
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100845 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 632

Optimization of FIR filter implementation

for FMT on VLIW DSP

Sachit Vashisht, Nikhil Chhabra, Tushar Tanwar

Dronacharya college of engineering, Gurgaon

Abstract- The paper summarizes the FMT modulation

prototype filter design and its efficient implementation

on DSP. The optimum design of algorithms for digital

signal processors with VLIW architecture is described.

Using this new approach it was, for example, possible to

optimize compilation from the C language into the

assembler of TMS320C6414 digital signal processor for

implementation of FMT modulation with prototype FIR

filter. The method consists in a closer linkage between

the theory of digital signal processing, software tools

and hardware.

Index Terms- Assembler Programming, Digital Signal

Processor, Filtered Multi Tone Modulation, Prototype

Filter, State-Space Representation, Very Long

Instruction Word.

I. INTRODUCTION

The filtered multitone modulation (FMT) is a

multitone modulation technique, proposed by

Giovanni Cherubini in 1999. Another type of this

modulation is the half overlapped FMT. It is an

interesting alternative to standard modulations in

xDSL systems, particularly to digital multitone

(DMT) modulation, as well as to wireless systems

using orthogonal frequency division multiplexing

(ODFM) modulations. This modulation is using the

fast fourier transform (FFT) algorithm in

combination with bank of filters for frequency

spectrum separation. These filters are polyphase

components of prototype filter, low-pass finite

impulse response (FIR) filter. The first step of

implementation of this modulation on digital signal

processor is an implementation of these filters. The

advantages of the modern architecture of type very

long instruction word (VLIW) digital signal

processors cannot be made full use of as long as the

algorithms to be implemented require sequential data

processing. Fortunately, this type of algorithms

appears in the area of digital signal processing only

rarely. Much more frequent are the algorithms of

processing data flows (FFT, digital filter banks,

wavelet and homomorphous analyses, etc.). In this

type of processing the algorithm can be realized for

several input signal values simultaneously, and

making use of parallel processing will considerably

increase the algorithm processing speed and the

computation performance.

II. PROTOTYPE FILTER DESIGN

The fundamental element of the FMT system is the

prototype filter. We typically attempt to design it to

reach the best frequency characteristic. It mainly

concerns the suppression of side lobes, the

orthogonality of derived filters, and the frequency

separation of particular subchannels. In this way we

can obtain an ideal suppression of inter-channel

interference (ICI). Inter-symbol interference (ISI), on

the other hand, will not be limited by these actions; it

will appear even in the ideal channel without

interference. Its source is the implementation of

filters. But such a distortion is easy to remove via

equalization.

Fig. 1 Block diagram of FMT modulator and

transmitting filters.

The prototype filter can be designed using any FIR

filter design method with the limitation that the filters

derived must be orthogonal to each other. The

following methods meeting the orthogonality

condition appear the most convenient for the design.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100845 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 633

The first method is approximation of IIR filters,

where ρ is the main parameter. Parameter ρ controls

the shape of filter transition bandwidth and it is

within the range from 0 to 1. For greater ρ the final

filter is of a greater steepness but it decreases the

stop-band attenuation. If we increase ρ above 0.6, the

ripple in the pass-band will increase significantly. For

ρ = 0.9 it can be up to 12 dB. Side lobes are

suppressed to –63 dB for ρ = 0.1. The other option is

to shape the filter transition bandwidth using the

square-root raised cosine filter. In this filter, the lobes

are suppressed to –38 dB for α = 0.5. The third

method is the windows method. The final

characteristic is then formed by the properties of the

window used. The Blackman, Hamming or Hanning

windows appear to be sufficient, possibly also some

other window retaining the orthogonality with

sufficient side lobe fall-off and broadness of the main

lobe. Another method uses the modified Parks-

McClellan algorithm.

Fig. 2 Prototype filters frequency responses using

different design methods.

III. DIGITAL SIGNAL PROCESSORS

TMS320C6414

The digital signal processor TMS320C6414 by Texas

Instruments belongs to digital signal processors with

VelociTI core based on VLIW architecture. The core

of VelociTI digital signal processors is made up of

two data paths (A and B), each of which contains

four functional units (L, S, M and D) and a data

register file (Fig 3). The registers are of 32 bits and

there 32 of them in the TMS320C64xx processor.

The registers are always designated by a data path

letter and the respective serial number 0-31 (for

example, A0-A31).

Fig. 3 Block diagram of the VelociTI core of DSP of

TMS320C64xx series.

Functional units can read values from the registers or

store the results of operations in the registers of the

corresponding data path. In each data path in an

instruction packet it is possible to read the contents of

one register of the other data path. Reading is then

realized along one of the two cross paths (1x and 2x).

In each data path one address (DA) and two data

buses (LD and ST) are available for moving the

values between the registers and the data memory.

The functional units of the core of digital signal

processor are optimized for a certain type of

operation. Functional unit L is designed for

arithmetic operations, functional unit S processes the

instructions of logic operations and program

branching instructions, functional unit M is a

hardware multiplier, and functional unit D is used to

calculate the address and to transfer values between

the data memory and the registers.

IV. IMPLEMENTATION OF DISCRETE

CONVOLUTION

FIR filters will be implemented using algorithm of

discrete convolution (1) of input signal x[n] and filter

coefficients h[n] or samples of impulse response,

respectively.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100845 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 634

Fig. 4 Declaring the fir_ filter function in the CCS.

where N is the number of coefficients or impulse

response length, respectively. A function that will

realize a discrete convolution can be declared in the

Code Composer Studio (CCS) integrated

development environment (IDE) for TMS320C6xxx

digital signal processor as shown in Fig. 4. This

function takes over as parameters the array in of input

samples, the array coef of filter coefficients, and the

array out for output samples storage. The number of

output samples is read as parameter N_out and the

number of filter coefficients is read as parameter

N_h, respectively.

V. OPTIMIZATION OF DISCRETE

CONVOLUTION

Compilers designed for digital signal processors are

part of the IDE. Texas Instruments’ CCS can be

quoted as examples. These compilers differ from the

ANSI-C or C++ standard in a few details, which in

the ultimate result have a considerable effect on the

speed and stability of algorithm implementation. The

basic difference lies in that the defined data types are

fully adapted to the architecture of digital signal

processor. The number of data bits and the format of

storing numbers in a given code (mostly the two’s

complement) correspond to the actual storage of

numbers in digital signal processor registers. When

optimizing the source code it is convenient either to

enter the instructions of digital signal processor

assembler directly into the C-language source code or

to use the intrinsic functions, which are assembled as

a single instruction. In Fig. 5, the intrinsic function

_smpy will be compiled as SMPY instruction;

function _sadd will be compiled as SADD

instruction. Most IDEs for digital signal processors

support these activities. In this way the programmer

can optimize the critical parts of source code that the

assembler is not able to analyse correctly. This is a

kind of intermediate stage between optimizing in the

C language and optimizing in the assembler of digital

signal processor.

The CCS defines macro instructions and compiler

directives by means of which the programmer defines

in the source code additional information. The data in

question concern, for example, mutual relations

between variables, rounding of values in memories,

etc. This set-up information is used by the compiler

in the optimization process and if used properly, this

information can greatly increase the compilation

effectiveness as measured by the computation

demand of the compiled binary code. Conversely,

incorrect application yields a binary machine code,

which is potentially dangerous and can cause run-

time errors. For example, two independent variables

X and Y, stored in different parts of data memory can

be stored or read in parallel. If the variables shared a

common memory space, then writing a value in

variable X would entail a change also in the value of

variable Y. In that case the value read from Y

depends on whether the reading operation is executed

before or after the operation of writing into X. In the

case that variables X and Y are the arguments of a

function passed on by a reference, it is not possible at

the time of compilation to find out whether or not the

two variables share the memory space. The compiler

assumes they do and provides a more secure binary

machine code, which, however, requires longer and

more intensive computation.

Fig. 6 Optimized

declaration of the fir_ filter

function in the CCS.

Individual instructions of the instruction packet do

not execute different stages of the same sum element

but different stages of three elements are performed

simultaneously due to the delay slot of instruction

execution. This is the result of pipelining and parallel

processing of the loop iterations. For the element

with serial number m = 7 reading from the memory is

started, for the element m = 2 the multiplication of

the coefficient and the sample is performed, and

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100845 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 635

finally the element m = 0 is accumulated. The

execution of theinstruction packet of the loop kernel

is illustrated in Fig. 7.

Fig. 7 Illustration of the calculation of discrete

convolution in VelociTI digital signal processor.

VI. CONCLUSION

Non-optimised and optimised versions of function

fir_filter were tested in the CCS environment. The

filter for testing was a pass-band filter of the 39th

order. The compiled binary code size and the

computation demands of both versions are shown in

Table I. The computation demands of the optimised

version per one output sample is approximately three

times less than that of the non-optimised version, but

the binary code size is approximately three times

greater than the binary code size of the non-optimised

version. This is caused by the addition of special

program sections, i.e. prolog and epilog. In the

course of optimization we must compromise between

the calculation demands and the binary code size of

compiled binary code.

Writing algorithms in the assembler of digital signal

processors of the type VLIW is very demanding.

Several instructions are being processed in every

clock cycle, their number being given by the number

of active parallel units. Executing any instruction

takes a different number of clock cycles. This is due

to the high degree of pipelining. The program thus

contains several parallel computation paths, which

the programmer must follow incessantly. Under these

conditions it is very easy to make a mistake. All this

strongly depends on the particular type of digital

signal processor. By contrast,the development of

programs for processors with superscalar architecture

(Pentium from Intel, etc.) is simpler from this

viewpoint since parallel instruction grouping is

performed by the hardware unit in the processor

structure (Schedule Unit). In spite of the above

difficulties we often cannot avoid writing the

algorithm directly in the assembler of digital signal

processor since this is the only way how to achieve

the maximum speed of calculating the critical parts of

the source code.

REFERENCES

[1] J. Eyre, The Digital Signal Processing Derby, in

IEEE Spectrum.

[2] Z. Smékal and P. Sysel, Architecture-Dependent

Algorithm Optimization for VLIW Digital Signal

Processor.

[3] P. Sysel, Optimization of FIR Filter on VLIW

Digital Signal Processors, in Proc. of Research in

Telecommunication Technology.

[4] N. Benvenuto, S. Tomasin, L. Tomba,

Equalization methods in DMT and FMT Systems for

Broadband Wireless Communications. In IEEE

Transactions on Communications

