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Abstract- Microcontrollers are widely used on simple systems; 

thus, how to keep them operating with high robustness and 

low power consumption are the two most important issues. It 

is widely known that asynchronous circuit is the best solution 

to address these two issues at the same time. However, it’s not 

very easy to realize asynchronous circuit and certainly very 

hard to model processors with asynchronous pipeline. That’s 

why most processors are implemented with synchronous 

circuit. There are several ways to model asynchronous 

pipeline. The most famous of all is the micro pipeline; in 

addition, most micro pipeline based asynchronous systems are 

implemented with single-rail bundled delay model. 

I. INTRODUCTION 

It is widely known that synchronous circuits have some 

problems that have to be carefully dealt with such as clock 

skew problem, difficulty in clock distribution, worse case 

performance, not modular, sensitive to variations in 

physical parameters (temperature, voltage, and process), 

synchronization failure, and noise (EMI). All these 

problems derive from the “clock” signal [1]! As the VLSI 

based systems become larger, more complex, and work 

with higher clock rate, these problems also become more 

serious than ever before. However, because of several 

complex historical and practical reasons, almost all systems 

today are still implemented with fixed clock period based 

design. While synchronous design may introduce lots of 

problems with systems growing up larger and larger, 

asynchronous design may overcome these problems via 

avoiding the use of clock signal. Furthermore, how to 

accomplish IP reuse easier becomes one of the most 

important issues for SoC design. Asynchronous circuits 

may be one of the best solutions to address this issue. 

Without the influence of the “clock” signal, asynchronous 

circuits make software OOP style design for hardware 

design possible. All things that the designers need to know 

are the handshaking protocol interface [1]. It also makes 

each designed component or IP more reusable. With 

growing up mobile device and embedded system markets, 

all these issues need to be seriously considered. Thus, it’s 

time to implement these systems with asynchronous 

circuits. 

 

II. RELATED WORKS 

Asynchronous circuits have been studied since early 

1950’s; however, synchronous circuits have still dominated 

the mainstream of digital circuit design. Recently, some 

academic and commercial research shows that it’s worth to 

implement real-life systems with asynchronous circuits. 

But, because of lack of tools and standardization of 

implementation and design models, there is still not much 

research on it and just limited commercial 

applications.Without clock signal,asynchronous circuits 

rely on handshaking protocols to make sure the correctness 

of the circuit operations. The protocols can be divided into 

control signaling and data encoding. On the contrary, in the 

2-phase handshaking protocol, the falling and rising edge of 

request and acknowledge are active signals; thus it’s a 

transition signaling or non-return-to-zero protocol. 

However, it makes the control very complex and hard to 

implement. Fig. 1 shows the 2-phase handshaking protocol. 

Except control signaling, there are also choices for how to 

encode data (data signaling protocol). The Bundled Data or 

called Single Rail refers to separate request and 

acknowledge wires that bundles the data signals with them. 

Thus total n + 2 wires are required to send n-bit data. Fig.2 

shows the bundled-data model. Except bundled-data model, 

there are data encoding methods for DI circuits. However, 

because of implementation issue, dual-rail encoding  is the 

most popular used DI data encoding scheme. To represent 

1-bit data in dualrail encoding method, two physical wires 

are used. For example, a valid data, D is represented by two 

physical data wires, d.0 and d.1. The following equation 

shows this encoding scheme. (1) D = 0; (d.0, d.1) = (0, 1) 

(2) D = 1; (d.0, d.1) = (1, 0). In particular,(0, 0) represents a 

space which  allows us to identify consecutive 0’s or 1’s. 

(1, 1) state is not used. Data transferring starts from the (0, 

0) state (called “null” or “empty” data). If a state is changed 

from (d.0, d.1) = (0, 0) to (0, l)/(1, 0), which notices the 

arrival of valid data ‘0/l’. Thus total 2 × n wires are needed 

to transfer n-bit data. Fig. 3 shows the dual-rail model [1]. 

                     

                         Fig.1. The 2-phase protocol.  
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                   Fig.2. Bundled-data signaling model 

 
                 Fig. 3. Dual-rail data signaling model.    . 

 
  David Muller proposed his famous Muller C-element and 

Muller pipeline (aka Muller distributor) in 1959 [4, 5]. A 

Muller pipeline is a naturally simple and elegant 

handshaking control model. The simplest form of Muller 

pipeline mainly consists of C-elements and inverters. Fig. 5 

shows the schematic symbol and truth table of a two-input 

C-element. If both inputs are high or low, the output will be 

high or low; otherwise, the previous value is kept. Fig. 6 

shows the original Muller pipeline model. To understand its 

behavior, let’s consider the ith C-element Ci. In the initial 

state, all C-elements are initialized to 0. The handshaking 

may be initialized. The ith C-element Ci can propagate a 1 

from its previous stage the (i − 1)th C-element only if the 

next stage C-element (Ci+1) is 0. Thus, the signal can be 

propagated one stage to one stage. It should be notice that 

the original single-rail model is based on bundled-data 

model; thus the request signal must be propagated via a 

matching delay as shown is Fig. 6. In fact, the matching 

issue should be carefully handled on all bundled-data 

model. The pipeline model can also be constructed as 4-

phase dual-rail model as shown in Fig. 7 [6]. The model 

can be considered as two Muller pipelines connected in 

parallel with a common acknowledge signal in per stage. 

The detailed behavior described in section 3.1.    

                                  

  
              Fig. 5. The muller C-element: symbol & truth 

table.                                       

       

 
                         Fig. 6. The Muller pipeline. 

 
           Fig. 7. A three-stage 1-bit wide 4-phase dual-rail 

pipeline. 

III. NCTUAC18 

There have been several asynchronous FIFO pipeline 

models proposed. However, most of them are based on 

bundled-data model, especially micropipeline or related 

models. But it is widely known that the DI circuit has the 

highest robustness and reliability. Moreover, almost all the 

research focuses on the original FIFO model, not to real 

system implementation. Thus, in this paper, we tried to 

implement a real microcontroller with QDI models. We 

implemented our asynchronous microprocessor core with 4-

phase dualrail pipeline model as shown in Fig. 7. However, 

because it’s too hard to realize real DI circuits, we selected 

the QDI model to implement our asynchronous 
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microprocessor core. In this section, the detailed 

implementation will be described.  

IV. THE NCTUAC18 PIPELINE MODEL 

 The NCTUAC18 pipeline is based on the four-phase dual-

rail pipeline model. It makes the NCTUAC18 is a core with 

high modularity, robustness, and reliability. The system 

block diagram of NCTUAC18 is showed in Fig. 9. Because 

of Muller pipeline 

model nature, the utilization of our 4-stage pipeline is 50%. 

Though it’s not too hard to improve it to 100% via adding 

extra pipeline latches for each stage, we still implemented 

the original 50% model. There are several reasons for this 

selection. The first, with this 50% pipeline model, the OF 

stage and EX/WB stage cannot be executed simultaneously 

and thus data hazard problem can be easily resolved 

without very complex design. Second, 

this is just a microprocessor core for simple 

microcontroller, and thus simple pipeline model can reduce 

extra costs coming from extra pipeline latches and very 

complex control circuits. Finally, with this simple pipeline 

model, the QDI constraints can be easily 

kept in real processor design.      

 
Design of each pipeline stage  

With those building blocks and components, the whole 

processor core can be built with them. In addition, the 

PIC18 compatible instruction set was implemented in our 

core. Table 1 shows the implemented instructions. 

Following section detailed describes the NCTUAC18 

pipeline.  

          Implemented instructions of NCTUAC18 core.  

 

Ope

rati

on  

Byte-

Oriented  

Bit-

Orie

nted  

Literal  Control  

Inst ADDWF  BCF  ADDLW  BC  

ruct

ion  

ADDWFC  BSF  SUBLW  BNC  

ANDWF  BTG  MULLW  BN  

ANDWF   MOVLB  BNN  

COMF   MOVLW  BOV  

DECF   IORLW  BNOV  

INCF   ANDLW  BZ  

IORWF   XORLW  BNZ  

MOVF    BRA  

MOVWF    GOTO  

MULWF    CALL  

NEGF    RETURN  

RLCF    PUSH  

RLNCF     POP  

RRCF    RCALL  

RRNCF    NOP  

SETF     

SUBFWB     

SUBWF     

SUBWFB     

XORWF     

MOVFF     

V. CONCLUSION 

Though there are several proposed asynchronous pipeline 

models, most asynchronous processors are still 

implemented with micropipeline or modified micropipeline 

models. That’s not only because it’s a Turing Award 

Lecture but also the implementation 

cost consideration. In addition, because of dual-rail nature 

and higher timing constraints coming from DI and QDI 

circuits, it’s very hard to implement microprocessor core 

with DI or QDI circuits. Thus, most DI or ODI pipeline 

models are seldom used to implement microprocessors. 

However, it is widely known that DI circuit has the highest 

reliability and it is suitable to implement microcontrollers 

that may operate in variable environments. 

In addition, it does not need to consider the matching delay 

issue that may be encountered in implementation with 

bundled-data circuit such as micropipeline model.  

In this paper, we provide a methodology to model a QDI 

PIC18 compatible microprocessor core with dual-rail 4-

phase pipeline in a reasonable cost. Though we just 

modeled PIC18 compatible core, the model can also be 

used on other simple microprocessor core. In fact, we show 

a clear flow to design a QDI microprocessor core for simple 

microcontroller with Verilog HDL and an easy 

implementation model. 

Except the pipeline model itself, conditional branch 

handling is a very important design issue for pipeline 



© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002 

IJIRT 100720 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY  1398 
 

processors. Furthermore, it’s much harder for asynchronous 

processors without centralized control. In this paper, we 

show an easy way to deal with conditional branches for the 

dual-rail 4-phase pipeline microcontroller core. Though it’s 

very simple, it’s enough for simple microcontroller core 

with such short pipeline. 
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