
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100828 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 282

RESEARCH PAPER ON QUEUES

Abstract- In this research paper we’re discussing about

the topics based on queues its applications in daily life

and its types like queue introduction, priority queue,

double ended queue & circular queue and some

important topics related to queue like the queue

interface, queue implementation, properties of queues

e.g. insertion and deletion in a queue(enqueue and

dequeue),applications of queue in data structure.

Index Terms- Types of queues, queue implementation,

properties of queue, insertion and deletion in a queue

and applications of queues.

I. INTRODUCTION

A queue is a collection of linearly ordered elements

in which elements are added at one end and retrieved

at the other end. First element entering the queue is

known as FRONT and last element entering the

queue is known as REAR. The first item entering the

queue is also the first to be retrieved and removed

from the queue and this is why a queue is also called

a first-in-first-out (FIFO) structure i.e. the item first

put into the queue will be the first served, the second

item added to the queue will be the second to be

served and so on.

II. PRIORITY QUEUE

A priority queue stores objects, and on request

releases the object with greatest value.

Example: Scheduling jobs in a multi-tasking

operating system.

There are two types of priority queue.

• Ascending Priority Queue

• Descending Priority Queue

An ascending priority queue is a collection of items

into which items can be inserted arbitrarily

and from which only the smallest item can be

removed.

A descending priority queue is similar but allows

deletion of only the largest item.

Priority queue-unordered array implementation:-

public class UnorderedPQ<Item extends

Comparable>

{

private Item[] pq; // pq[i] = ith element on

PQ

private int N; // number of elements

on PQ

public UnorderedPQ(int maxN)

{ pq = (Item[]) new Comparable[maxN]; }

public boolean isEmpty()

{ return N == 0; }

public void insert(Item x)

{

pq[N++] = x;

}

public Item delMax()

{

int max = 0;

for (int i = 1; i < N; i++)

if (less(max, i)) max = i;

exch(max, N-1);

return pq[--N];

}}

 A. Jain, U. Kumar

Computer Science & Information Technology, Dronacharya College of Engineering

Farrukh Nagar, Gurgaon, India

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100828 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 283

III. DOUBLE ENDED QUEUE

A double-ended priority queue (DEPQ) is a

collection of zero or more elements. Each element

has a priority or value. The operations performed on

a double-ended priority queue are:

1. getMin() ... return element with minimum priority

2. getMax() ... return element with maximum priority

3. put(x) ... insert the element x into the DEPQ

4. removeMin() ... remove an element with minimum

priority and return this element

5. removeMax() ... remove an element with

maximum priority and return this element.

One application of a DEPQ is to the adaptation of

quick sort, which has the the best

expected run time of all known internal sorting

methods, to external sorting.

IV. CIRCULAR QUEUE

Although there is space in the following queue, we

may not be able to add a new item. An attempt will

cause an overflow. A solution of this problem is

circular queue.

Imagine a linear queue is wrapped around a cylinder

such that the first and last elements of the array are

next to each other. When the queue gets apparently

full, it can continue to store elements in the empty

spaces in the beginning of the array. This makes

efficient use of the array slots.

V. QUEUE INTERFACE

A queue is a data structure where we add elements at

the back and remove elements from the front. In that

way a queue is like “waiting in line”: the first one to

be added to the queue will be the first one to be

removed from the queue. This is also called a FIFO

(First In First Out) data structure.

VI. QUEUE IMPLEMENTATION

The array to implement the queue would need two

variables (indices) called front and rear to point to

the first and the last elements of the queue. For each

enqueue operation rear is incremented by one, and

for each dequeue operation, front is incremented by

one.

While the enqueue and dequeue operations are easy

to implement, there is a big disadvantage in this set

up. The size of the array needs to be huge, as the

number of slots would go on increasing as long as

there are items to be added to the list (irrespective of

how many items are deleted, as these two are

independent operations.

struct queue

{

list front;

list back;

};

VII. PROPERTIES OF QUEUE

Enqueue and Dequeue-

Enqueue means adding a new item to the rear of the

queue and Dequeue refers to removing the front item

from queue and returning it.

Enqueue and Dequeue algorithms:

Here are the enqueue and the dequeue

algorithms. It is assumed here that the

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100828 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 284

variables, rear, front and capacity are

globally visible.

initially,

rear = 0;

front = 0;

void enqueue(int Q[], int d)

{

rearplus1 = (rear+1)% capacity;

if (rearplus1 == front)

print “Q full”;

else

{

Q[rear]= d;

rear = rearplus1;

} }

void dequeue(int Q[], *dd)

{

if(front == rear)

{

*dd = -9999 ;

print “Q empty”

}

else

{

*dd = Q[front];

fron =(front

+1)%capacity;

} }

VIII. APPLICATIONS OF QUEUE

 Queues have many applications in computer systems

:-

− Handling jobs in a single processor computer

− print spooling

− transmitting information packets in computer

networks.

-The queue of processes to be scheduled on the CPU

i.e. the process at front is dequeued and processed.

New processes are added at the end of the

queue.

REFRENCE

[1]http://faculty.mu.edu.sa

[2]http://www.cs.ucf.edu

[3]http://www.bowdoin.edu

[4]http://scanftree.com

[5]http://home.deib.polimi.it

[6]http://www.cs.cmu.edu

[7]http://web.onda.br

