
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100720 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1395

A Quasi-Delay-Insensitive Microprocessor Core

Implementation for Microcontrollers

Alka Pandey, Arfa Quamar, Apoorva Arya

Abstract- Microcontrollers are widely used on simple systems;

thus, how to keep them operating with high robustness and

low power consumption are the two most important issues. It

is widely known that asynchronous circuit is the best solution

to address these two issues at the same time. However, it’s not

very easy to realize asynchronous circuit and certainly very

hard to model processors with asynchronous pipeline. That’s

why most processors are implemented with synchronous

circuit. There are several ways to model asynchronous

pipeline. The most famous of all is the micro pipeline; in

addition, most micro pipeline based asynchronous systems are

implemented with single-rail bundled delay model.

I. INTRODUCTION

It is widely known that synchronous circuits have some

problems that have to be carefully dealt with such as clock

skew problem, difficulty in clock distribution, worse case

performance, not modular, sensitive to variations in

physical parameters (temperature, voltage, and process),

synchronization failure, and noise (EMI). All these

problems derive from the “clock” signal [1]! As the VLSI

based systems become larger, more complex, and work

with higher clock rate, these problems also become more

serious than ever before. However, because of several

complex historical and practical reasons, almost all systems

today are still implemented with fixed clock period based

design. While synchronous design may introduce lots of

problems with systems growing up larger and larger,

asynchronous design may overcome these problems via

avoiding the use of clock signal. Furthermore, how to

accomplish IP reuse easier becomes one of the most

important issues for SoC design. Asynchronous circuits

may be one of the best solutions to address this issue.

Without the influence of the “clock” signal, asynchronous

circuits make software OOP style design for hardware

design possible. All things that the designers need to know

are the handshaking protocol interface [1]. It also makes

each designed component or IP more reusable. With

growing up mobile device and embedded system markets,

all these issues need to be seriously considered. Thus, it’s

time to implement these systems with asynchronous

circuits.

II. RELATED WORKS

Asynchronous circuits have been studied since early

1950’s; however, synchronous circuits have still dominated

the mainstream of digital circuit design. Recently, some

academic and commercial research shows that it’s worth to

implement real-life systems with asynchronous circuits.

But, because of lack of tools and standardization of

implementation and design models, there is still not much

research on it and just limited commercial

applications.Without clock signal,asynchronous circuits

rely on handshaking protocols to make sure the correctness

of the circuit operations. The protocols can be divided into

control signaling and data encoding. On the contrary, in the

2-phase handshaking protocol, the falling and rising edge of

request and acknowledge are active signals; thus it’s a

transition signaling or non-return-to-zero protocol.

However, it makes the control very complex and hard to

implement. Fig. 1 shows the 2-phase handshaking protocol.

Except control signaling, there are also choices for how to

encode data (data signaling protocol). The Bundled Data or

called Single Rail refers to separate request and

acknowledge wires that bundles the data signals with them.

Thus total n + 2 wires are required to send n-bit data. Fig.2

shows the bundled-data model. Except bundled-data model,

there are data encoding methods for DI circuits. However,

because of implementation issue, dual-rail encoding is the

most popular used DI data encoding scheme. To represent

1-bit data in dualrail encoding method, two physical wires

are used. For example, a valid data, D is represented by two

physical data wires, d.0 and d.1. The following equation

shows this encoding scheme. (1) D = 0; (d.0, d.1) = (0, 1)

(2) D = 1; (d.0, d.1) = (1, 0). In particular,(0, 0) represents a

space which allows us to identify consecutive 0’s or 1’s.

(1, 1) state is not used. Data transferring starts from the (0,

0) state (called “null” or “empty” data). If a state is changed

from (d.0, d.1) = (0, 0) to (0, l)/(1, 0), which notices the

arrival of valid data ‘0/l’. Thus total 2 × n wires are needed

to transfer n-bit data. Fig. 3 shows the dual-rail model [1].

 Fig.1. The 2-phase protocol.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100720 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1396

 Fig.2. Bundled-data signaling model

 Fig. 3. Dual-rail data signaling model. .

 David Muller proposed his famous Muller C-element and

Muller pipeline (aka Muller distributor) in 1959 [4, 5]. A

Muller pipeline is a naturally simple and elegant

handshaking control model. The simplest form of Muller

pipeline mainly consists of C-elements and inverters. Fig. 5

shows the schematic symbol and truth table of a two-input

C-element. If both inputs are high or low, the output will be

high or low; otherwise, the previous value is kept. Fig. 6

shows the original Muller pipeline model. To understand its

behavior, let’s consider the ith C-element Ci. In the initial

state, all C-elements are initialized to 0. The handshaking

may be initialized. The ith C-element Ci can propagate a 1

from its previous stage the (i − 1)th C-element only if the

next stage C-element (Ci+1) is 0. Thus, the signal can be

propagated one stage to one stage. It should be notice that

the original single-rail model is based on bundled-data

model; thus the request signal must be propagated via a

matching delay as shown is Fig. 6. In fact, the matching

issue should be carefully handled on all bundled-data

model. The pipeline model can also be constructed as 4-

phase dual-rail model as shown in Fig. 7 [6]. The model

can be considered as two Muller pipelines connected in

parallel with a common acknowledge signal in per stage.

The detailed behavior described in section 3.1.

 Fig. 5. The muller C-element: symbol & truth

table.

 Fig. 6. The Muller pipeline.

 Fig. 7. A three-stage 1-bit wide 4-phase dual-rail

pipeline.

III. NCTUAC18

There have been several asynchronous FIFO pipeline

models proposed. However, most of them are based on

bundled-data model, especially micropipeline or related

models. But it is widely known that the DI circuit has the

highest robustness and reliability. Moreover, almost all the

research focuses on the original FIFO model, not to real

system implementation. Thus, in this paper, we tried to

implement a real microcontroller with QDI models. We

implemented our asynchronous microprocessor core with 4-

phase dualrail pipeline model as shown in Fig. 7. However,

because it’s too hard to realize real DI circuits, we selected

the QDI model to implement our asynchronous

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100720 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1397

microprocessor core. In this section, the detailed

implementation will be described.

IV. THE NCTUAC18 PIPELINE MODEL

 The NCTUAC18 pipeline is based on the four-phase dual-

rail pipeline model. It makes the NCTUAC18 is a core with

high modularity, robustness, and reliability. The system

block diagram of NCTUAC18 is showed in Fig. 9. Because

of Muller pipeline

model nature, the utilization of our 4-stage pipeline is 50%.

Though it’s not too hard to improve it to 100% via adding

extra pipeline latches for each stage, we still implemented

the original 50% model. There are several reasons for this

selection. The first, with this 50% pipeline model, the OF

stage and EX/WB stage cannot be executed simultaneously

and thus data hazard problem can be easily resolved

without very complex design. Second,

this is just a microprocessor core for simple

microcontroller, and thus simple pipeline model can reduce

extra costs coming from extra pipeline latches and very

complex control circuits. Finally, with this simple pipeline

model, the QDI constraints can be easily

kept in real processor design.

Design of each pipeline stage

With those building blocks and components, the whole

processor core can be built with them. In addition, the

PIC18 compatible instruction set was implemented in our

core. Table 1 shows the implemented instructions.

Following section detailed describes the NCTUAC18

pipeline.

 Implemented instructions of NCTUAC18 core.

Ope

rati

on

Byte-

Oriented

Bit-

Orie

nted

Literal Control

Inst ADDWF BCF ADDLW BC

ruct

ion

ADDWFC BSF SUBLW BNC

ANDWF BTG MULLW BN

ANDWF MOVLB BNN

COMF MOVLW BOV

DECF IORLW BNOV

INCF ANDLW BZ

IORWF XORLW BNZ

MOVF BRA

MOVWF GOTO

MULWF CALL

NEGF RETURN

RLCF PUSH

RLNCF POP

RRCF RCALL

RRNCF NOP

SETF

SUBFWB

SUBWF

SUBWFB

XORWF

MOVFF

V. CONCLUSION

Though there are several proposed asynchronous pipeline

models, most asynchronous processors are still

implemented with micropipeline or modified micropipeline

models. That’s not only because it’s a Turing Award

Lecture but also the implementation

cost consideration. In addition, because of dual-rail nature

and higher timing constraints coming from DI and QDI

circuits, it’s very hard to implement microprocessor core

with DI or QDI circuits. Thus, most DI or ODI pipeline

models are seldom used to implement microprocessors.

However, it is widely known that DI circuit has the highest

reliability and it is suitable to implement microcontrollers

that may operate in variable environments.

In addition, it does not need to consider the matching delay

issue that may be encountered in implementation with

bundled-data circuit such as micropipeline model.

In this paper, we provide a methodology to model a QDI

PIC18 compatible microprocessor core with dual-rail 4-

phase pipeline in a reasonable cost. Though we just

modeled PIC18 compatible core, the model can also be

used on other simple microprocessor core. In fact, we show

a clear flow to design a QDI microprocessor core for simple

microcontroller with Verilog HDL and an easy

implementation model.

Except the pipeline model itself, conditional branch

handling is a very important design issue for pipeline

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100720 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1398

processors. Furthermore, it’s much harder for asynchronous

processors without centralized control. In this paper, we

show an easy way to deal with conditional branches for the

dual-rail 4-phase pipeline microcontroller core. Though it’s

very simple, it’s enough for simple microcontroller core

with such short pipeline.

ACKNOWLEDGMENT

We hereby acknowledge and thank the authors & websites

listed in the references for the valuable information

REFRENCES

[1] A. Davis and S. M. Nowick, “An introduction to

asynchronous circuit design,” Technical Report No. UUCS-

97-013, Computer Science Department, University of Utah,

1997.

[2] I.E. Sutherland, “Micropipelines,” Turing Award Lecture,

Communications of the ACM, Vol. 32, 1989, pp. 720-738.

[3] E. Brunvand, “The NSR processor,” in Proceedings of the

26th Hawaii International Conference on System Sciences,

1993, pp. 428-435.

[4] J. Sparsø and S. Furber, Principles of Asynchronous

Circuit Design – A Systems Prospective, Kluwer Academic

Publishers, London, 2001, pp. 11-25.

[5] D. Muller and W. Bartky, “A theory of asynchronous

circuits,” in Proceedings o International Symposium on

the Theory of Switching, 1959, pp. 204-243.

[6] C. S. Choy, J. Butas, J. Povazanic, and C. F. Chan, “A new

control circuit for asynchronous micropipelines,” IEEE

Transactions on Computers, Vol. 50, 2001, pp. 992-997.

[7] S. B. Furber, D. A. Edwards, and J. D. Garside,

“AMULET3: A 100 MIPS asynchronous embedded

processor,” in Proceedings of the International Conference

on Computer Design, 2000, pp. 329-334.

[8] S. B. Furber, J. D. Garside, P. Riocreux, S. Temple, P. Day,

J. Liu, and N. C. Paver, “AMULET2e: An asynchronous

embedded controller,” Proceedings of the IEEE, Vol. 87,

1999, pp. 243-256.

