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Abstract- The paper summarizes the FMT modulation 

prototype filter design and its efficient implementation 

on DSP. The optimum design of algorithms for digital 

signal processors with VLIW architecture is described. 

Using this new approach it was, for example, possible to 

optimize compilation from the C language into the 

assembler of TMS320C6414 digital signal processor for 

implementation of FMT modulation with prototype FIR 

filter. The method consists in a closer linkage between 

the theory of digital signal processing, software tools 

and hardware. 

 

Index Terms- Assembler Programming, Digital Signal 

Processor, Filtered Multi Tone Modulation, Prototype 

Filter, State-Space Representation, Very Long 

Instruction Word. 

I. INTRODUCTION 

The  filtered multitone modulation (FMT) is a 

multitone modulation technique, proposed by 

Giovanni Cherubini in 1999. Another type of this 

modulation is the half overlapped FMT. It is an 

interesting alternative to standard modulations in 

xDSL systems, particularly to digital multitone 

(DMT) modulation, as well as to wireless systems 

using orthogonal frequency division multiplexing 

(ODFM) modulations. This modulation is using the 

fast fourier transform (FFT) algorithm in 

combination with bank of filters for frequency 

spectrum separation. These filters are polyphase 

components of prototype filter, low-pass finite 

impulse response (FIR) filter. The first step of 

implementation of this modulation on digital signal 

processor is an implementation of these filters. The 

advantages of the modern architecture of type very 

long instruction word (VLIW) digital signal 

processors cannot be made full use of as long as the 

algorithms to be implemented require sequential data 

processing. Fortunately, this type of algorithms 

appears in the area of digital signal processing only 

rarely. Much more frequent are the algorithms of 

processing data flows (FFT, digital filter banks, 

wavelet and homomorphous analyses, etc.). In this 

type of processing the algorithm can be realized for 

several input signal values simultaneously, and 

making use of parallel processing will considerably 

increase the algorithm processing speed and the 

computation performance. 

II. PROTOTYPE FILTER DESIGN 

The fundamental element of the FMT system is the 

prototype filter. We typically attempt to design it to 

reach the best frequency characteristic. It mainly 

concerns the suppression of side lobes, the 

orthogonality of derived filters, and the frequency 

separation of particular subchannels. In this way we 

can obtain an ideal suppression of inter-channel 

interference (ICI). Inter-symbol interference (ISI), on 

the other hand, will not be limited by these actions; it 

will appear even in the ideal channel without 

interference. Its source is the implementation of 

filters. But such a distortion is easy to remove via 

equalization.  

 
Fig. 1 Block diagram of FMT modulator and 

transmitting filters. 

The prototype filter can be designed using any FIR 

filter design method with the limitation that the filters 

derived must be orthogonal to each other. The 

following methods meeting the orthogonality 

condition appear the most convenient for the design. 
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The first method is approximation of IIR filters, 

where ρ is the main parameter. Parameter ρ controls 

the shape of filter transition bandwidth and it is 

within the range from 0 to 1. For greater ρ the final 

filter is of a greater steepness but it decreases the 

stop-band attenuation. If we increase ρ above 0.6, the 

ripple in the pass-band will increase significantly. For 

ρ = 0.9 it can be up to 12 dB. Side lobes are 

suppressed to –63 dB for ρ = 0.1. The other option is 

to shape the filter transition bandwidth using the 

square-root raised cosine filter. In this filter, the lobes 

are suppressed to –38 dB for α = 0.5. The third 

method is the windows method. The final 

characteristic is then formed by the properties of the 

window used. The Blackman, Hamming or Hanning 

windows appear to be sufficient, possibly also some 

other window retaining the orthogonality with 

sufficient side lobe fall-off and broadness of the main 

lobe. Another method uses the modified Parks-

McClellan algorithm. 

 
Fig. 2 Prototype filters frequency responses using 

different design methods. 

III. DIGITAL  SIGNAL  PROCESSORS  

TMS320C6414 

The digital signal processor TMS320C6414 by Texas 

Instruments belongs to digital signal processors with 

VelociTI core based on VLIW architecture. The core 

of VelociTI digital signal processors is made up of 

two data paths (A and B), each of which contains 

four functional units (L, S, M and D) and a data 

register file (Fig 3). The registers are of 32 bits and 

there 32 of them in the TMS320C64xx processor. 

The registers are always designated by a data path 

letter and the respective serial number 0-31 (for 

example, A0-A31). 

 
Fig. 3 Block diagram of the VelociTI core of DSP of 

TMS320C64xx series. 

 

Functional units can read values from the registers or 

store the results of operations in the registers of the 

corresponding data path. In each data path in an 

instruction packet it is possible to read the contents of 

one register of the other data path. Reading is then 

realized along one of the two cross paths (1x and 2x). 

In each data path one address (DA) and two data 

buses (LD and ST) are available for moving the 

values between the registers and the data memory. 

The functional units of the core of digital signal 

processor are optimized for a certain type of 

operation. Functional unit L is designed for 

arithmetic operations, functional unit S processes the 

instructions of logic operations and program 

branching instructions, functional unit M is a 

hardware multiplier, and functional unit D is used to 

calculate the address and to transfer values between 

the data memory and the registers. 

IV. IMPLEMENTATION OF DISCRETE 

CONVOLUTION 

FIR filters will be implemented using algorithm of 

discrete convolution (1) of input signal x[n] and filter 

coefficients h[n] or samples of impulse response, 

respectively. 
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Fig. 4  Declaring the fir_ filter function in the CCS. 

  

where N is the number of coefficients or impulse 

response length, respectively. A function that will 

realize a discrete convolution can be declared in the 

Code Composer Studio (CCS) integrated 

development environment (IDE) for TMS320C6xxx 

digital signal processor as shown in Fig. 4. This 

function takes over as parameters the array in of input 

samples, the array coef of filter coefficients, and the 

array out for output samples storage. The number of 

output samples is read as parameter N_out and the 

number of filter coefficients is read as parameter 

N_h, respectively. 

V. OPTIMIZATION OF DISCRETE 

CONVOLUTION 

Compilers designed for digital signal processors are 

part of the IDE. Texas Instruments’ CCS can be 

quoted as examples. These compilers differ from the 

ANSI-C or C++ standard in a few details, which in 

the ultimate result have a considerable effect on the 

speed and stability of algorithm implementation. The 

basic difference lies in that the defined data types are 

fully adapted to the architecture of digital signal 

processor. The number of data bits and the format of 

storing numbers in a given code (mostly the two’s 

complement) correspond to the actual storage of 

numbers in digital signal processor registers. When 

optimizing the source code it is convenient either to 

enter the instructions of digital signal processor 

assembler directly into the C-language source code or 

to use the intrinsic functions, which are assembled as 

a single instruction. In Fig. 5, the intrinsic function 

_smpy will be compiled as SMPY instruction; 

function _sadd will be compiled as SADD 

instruction. Most IDEs for digital signal processors 

support these activities. In this way the programmer 

can optimize the critical parts of source code that the 

assembler is not able to analyse correctly. This is a 

kind of intermediate stage between optimizing in the 

C language and optimizing in the assembler of digital 

signal processor. 

The CCS defines macro instructions and compiler 

directives by means of which the programmer defines 

in the source code additional information. The data in 

question concern, for example, mutual relations 

between variables, rounding of values in memories, 

etc. This set-up information is used by the compiler 

in the optimization process and if used properly, this 

information can greatly increase the compilation 

effectiveness as measured by the computation 

demand of the compiled binary code. Conversely, 

incorrect application yields a binary machine code, 

which is potentially dangerous and can cause run-

time errors. For example, two independent variables 

X and Y, stored in different parts of data memory can 

be stored or read in parallel. If the variables shared a 

common memory space, then writing a value in 

variable X would entail a change also in the value of 

variable Y. In that case the value read from Y 

depends on whether the reading operation is executed 

before or after the operation of writing into X. In the 

case that variables X and Y are the arguments of a 

function passed on by a reference, it is not possible at 

the time of compilation to find out whether or not the 

two variables share the memory space. The compiler 

assumes they do and provides a more secure binary 

machine code, which, however, requires longer and 

more intensive computation. 

 
Fig. 6 Optimized 

declaration of the fir_ filter 

function in the CCS. 

 

Individual instructions of the instruction packet do 

not execute different stages of the same sum element 

but different stages of three elements are performed 

simultaneously due to the delay slot of instruction 

execution. This is the result of pipelining and parallel 

processing of the loop iterations. For the element 

with serial number m = 7 reading from the memory is 

started, for the element m = 2 the multiplication of 

the coefficient and the sample is performed, and 
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finally the element m = 0 is accumulated. The 

execution of theinstruction packet of the loop kernel 

is illustrated in Fig. 7. 

 

 
Fig. 7  Illustration of the calculation of discrete 

convolution in VelociTI digital signal processor. 

VI. CONCLUSION 

Non-optimised and optimised versions of function 

fir_filter were tested in the CCS environment. The 

filter for testing was a pass-band filter of the 39th 

order. The compiled binary code size and the 

computation demands of both versions are shown in 

Table I. The computation demands of the optimised 

version per one output sample is approximately three 

times less than that of the non-optimised version, but 

the binary code size is approximately three times 

greater than the binary code size of the non-optimised 

version. This is caused by the addition of special 

program sections, i.e. prolog and epilog. In the 

course of optimization we must compromise between 

the calculation demands and the binary code size of 

compiled binary code. 

 

 
Writing algorithms in the assembler of digital signal 

processors of the type VLIW is very demanding. 

Several instructions are being processed in every 

clock cycle, their number being given by the number 

of active parallel units. Executing any instruction 

takes a different number of clock cycles. This is due 

to the high degree of pipelining. The program thus 

contains several parallel computation paths, which 

the programmer must follow incessantly. Under these 

conditions it is very easy to make a mistake.  All this 

strongly depends on the particular type of digital 

signal processor. By contrast,the development of 

programs for processors with superscalar architecture 

(Pentium from Intel, etc.) is simpler from this 

viewpoint since parallel instruction grouping is 

performed by the hardware unit in the processor 

structure (Schedule Unit). In spite of the above 

difficulties we often cannot avoid writing the 

algorithm directly in the assembler of digital signal 

processor since this is the only way how to achieve 

the maximum speed of calculating the critical parts of 

the source code. 
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