
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100827 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 279

INHERITANCE

Uday Kumar, Ayush Jain

Student, B.Tech, Cs-It

Dronacharya College Of Engineering, Gurgaon

Abstract- Inheritance has proved its importance in

software development as modification of program

becomes very easy through the help of inheritance.

So in this research paper we’re discussing about

inheritance, types of inheritance like single

inheritance, multiple inheritance, Multi-Level

inheritance, multi-path inheritance, hierarchical

inheritance, hybrid inheritance, examples of

inheritance and applications of inheritance.

Index Terms- Inheritance introduction, types of

inheritance, examples of inheritance, applications of

inheritance.

I. INTRODUCTION

One of the fundamental ideas behind object-oriented

programming is that code should be reusable.

However, existing code often does not do exactly

what you need it to. Perhaps the most obvious way to

proceed is to change the existing code to do what you

want. However, if we do this, we will no longer be

able to use it for it’s original purpose, so this is rarely

a good idea.

A slightly better idea is to make a copy of some or all

of the existing code and change it to do what we

want. This mechanism of deriving a new class from

existing class is called “inheritance”. The old class is

known as “base” class, “super” class or “parent”

class”; and the new class is known as “sub” class,

“derived” class, or “child” class.

The inheritance allows subclasses to inherit all

properties (variables and methods) of their parent

classes.

II. SINGLE INHERITANCE

In single inheritance onle one class per derived class

exists and single inheritance requares a small amount

of run time overhead when used with dynamic

binding.

Syntax:

 class A

{/* ... stuff here ... */};

class B: [access-specifier] A

{/* ... stuff here ... */};

III. MULTIPLE INHERITANCE

A class can inherit properties from more than one

class which is known as multiple inheritances. This

form of inheritance can have several super classes i.e.

multiple Inheritance is the ability of a class to have

more than one base class (super class).

In multiple inheritance we can combine classes into

new class to inherit the 'useful' parts and redefine

whatever needs to be redefined from which we can

reuse existing classes.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100827 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 280

Syntax of multiple inheritance is:

Class D: visibility A, visibility B …….

{

……….. //(body of D)

};

IV. HIERARCHICAL INHERITANCE

When we derive many classes from one class it is

known as hierarchical inheritance. In Hierarchical

inheritance the base class will include all the features

that are common to the subclasses. A subclass can be

constructed by inheriting the properties of the base

class, also a subclass can serve as a base class for the

lower level classes and so on.

V. MULTILEVEL INHERITANCE

A class can be derived from another derived class

which is known as multilevel inheritance. In this

figure class A serves as a base class for derived class

B, which in turn serves as a base class for derived

class C. The class B is known as intermediate base

class since it provides link for inheritance between A

and C.

Multilevel inheritance is declared as:

Class A

{

}; //base class

Class B: public A

{

}; //B derived from A

Class C: public B

{

}; //C derived from B

VI. HYBRID INHERITANCE

When we apply more then one type of inheritance to

derive a inherited class it is known as Hybrid

Inheritance.

Declaration is:

Class D : public B, public C

{

};

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100827 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 281

Where class B itself is derived from A,

Class B : public A

{

};

VII. APPLICATIONS OF INHERITANCE

 Helps us to break software into manageable

pieces.

 Existing classes can be morphed to design

new classes i.e. code reuse.

 Enables us to group different types of

objects together and do some action on all of

them.

 Usually this allows a form of specialization

of one type of object from the one being

inherited.

 Setting up a protocol. A class can declare a

number of methods that its subclasses are

expected to implement. The class might

have empty versions of the methods, or it

might implement partial versions that are to

be incorporated into the subclass methods.

In either case, its declarations establish a

protocol that all its subclasses must follow.

VIII. CONCLUSION

Since the friend functions and friend classes of the

base class are not inherited during using any type of

inheritance so we can program a inheritance class in

which we can inherit properties of friend function

and friend classes.

REFRENCES

[1]: http://www.udtallas.edu

[2]: http://www.ijarcsms.com

[3]: http://www.cloudbus.org

[3]: https://developer.apple.com

[4]: http://www.dre.vanderbilt.edu

[5]: E-balaguruswami

[6]: http://www.compsci.hunter.cuny.edu

