpoint.

After both FIN/ACK exchanges are concluded, the

side which sent the first FIN before receiving one

waits for a timeout before finally closing the

connection, during which time the local port is

unavailable for new connections; this prevents

confusion due to delayed packets being delivered

during subsequent connections.

5.2UDP

The User Datagram Protocol (UDP) is one of the

core members of the Internet protocol suite (the set of

network protocols used for the Internet). With UDP,

computer applications can send messages, in this case

referred to as datagrams, to other hosts on an Internet

Protocol (IP) network without prior communications

UDP uses a simple transmission model with a

minimum of protocol mechanism.
[1]

 It has no

handshaking dialogues, and thus exposes any

unreliability of the underlying network protocol to

the user's program. As this is normally IP over

unreliable media, there is no guarantee of delivery,

ordering or duplicate protection. UDP provides

checksums for data integrity, and port numbers for

addressing different functions at the source and

destination of the datagram.

UDP is suitable for purposes where error checking

and correction is either not necessary or performed in

the application, avoiding the overhead of such

processing at the network interface level. Time-

sensitive applications often use UDP because

dropping packets is preferable to waiting for delayed

packets, which may not be an option in a real-time

system.
[2]

 If error correction facilities are needed at

the network interface level, an application may use

the Transmission Control Protocol (TCP) or Stream

Control Transmission Protocol (SCTP) which are

designed for this purpose.

A number of UDP's attributes make it especially

suited for certain applications.

 It is transaction-oriented, suitable for

simple query-response protocols such as the

Domain Name System or the Network Time

Protocol.

 It provides datagrams, suitable for

modeling other protocols such as in IP

tunneling or Remote Procedure Call and the

Network File System.

 It is simple, suitable for bootstrapping or

other purposes without a full protocol stack,

such as the DHCP and Trivial File Transfer

Protocol.

 It is stateless, suitable for very large

numbers of clients, such as in streaming

media applications for example IPTV

 The lack of retransmission delays makes it

suitable for real-time applications such as

Voice over IP, online games, and many

protocols built on top of the Real Time

Streaming Protocol.

 Works well in unidirectional

communication, suitable for broadcast

information such as in many kinds of service

discovery and shared information such as

broadcast time or Routing Information

Protocol

 IP PROTOCOL

The Internet Protocol (IP) is the principal

communications protocol in the Internet protocol

suite for relaying datagrams across network

boundaries. Its routing function enables

internetworking, and essentially establishes the

Internet.

IP, as the primary protocol in the Internet layer of the

Internet protocol suite, has the task of delivering

packets from the source host to the destination host

solely based on the IP addresses in the packet

headers. For this purpose, IP defines packet structures

that encapsulate the data to be delivered. It also

defines addressing methods that are used to label the

datagram with source and destination information.

CONSISTENCY MODEL

• A Consistency Model is a contract between

the software and the memory

– it states that the memory will work

correctly but only if the software

obeys certain rules

• The issue is how we can state rules that are

not too restrictive but allow fast execution in

most common cases

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100693 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1374

• These models represent a more general view

of sharing data than what we have seen so

far!

 STRICT CONSISTENCY

• Strict consistency is the strictest model

– a read returns the most recently

written value (changes are

instantaneous)

SQUENTIAL CONSISTENCY

• Sequential consistency (serializability): the

results are the same as if operations from

different processors are interleaved, but

operations of a single processor appear in

the order specified by the program

• Sequential consistency is inefficient: we

want to weaken the model further

Causal Consistency

• Causal consistency: writes that are

potentially causally related must be seen by

all processors in the same order. Concurrent

writes may be seen in a different order on

different machines

– causally related writes: the write

comes after a read that returned the

value of the other write

Pipelined RAM (PRAM) or FIFO

Consistency

• PRAM consistency is even more relaxed

than causal consistency: writes from the

same processor are received in order, but

writes from distinct processors may be

received in different orders by different

processors Processor consistency: PRAM

consistency plus writes to the same memory

location are viewed everywhere in the same

order

WEAK CONSISTENCY

. Weak consistency uses synchronization

variables to propagate writes to and from a

machine at appropriate points:

• accesses to synchronization

variables are sequentially consistent

• no access to a synchronization

variable is allowed until all

previous writes have completed in

all processors

• no data access is allowed until all

previous accesses to

synchronization variables (by the

same processor) have been

performed

 That is:

• accessing a synchronization

variable “flushes the pipeline”

• at a synchronization point, all

processors have consistent versions

of data

DISTRIBUTED SHARED MEMORY:

Distributed Shared Memory (DSM), in Computer

Architecture is a form of memory architecture where

the (physically separate) memories can be addressed

as one (logically shared) address space. Here, the

term shared does not mean that there is a single

centralized memory but shared essentially means

that the address space is shared (same physical

address on two processors refers to the same location

in memory).
[1]

 Distributed Global Address Space

(DGAS), is a similar term for a wide class of

software and hardware implementations, in which

each node of a cluster has access to shared memory in

addition to each node's non-shared private memory.

Software DSM systems can be implemented in an

operating system (OS), or as a programming library

and can be thought of as extensions of the underlying

virtual memory architecture. When implemented in

the OS, such systems are transparent to the

developer; which means that the underlying

distributed memory is completely hidden from the

users. In contrast,

Distributed Shared Memory (DSM), in computer

science, refers to a wide class of software and

hardware implementations, in which each node of a

cluster has access to a large shared memory in

addition to each node's limited non-shared private

memory.

Software DSM systems can be implemented within

an operating system, or as a programming library.

Software DSM systems implemented in the operating

system can be thought of as extensions of the

underlying virtual memory architecture. Such

systems are transparent to the developer; which

means that the underlying distributed memory is

completely hidden from the users. In contrast,

Software DSM systems implemented at the library or

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100693 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1375

language level are not transparent and developers

usually have to program differently. However, these

systems offer a more portable approach to DSM

system implementation.

Software DSM systems also have the flexibility to

organise the shared memory region in different ways.

The page based approach organises shared memory

into pages of fixed size. In contrast, the object based

approach organises the shared memory region as an

abstract space for storing sharable objects of variable

sizes.

Shared memory architecture may involve separating

memory into shared parts distributed amongst nodes

and main memory; or distributing all memory

between nodes. A coherence protocol, chosen in

accordance with a consistency model, maintains

memory coherence.

VII. CONCLUSION

This paper has clearly demonstrate thatthat it is

possible to build an efficient, high-performance

distributed operating system. By having a

microkernel, most of the key features are

implemented as user processes.

The objectbased nature of the system, and the use of

capabilities provide a unifying theme that holds the

various pieces together. From some past years paper

it has been conclude that it’s perfrmance remains

good and reliable.

REFERENCE

1.Bal, H.E., and Tanenbaum, A.S. Distributed

Programming with Shared Data, Computer

Languages, vol. 16, pp. 129-146, Feb. 1991.

2. Howard, J.H., Kazar, M.L., Menees, S.G., Nichols,

D.A., Satyanarayanan, M., and Sidebotham, R.N.:

Scale and Performance in a Distributed File System.

ACM Trans. onComp. Syst. 6, (Feb. 1988), pp. 55-81.

3. Douglis, F., Kaashoek, M.F., Tanenbaum, A.S.,

and Ousterhout, J.K.: A Comparison of

Two Distributed Systems: Amoeba and Sprite.

Report IR-230, Dept. of Mathematics

and Computer Science, Vrije Universiteit, (Dec.

1990).

4. Mullender, S.J., van Rossum, G., Tanenbaum,

A.S., van Renesse, R., van Staveren, J.M.

Amoeba — A Distributed Operating System for the

1990s. IEEE Computer 23,

(May 1990), pp. 44-53.

LIST OF WEB PAGES

1. www.yahooanswers.com

2. www.wikkipedia.com

3. www.ghacks.com

4. www.ehow.com

