
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100694 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1376

NETWORK PROGRAMMING IN JAVA USING

SOCKETS

Prerna Malik, Poonam Rawat

Student, Dronacharya College of Engineering, Gurgaon, India

Abstract- Network programming refers to writing

programs that could be processed across various

devices which are connected to each other via a

network. Network programming is similar to socket

programming or Client-Server programming. It

basically uses the Client Server model. In Client-Server

programming there are two different programs or

process, one which initiates communication called

Client process and other who is waiting for

communication to start called Server process. Sockets

provide the communication mechanism between two

computers. A socket is an endpoint of a two-way

communication link between two programs running on

the network. A client program creates a socket on its

end of the communication and attempts to connect that

socket to a server. When the connection is made, the

server creates a socket object on its end of the

communication. The client and server can now

communicate by writing to and reading from the socket.

This paper represents information about Network

programming using java. Network programming is an

essential factor to perceive the implications of

communication work across processes based on

internet. In this we describe about the programming

code involved in client-server communications and

different types of sockets used in such communication

model.

I. INTRODUCTION

The term network programming refers to writing

programs that execute across multiple devices

(computers), in which the devices are all connected to

each other using a network. Sockets provide the

communication mechanism between two computers

using TCP. A client program creates a socket on its

end of the communication and attempts to connect

that socket to a server. When the connection is made,

the server creates a socket object on its end of the

communication. The client and server can now

communicate by writing to and reading from the

socket. The java.net package of the J2SE

APIs contains a collection of classes and interfaces

that provide the low-level communication details,

allowing you to write programs that focus on solving

the problem at hand. The java.net.Socket class

represents a socket, and the java.net.ServerSocket

class provides a mechanism for the server program to

listen for clients and establish connections with them.

The java.net package supports two common network

protocols:

 TCP: TCP stands for Transmission Control

Protocol, which allows for reliable

communication between two applications.

TCP is typically over the Internet Protocol

(IP), and is referred as TCP/IP.

 UDP: UDP stands for User Datagram

Protocol, a connectionless protocol that

allows for packets of data to be transmitted

between applications.

II. OVERVIEW OF SOCKET

PROGRAMMING

Sockets were developed in 1981 at the University of

California, Berkeley. The project was sponsored by

ARPA (Advanced Research Projects Agency) in

1980. Initially, in 1983, the sockets were referred as

Berkeley Sockets. The main objective was the

transport of TCP/IP software to UNIX. In 1986,

AT&T introduced the Transport Layer Interface

(TLI) with socket like functionality, which was more

network independent. UNIX includes both TLI and

Sockets after SVR4.[3]

2.1 Socket definition:

A socket is one end-point of a two-way

communication link between two programs running

on the network. Socket classes are used to represent

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100694 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1377

the connection between a client program and a server

program. The java.net package provides two classes--

Socket and ServerSocket--that implement the client

side of the connection and the server side of the

connection, respectively.

Sockets provide the communication mechanism

between two computers using TCP. A client program

creates a socket on its end of the communication and

attempts to connect that socket to a server. When the

connection is made, the server creates a socket object

on its end of the communication. The client and

server can now communicate by writing to and

reading from the socket.

2.1.1. TCP sockets

• TCP Is a byte-stream

• During data packet transmission, no

packetizing and addressing is required by

application.

• Formatting has to be provided by

application.

• Two or more successive data sends on the

pipe connected to socket may be combined

together by TCP in a single packet

2.1.2. UDP sockets

• UDP is packet-oriented

• Information sent in packet format as needed

by application.

• Every packet requires address information.

• Lightweight, no connection required.

• Overhead of adding destination address with

each packet

2.2 Steps for Establishing a TCP Connection

between Two Computers Using Sockets:

The following steps occur when establishing a TCP

connection between two computers using sockets:

 The server instantiates a ServerSocket

object, denoting which port number

communication is to occur on.

 The server invokes the accept() method of

the ServerSocket class. This method waits

until a client connects to the server on the

given port.

 After the server is waiting, a client

instantiates a Socket object, specifying the

server name and port number to connect to.

 The constructor of the Socket class attempts

to connect the client to the specified server

and port number. If communication

is established, the client now has a Socket

object capable of communicating with the

server.

 On the server side, the accept() method

returns a reference to a new socket on the

server that is connected to the client's

socket. After the connections are

established, communication can occur using

I/O streams. Each socket has both an

OutputStream and an InputStream. The

client's OutputStream is connected to the

server's InputStream, and the client's

InputStream is connected to the server's

OutputStream.

 TCP is a two-way communication protocol,

so data can be sent across both streams at

the same time. There are following useful

classes providing complete set of methods to

implement sockets.

Workflow of a socket:

[10]

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100694 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1378

2.3. The classes, interfaces and Exceptions in

socket programming

Table 1: The classes in socket communication

ContentHandler

DatagramSocketImpl

DatagramPacket

DatagramSocket

HttpURLConnection

InetAddress

MulticastSocket

ServerSocket

Socket

SocketImpl

URL

URLEncoder

URLStreamHandler

URLConnection

Table 2: The interfaces used in socket

programming

ContentHandlerFactory

FileNameMap

SocketImplFactory

URLStreamHandlerFactory

Table 3: Exceptions in socket programming

BindException

ConnectException

MalformedURLException

NoRouteToHostException

ProtocolException

SocketException

UnknownHostException

UnknownServiceException

2.4 ServerSocket Class Methods:

Four constructors are contained in The ServerSocket

class:

1. public ServerSocket(int port) throws

IOException: Attempts to create a server socket

bound to the specified port. An exception occurs

if the port is already bound by another

application.

2. public ServerSocket(int port, int backlog)

throws IOException: Similar to the previous

constructor, the backlog parameter specifies how

many incoming clients to store in a wait

queue.[8]

3. public ServerSocket(int port, int backlog,

InetAddress address) throws IOException:

Similar to the previous constructor, the

InetAddress parameter specifies the local IP

address to bind to. The InetAddress is used for

servers that may have multiple IP addresses,

allowing the server to specify which of its IP

addresses to accept client requests on.[7]

4. public ServerSocket() throws IOException:

Creates an unbound server socket. When using

this constructor, use the bind() method when you

are ready to bind the server socket. If the

ServerSocket constructor does not throw an

exception, it means that your application has

successfully bound to the specified port and is

ready for client requests.[9]

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100694 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1379

2.5. Common methods of the ServerSocket class:

1. public int getLocalPort(): Returns the port that

the server socket is listening on. This method is

useful if 0 is passed as the port number in a

constructor.

2. public Socket accept() throws IOException:

Waits for an incoming client. This method

blocks until either a client connects to server on

specified port or the socket times out assuming

that the time-out value has been set by

setSoTimeout() method. Otherwise this method

blocks indefinitely.

3. public void setSocketTimeot(int timeout): Sets

the time-out value for how long the server socket

waits for a client during the accept().

4. public void bind(SocketAddress host, int

backlog): Binds the socket to specified server

and port in the SocketAddress object. It is used

in case of no object constructor. When the

ServerSocket invokes accept(), the method does

not return until a client connects. After a client

does connect, the ServerSocket creates a new

Socket on an unspecified port and returns a

reference to this new Socket. A TCP connection

now exists between the client and server, and

communication can begin.

2.6 Socket Class Methods:

The java.net.Socket class represents the socket that

both the client and server use to communicate with

each other. The client obtains a Socket object by

instantiating one, whereas the server obtains a Socket

object from the return value of the accept() method.

The Socket class has five constructors that a client

uses to connect to a server:

1. public Socket(String host, int port) throws

UnknownHostException, IOException: This

method attempts to connect to the specified

server at the specified port. If this constructor

does not throw an exception, the connection is

successful and the client is connected to the

server.

2. public Socket(InetAddress host, int port)

throws IOException: This method is identical

to the previous constructor, except that the host

is denoted by an InetAddress object.

3. public Socket(String host, int port,

InetAddress localAddress, int localPort)

throws IOException: Connects to the specified

host and port, creating a socket on the local host

at the specified address and port.

4. public Socket(InetAddress host, int port,

InetAddress localAddress, int localPort)

throws IOException: This method is identical

to the previous constructor, except that the host

is denoted by an InetAddress object instead of a

String

5. 5 .public Socket(): Creates an unconnected

socket. Use the connect() method to connect this

socket to a server. When the Socket constructor

returns, it does not simply instantiate a Socket

object but it actually attempts to connect to the

specified server and port.

Some methods in the Socket class are listed here

which can be invoked by both the client and server:

1. public void connect(SocketAddress host, int

timeout) throws IOException: This method

connects the socket to the specified host. This

method is needed only when you instantiated the

Socket using the no-argument constructor.

2. public InetAddress getInetAddress(): This

method returns the address of the other computer

that this socket is connected to.

3. public int getPort(): Returns the port the socket

is bound to on the remote machine.

4. public int getLocalPort(): Returns the port the

socket is bound to on the local machine.

5. public SocketAddress

getRemoteSocketAddress(): Returns the

address of the remote socket.

6. public InputStream getInputStream() throws

IOException:Returns the input stream of the

socket. The input stream is connected to the

output stream of the remote socket.

7. public OutputStream getOutputStream()

throws IOException: Returns the output stream

of the socket. The output stream is connected to

the input stream of the remote socket.

8. public void close() throws IOException:

Closes the socket, which makes this Socket

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100694 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1380

object no longer capable of connecting again

to any server.

2.7 InetAddress Class Methods: This class

represents an Internet Protocol (IP) address.

Some methods which are required while doing socket

programming:

1. static InetAddress getByAddress(byte[] addr):

Returns an InetAddress object given the raw IP

address .

2. static InetAddress getByAddress(String host,

byte[] addr): Create an InetAddress based on the

provided host name and IP address.

3. static InetAddress getByName(String host):

Determines the IP address of a host, given the host's

name.

4. String getHostAddress(): Returns the IP address

string in textual presentation.

5. String getHostName(): Gets the host name for

this IP address.

6. static InetAddress InetAddress getLocalHost():

Returns the local host.

7. String toString(): Converts this IP address to a

String.

III. TCP SOCKET PROGRAMMING

In order to do communication over the TCP protocol,

a connection must first be established between the

pair of sockets. While one of the sockets listens for a

connection request (server), the other asks for a

connection (client). Once two sockets have been

connected, they can be used to transmit data in both

(or either one of the) directions.

3.1.1 Server Programming in Java

A server program creates a specific type of socket

that is used to listen for client requests (server

socket), In the case of a connection request, the

program creates a new socket through which it will

exchange data with the client using input and output

streams. The socket abstraction is very similar to the

file concept that is, developers have to open a socket,

perform I/O, and close it.

The steps for creating a simple server program are:

 1. Open the Server Socket:

 ServerSocket server = new ServerSocket(

PORT);

2. Wait for the Client Request:

 Socket client = server.accept(); Socket

Programming 351

3. Create I/O streams for communicating to the client

 DataInputStream is = new

DataInputStream(client.getInputStream());

 DataOutputStream os = new

DataOutputStream(client.getOutputStream());

 4. Perform communication with client

 Receive from client:

String line = is.readLine();

 Send to client:

os.writeBytes(“Hello\n”);

 5. Close socket:

 client.close();

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100694 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1381

Program 1:

// SimpleServer.java: A simple server program.

import java.net.*;

import java.io.*;

public class SimpleServer {

 public static void main(String args[]) throws IOException {

 // Register service on port 1254

 ServerSocket s = new ServerSocket(1254);

 Socket s1=s.accept(); // Wait and accept a connection

 // Get a communication stream associated with the socket

 OutputStream s1out = s1.getOutputStream();

 DataOutputStream dos = new DataOutputStream (s1out);

 // Send a string!

 dos.writeUTF(“Hi there”);

 // Close the connection, but not the server socket

 dos.close();

 s1out.close();

 s1.close();

 }

}

3.1.2 A simple Client Program in Java

The steps for creating a simple client program are:

 1. Create a Socket Object:

 Socket client = new Socket(server, port_id);

 2. Create I/O streams for communicating with the

server.

is = new

DataInputStream(client.getInputStream());

 os = new

DataOutputStream(client.getOutputStream());

 3. Perform I/O or communication with the server:

 Receive data from the server:

String line = is.readLine();

 Send data to the server:

os.writeBytes(“Hello\n”);

 4. Close the socket when done:

 client.close();

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100694 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1382

Program 2:

// SimpleClient.java: A simple client program.

import java.net.*;

import java.io.*;

public class SimpleClient {

 public static void main(String args[]) throws IOException {

 // Open your connection to a server, at port 1254

 Socket s1 = new Socket(“localhost”,1254);

 // Get an input file handle from the socket and read the input

 InputStream s1In = s1.getInputStream();

 DataInputStream dis = new DataInputStream(s1In);

 String st = new String (dis.readUTF());

 System.out.println(st);

 // When done, just close the connection and exit

 dis.close();

 s1In.close();

 s1.close();

 }

}

IV. UDP SOCKET PROGRAMMING

TCP guarantees the delivery of packets and preserves

their order on destination. Sometimes these features

are not required and since they do not come without

performance costs, it would be better to use a lighter

transport protocol. This kind of service is

accomplished by the UDP protocol which conveys

datagram packets.

Datagram packets are used to implement a

connectionless packet delivery service supported by

the UDP protocol. Each message is transferred from

source machine to destination based on information

contained within that packet. That means, each

packet needs to have destination address and each

packet might be routed differently, and might arrive

in any order. Packet delivery is not guaranteed.

4.1 Java supports datagram communication

through the following classes:

 DatagramPacket

 DatagramSocket

4.1.1 The class DatagramPacket contains several

constructors that can be used for creating packet

object.

The key methods of DatagramPacket class are:

1. byte[] getData(): Returns the data buffer.

2. int getLength(): Returns the length of the

data to be sent or the length of the data

received.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100694 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1383

3. void setData(byte[] buf): Sets the data

buffer for this packet.

4. void setLength(int length): Sets the length

for this packet.

4.1.2 The class DatagramSocket supports various

methods that can be used for transmitting or

receiving data over the network. The two key

methods are:

1. void send(DatagramPacket p): Sends a

datagram packet from this socket.

2. void receive(DatagramPacket p): Receives

a datagram packet from this socket.

4.2 UDP server program

A simple UDP server program that waits for client’s

requests and then accepts the message (datagram) and

sends back the same message:

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100694 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1384

Program 3

// UDPServer.java: A simple UDP server program.

import java.net.*;

import java.io.*;

public class UDPServer {354 Object-Oriented Programming with Java

 public static void main(String args[]){

 DatagramSocket aSocket = null;

 if (args.length < 1) {

 System.out.println(“Usage: java UDPServer <Port Number>”);

 System.exit(1);

 }

 try {

 int socket_no = Integer.valueOf(args[0]).intValue();

 aSocket = new DatagramSocket(socket_no);

 byte[] buffer = new byte[1000];

 while(true) {

 DatagramPacket request = new DatagramPacket(buffer,

 buffer.length);

 aSocket.receive(request);

 DatagramPacket reply = new DatagramPacket(request.getData(),

 request.getLength(),request.getAddress(),

 request.getPort());

 aSocket.send(reply);

 }

 }

 catch (SocketException e) {

 System.out.println(“Socket: ” + e.getMessage());

 }

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100694 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1385

 catch (IOException e) {

 System.out.println(“IO: ” + e.getMessage());

 }

 finally {

 if (aSocket != null)

 aSocket.close();

 }

 }

}

4.3 UDP client program:

A corresponding client program for creating a datagram and then sending it to the above server and then accepting a

response:

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100694 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1386

Program 4

// UDPClient.java: A simple UDP client program.

import java.net.*;

import java.io.*;

public class UDPClient {

 public static void main(String args[]){

 // args give message contents and server hostname

 DatagramSocket aSocket = null;

 if (args.length < 3) {

 System.out.println(

 “Usage: java UDPClient <message> <Host name> <Port number>”);

 System.exit(1);

}

 try {

 aSocket = new DatagramSocket();

 byte [] m = args[0].getBytes();

 InetAddress aHost = InetAddress.getByName(args[1]);

 int serverPort = Integer.valueOf(args[2]).intValue();

 DatagramPacket request =

 new DatagramPacket(m, args[0].length(), aHost, serverPort);

 aSocket.send(request);

 byte[] buffer = new byte[1000];

 DatagramPacket reply = new DatagramPacket(buffer, buffer.length);

 aSocket.receive(reply);

 System.out.println(“Reply: ” + new String(reply.getData()));

 }

 catch (SocketException e) {

 System.out.println(“Socket: ” + e.getMessage());

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100694 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1387

 }

 catch (IOException e) {

 System.out.println(“IO: ” + e.getMessage());

 }

 finally {

 if (aSocket != null)

 aSocket.close();

 }

 }

}

V. CONCLUSIONS

In this paper an attempt was made to investigate in to

network programming using sockets. Socket

programming is best suitable for communication

between clients and server. There are several works

done on socket programming ever since its advent.

This is proved as Windows, Macintosh and UNIX

provide interoperability with socket interface. Java is

taking over socket programming however the

portability can’t be matched. Keeping all aspects of

the paper we believe socket programming has yet to

evolve in its types and ways it will perform in

applications. All these will require the thought to

have faster and reliable transactions between the

server and clients.

RESOURCES

[1] J. F. Kurose and K. W Ross, “Computer

Networking- A Top-Down Approach featuring the

Internet” , 2nd Edition (Addison Wesley World

Student Edition)

[2] Q. Charatan and A. Kans, ”Java in two semesters”

, 2
nd

 edition McGraw Hills publication,2006

[3] Introduction to Sockets,

web.njit.edu/~gblank/cis604/Lectures/604Sockets.ppt

[4] Oracle.comhttp:// docs.oracle.com/cd/E19683-

01/816-5042/6mb7bck68/index.html

[5] H. Schildt, The Complete Reference, Seventh

Edition, Chap. 27

[6] Tanenbaum, “Computer Networks”, Second

edition

[7] Author P. Burden,” Socket Programming”

[8] Author G. McMillan,” Socket Programming

HOWTO”

[9] Socket Concepts:

http://publib.boulder.ibm.com/infocenter/iseries

[10]https://docs.oracle.com/javase/tutorial/networkin

g/sockets/

[11]http://inst.eecs.berkeley.edu/~ee122/sp06/Lecture

Notes/Socket%20Programming.pdf

[12]http://www.buyya.com/java/Chapter13.pdf

[13]http://i.ytimg.com/vi/aEDV0WlwXTs/maxresdef

ault.jpg

