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Abstract— A In mathematics, a Fourier series is a way to 

represent a wave-like function as a combination of simple sine 

waves. More formally, it decomposes any periodic function or 

periodic signal into the sum of a (possibly infinite) set of simple 

oscillating functions, namely sine and cosine (or, equivalently, 

complex exponentials). The Discrete-time Fourier transform is a 

periodic function, often defined in terms of a Fourier series. The 

Z-transform, another example of application, reduces to a 

Fourier series for the important case |z|=1. Fourier series are 

also central to the original proof of the Nyquist–Shannon 

sampling theorem [1]. The study of Fourier series is a branch of 

Fourier analysis. an infinite trigonometric series of the form 

1/2a0 + a1cos x + b1sin x + a2cos 2x + b2sin 2x + …, where a0, 

a1, b1, a2, b2 … are the Fourier coefficients. It is used, 

especially in mathematics and physics, to represent or 

approximate any periodic function by assigning suitable values 

to the coefficients. there are some of the conditions of Fourier 

series and in that there is an Euler’s formula also . 

 

Index Terms- Fourier series, conditions, Euler’s Formulae, 

expansion. 

I. INTRODUCTION 

The heat equation is a partial differential equation. Prior to 

Fourier's work, no solution to the heat equation was known 

in the Fourier's idea was to model a complicated heat source 

as a superposition (or linear combination) of simple sine and 

cosine waves, and to write the solution as a superposition of 

the corresponding eigensolution. This superposition or linear 

combination is called the Fourier series.From a modern point 

of view, Fourier's results are somewhat informal, due to the 

lack of a precise notion of function and integral in the early 

nineteenth century. Later, Peter Gustav Lejeune Dirichle and 

Bernhard Riemann
 
expressed Fourier's results with greater 

precision and formality.Although the original motivation was 

to solve the heat equation, it later became obvious that the 

same techniques could be applied to a wide array of 

mathematical and physical problems, and especially those 

involving linear differential equations with constant 

coefficients, for which the eigensolutions are sinusoids. The 

Fourier series has many such applications in electrical 

engineering, vibration analysis, acoustic, optics, signal 

processing, image processing, quantum mechanics, 

econometrics  thin-walled shell theory, etc.general case, 

although particular solutions were known if the heat source 

behaved in a simple way, in particular, if the heat source was 

a sine or cosine wave. These simple solutions are now 

sometimes called eigensolutions Fourier's idea was to model 

a complicated heat source as a superposition (or linear 

combination) of simple sine and cosine waves, and to write 

the solution as a superposition of the corresponding 

eigensolution. This superposition or linear combination is 

called the Fourier series.From a modern point of view, 

Fourier's results are somewhat informal, due to the lack of a 

precise notion of function and integral in the early nineteenth 

century. Later, Peter Gustav Lejeune Dirichle and Bernhard 

Riemann
 
expressed Fourier's results with greater precision 

and formality.Although the original motivation was to solve 

the heat equation, it later became obvious that the same 

techniques could be applied to a wide array of mathematical 

and physical problems, and especially those involving linear 

differential equations with constant coefficients, for which 

the eigensolutions are sinusoids. The Fourier series has many 

such applications in electrical engineering, vibration 

analysis, acoustic, optics, signal processing, image 

processing, quantum mechanics, econometric thin-walled 

shell theory, etc. 

 

In this section, s(x) denotes a function of the real variable x, 

and s is integrable on an interval [x0, x0 + P], for real 

numbers x0 and P. We will attempt to represent  s  in that 

interval as an infinite sum, or series, of harmonically related 

sinusoidal functions. Outside the interval, the series is 

periodic with period P (frequency 1/P). It follows that if s 

also has that property, the approximation is valid on the 

entire real line. We can begin with a finite summation (or 

partial sum): 

    FOURIER SERIES 
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SN(x) is a periodic function with period P.  Using the 

identities: 

 

 

 

we can also write the function in these equivalent forms: 

 

 

 

 

Where: When the coefficients (known as Fourier 

coefficients) are computed as follows: 

 

 

   approximates   on    and the 

approximation improves as N → ∞. The infinite sum, 

  is called the Fourier series representation of   In 

engineering applications, the Fourier series is generally 

presumed to converge everywhere except at discontinuities, 

since the functions encountered in engineering are more well 

behaved than the ones that mathematicians can provide as 

counter-examples to this presumption. In particular, the 

Fourier series converges absolutely and uniformly to s(x) 

whenever the derivative of s(x) (which may not exist 

everywhere) is square integrable.  If a function is square-

integrable on the interval [x0, x0+P], then the Fourier series 

converges to the function at almost every point. See 

Convergence of Fourier series. It is possible to define 

Fourier coefficients for more general functions or 

distributions, in such cases convergence in norm or weak 

convergence is usually of interest. 

II. FOURIER SERIES 

I. A simple Fourier series 

We now use the formula above to give a Fourier series 

expansion of a very simple function. Consider a sawtooth 

wave:  

 

 
In this case, the Fourier coefficients are given by 

 

It can be proven that the Fourier series converges to s(x) at 

every point x where s is differentiable, and therefore: 

 

 

When x = π, the Fourier series converges to 0, which is the 

half-sum of the left- and right-limit of s at x = π. This is a 

particular instance of the Dirichlet theorem for Fourier 

series. 

II. FOURIER'S MOTIVATION 

The Fourier series expansion of our function in example 1 

looks much less simple than the formula s(x) = x/π, and so it 

is not immediately apparent why one would need this Fourier 

series. While there are many applications, we cite Fourier's 

motivation of solving the heat equation. For example, 

consider a metal plate in the shape of a square whose side 

measures π meters, with coordinates (x, y) ∈ [0, π] × [0, π]. If 

there is no heat source within the plate, and if three of the 

four sides are held at 0 degrees Celsius, while the fourth side, 

given by y = π, is maintained at the temperature gradient 

T(x, π) = x degrees Celsius, for x in (0, π), then one can show 

that the stationary heat distribution (or the heat distribution 

after a long period of time has elapsed) is given by 

 

 

Here, sinh is the hyperbolic sin function. This solution of the 

heat equation is obtained by multiplying each term of  Eq.1 

by sinh(ny)/sinh(nπ). While our example function s(x) seems 

to have a needlessly complicated Fourier series, the heat 

distribution T(x, y) is nontrivial. The function T cannot be 

written as a closed-form expression. This method of solving 
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the heat problem was made possible by Fourier's work. 

 

III. EXTENSIONS 

Fourier series on a square : 

 

We can also define the Fourier series for functions of two 

variables x and y in the square [−π, π]×[−π, π]: 

 

                                                      Aside from being useful 

for solving partial differential equations such as the heat 

equation, one notable application of Fourier series on the 

square is in image compression. In particular, the jpeg image 

compression standard uses the two-dimensional discrete 

cosine transform, which is a Fourier transform using the 

cosine basis functions. 

IV. EULER’S FORMULA 

Euler's formula, named after Leonhard Euler, is a 

mathematical formula in complex analysis that establishes 

the fundamental relationship between the trigonometric 

function and the comple exponential function. Euler's 

formula states that, for any real number x, 

The Euler formula, sometimes also called the Euler identity  

 

 

where i is the imaginary unit. Note that Euler's polyhedral 

formula is sometimes also called the Euler formula, as is the 

Euler curvature formula. The equivalent expression  

 

 
had previously been published by Cotes (1714).  

The special case of the formula with gives the beautiful 

identity  

 

 

an equation connecting the fundamental numbers i, pi, e, 1, 

and 0 (zero), the fundamental operations , , and 

exponentiation, the most important relation , and nothing 

else. Gauss is reported to have commented that if this 

formula was not immediately obvious, the reader would 

never be a first-class mathematician (Derbyshire 2004, 

p. 202).  

The Euler formula can be demonstrated using a series 

expansion  

 

 

 

 

  

 

 

   

 
It can also be demonstrated using a complex integral. Let  

   

 

   

 

   

 

   

 

 

 

 

 

   

 
so  

  

 

  

   

 
A mathematical joke asks, "How many mathematicians does 

it take to change a light bulb?" and answers " " (which, 

of course, equals 1)[3] 

V. CONVOLUTION THEOREM 

One of the most important concepts in Fourier theory, and in 

crystallography, is that of a convolution. Convolutions arise 

in many guises, as will be shown below. Because of a 

mathematical property of the Fourier transform, referred to 

as the convolution theorem, it is convenient to carry out 

calculations involving convolutions. 

Mathematically, a convolution is defined as the integral over 

all space of one function at x times another function at u-x. 

The integration is taken over the variable x (which may be a 

1D or 3D variable), typically from minus infinity to infinity 

over all the dimensions. So the convolution is a function of a 

new variable u, as shown in the following equations. The 

cross in a circle is used to indicate the convolution operation.  

it doesn't matter which function you take first, i.e. the 

convolution operation is commutative. We'll prove that 

below, but you should think about this in terms of the 

illustration below. 

 

 

 This illustration shows how you can think about the 

convolution, as giving a weighted sum of shifted copies of 

one function: the weights are given by the function value of 

http://mathworld.wolfram.com/i.html
http://mathworld.wolfram.com/i.html
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the second function at the shift vector. The top pair of graphs 

shows the original functions. The next three pairs of graphs 

show (on the left) the function g shifted by various values of 

x and, on the right, that shifted function g multiplied by f at 

the value of x. 

 Proof of the convolution theorem 

. To prove the convolution theorem, in one of its statements, 

we start by taking the Fourier transform of a convolution. 

What we want to show is that this is equivalent to the 

product of the two individual Fourier transforms. Note, in the 

equation below, that the convolution integral is taken over 

the variable x to give a function of u. The Fourier transform 

then involves an integral over the variable u. 

Now we substitute a new variable w for u-x. As above, the 

infinite integration limits don't change. Then we expand the 

exponential of a sum into the product of exponentials and 

rearrange to bring together expressions in x and expressions 

in w. 

Expressions in x can be taken out of the integral over w so 

that we have two separate integrals, one over x with no terms 

containing w and one over w with no terms containing x. 

The variables of integration can have any names we please, 

so we can now replace w with x, and we have the result we 

wanted to prove. 

If you look through the derivation above, you will see that 

we could have used a minus sign in the exponential when 

taking the original Fourier transform, and then the two 

Fourier transforms at the end would also contain minus signs 

in the exponentials. In other words, the convolution theorem 

applies to both the forward and reverse Fourier transforms. 

This is not surprising, since the two directions of Fourier 

transform are essentially identical [4] 

VI. CONCLUSION 

The Fourier series is most important to   knw because it has 

the quite broad applications in engineering field and in 

communication field as well. We can know about it by going 

through the history. 
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