
 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100840 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1413

SERVER/CLIENT NETWORKING AT JAVA

PLATFORM

Vibhu Chinmay , Shubham Sachdeva

Student (B.tech5
th
sem) Department of Electronics and Computers Engineering

 Dronacharya College of Engineering, Gurgaon-123506, India

Abstract: Socket programming furnish the

communication mechanism between the two systems

using TCP. A client program itself makes a socket on its

end of the communication and tries to connect that

socket to a server. When the connection is made, the

server creates a object of socket on its end of the

communication. The client server can now easily

communicate by writing to and reading from the socket.

The java.net.Socket class represents a socket, and the

java.net.ServerSocket class provides a mechanism for

the server program to listen for clients and can make

communication easily with them.

I. INTRODUCTION

1. NETWORKING
1.1. Socket Overview

 A socket is one end-point of a two-way

communication link between two programs running

on the network.

A server application normally listens to a specific

port waiting for connection requests from a client.

When a connection request arrives, the client and the

server establish a dedicated connection over which

they can communicate. During the connection

process, the client is assigned a local port number,

and binds a socket to it. The client talks to the server

by writing to the socket and gets information from

the server by reading from it. Similarly, the server

gets a new local port number (it needs a new port

number so that it can continue to listen for connection

requests on the original port). The server also binds a

socket to its local port and communicates with the

client by reading from and writing to it.

The client and the server must agree on a protocol--

that is, they must agree on the language of the

information transferred back and forth through the

socket.

1.2. Client or Server

You often hear the term client/server mentioned in

the context of networking. It seems complicated

when you read about it in corporate marketing

statements, but it is actually quite simple. The client–

server model of computing is a distributed

application that partitions tasks or workloads between

the providers of a resource or service, called servers,

and service requesters, called clients. Often clients

and servers communicate over a computer network

on separate hardware, but both client and server may

reside in the same system. A server machine is a host

that is running one or more server programs which

share their resources with clients. A client does not

share any of its resources, but requests a server’s

content or service function. Clients therefore initiate

communication sessions with servers which await

incoming requests. The power grid of the house is the

server, and the lamp is a power client. The server is a

permanently available resource, while the client is

free to “unplug” after it is has been served. In

Berkeley sockets, the notion of a socket allows a

single computer to serve many different clients at

once, as well as serving many different types of

information. This feat is managed by the introduction

of a port, which is a numbered socket on a particular

machine. A server process is said to “listen” to a port

until a client connects to it. A server is allowed to

accept multiple clients connected to the same port

number, although each session is unique. To manage

multiple client connections, a server process must be

multithreaded or have some other means of

multiplexing the simultaneous I/O. Here’s an

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100858 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1414

example of a client requesting a single file,

/index.html, and the server replying that it has

successfully found the file and is sending it to the

client:

Server Client

Listens to port 80. Connects to port 80.

Accepts the connection.

Writes “GET

/index.html

Reads up until the second end-

of-line (\n).

HTTP/1.0\n\n”.

Sees that GET is a known

command and that

HTTP/1.0 is a valid protocol

version.

Reads a local file called

/index.html.

Writes “HTTP/1.0 200

OK\n\n”.

“200” means “here

comes the file.”

Copies the contents of the file

into the socket.

Reads the contents

of the file and

Displays it.

Hangs up. Hangs up.

Obviously, the HTTP protocol is much more

complicated than this example shows, but this is an

actual transaction that you could have with any web

server near you.

1.3. Proxy Servers

 A server that sits between a client application, such

as a Web Browser, and a real server. It intercepts all

requests to the real server to see if it can fulfill the

requests itself. If not, it forwards the request to the

real server.

Proxy servers have two main purposes:

Improve Performance: Proxy servers can

dramatically improve performance for groups of

users. This is because it saves the results of all

requests for a certain amount of time. Consider the

case where both user X and user Y access the

WORLD WIDE WEB through a proxy server. First

user X requests a certain web page, which we'll call

Page 1. Sometime later, user Y requests the same

page. Instead of forwarding the request to the Web

server where Page 1 resides, which can be a time-

consuming operation, the proxy server simply returns

the Page 1 that it already fetched for user X. Since

the proxy server is often on the same network as the

user, this is a much faster operation. Real proxy

servers support hundreds or thousands of users. The

major online services such as MSN and Yahoo, for

example, employ an array of proxy servers.

 Filter Requests: Proxy servers can also be used to

filter requests. For example, a company might use a

proxy server to prevent its employees from accessing

a specific set of web sites

2.1. The Networking Classes & Interfaces

The classes contained in the java.net package are

listed here:

Authenticator

(Java 2)

InetSocketAddre

ss (Java 2, v1.4) SocketImpl

ContentHandler

JarURLConnecti

on (Java 2) SocketPermission

DatagramPacket MulticastSocket URI (Java 2, v1.4)

DatagramSocket NetPermission

URLClassLoader

(Java 2)

DatagramSocket

Impl

NetworkInterface

(Java 2, v1.4) URL

HttpURLConne

ction

PasswordAuthent

ication (Java 2) URLConnection

InetAddress ServerSocket

URLDecoder

(Java 2)

Inet4Address

(Java 2, v1.4) Socket URLEncoder

Inet6Address

(Java 2, v1.4)

SocketAddress

(Java 2, v1.4)

URLStreamHandle

r

Some of these are to support the new IPv6 addressing

scheme. Others provide some added flexibility to the

original java.net package. Java 2, version 1.4 also

added functionality, such as support for the new I/O

classes, to several of the preexisting networking

classes. Most of the additions made by Java 2,

version 1.4 are beyond the scope of this chapter, but

three new classes, Inet4Address, Inet6Address, and

URI, are briefly discussed at the end. The java.net

package’s interfaces are listed here:

ContentHandle

rFactory

SocketImplFact

ory

URLStreamHa

ndlerFactory

FileNameMap SocketOptions

DatagramSock

etImplFactory

(added by Java 2, v1.3)

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100840 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1415

2.2. ServerSocket Class Method

The java.net.ServerSocket class is used by server

applications to obtain a port and listen for client

requests. The ServerSocket class has four

constructors:

public ServerSocket(int port) throws IOException

Attempts to create a server socket bound to the

specified port. An exception occurs if the port is

already bound by another application.

public ServerSocket(int port, int backlog) throws

IOException

Similar to the previous constructor, the backlog

parameter specifies how many incoming clients to

store in a wait queue.

public ServerSocket(int port, int backlog,

InetAddress address) throws IOException

Similar to the previous constructor, the InetAddress

parameter specifies the local IP address to bind to.

The InetAddress is used for servers that may have

multiple IP addresses, allowing the server to specify

which of its IP addresses to accept client requests on

public ServerSocket() throws IOException

Creates an unbound server socket. When using this

constructor, use the bind() method when you are

ready to bind the server socket

If the ServerSocket constructor does not throw an

exception, it means that your application has

successfully bound to the specified port and is ready

for client requests.

Here are some of the common methods of the

ServerSocket class:

public int getLocalPort()

Returns the port that the server socket is listening on.

This method is useful if you passed in 0 as the port

number in a constructor and let the server find a port

for you.

public Socket accept() throws IOException

Waits for an incoming client. This method

blocks until either a client connects to the server

on the specified port or the socket times out,

assuming that the time-out value has been set

using the setSoTimeout() method. Otherwise,

this method blocks indefinitely

public void setSoTimeout(int timeout)
Sets the time-out value for how long the server

socket waits for a client during the accept().

public void bind(SocketAddress host, int backlog)
Binds the socket to the specified server and port

in the SocketAddress object. Use this method if

you instantiated the ServerSocket using the no-

argument constructor.

When the ServerSocket invokes accept (), the

method does not return until a client connects.

After a client does connect, the ServerSocket

creates a new Socket on an unspecified port and

returns a reference to this new Socket. A TCP

connection now exists between the client and

server , and communica t ion can begin .

2.3. Socket Class Method
The java.net.Socket class represents the socket that
both the client and server use to communicate with
each other. The client obtains a Socket object by
instantiating one, whereas the server obtains a Socket
object from the return value of the accept() method.
The Socket class has five constructors that a client

uses to connect to a server:

public Socket(String host, int port) throws

UnknownHostException, IOException.
This method attempts to connect to the specified

server at the specified port. If this constructor

does not throw an exception, the connection is

successful and the client is connected to the

server.

public Socket(InetAddress host, int port) throws

IOException

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100858 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1416

This method is identical to the previous constructor,

except that the host is denoted by an InetAddress

object.

public Socket(String host, int port, InetAddress

localAddress, int localPort) throws IOException.

Connects to the specified host and port, creating a

socket on the local host at the specified address and

port.

public Socket(InetAddress host, int port,

InetAddress localAddress, int localPort) throws

IOException.

This method is identical to the previous constructor,

except that the host is denoted by an InetAddress

object instead of a String

public Socket()

Creates an unconnected socket. Use the connect()

method to connect this socket to a server.

When the Socket constructor returns, it does not

simply instantiate a Socket object but it actually

attempts to connect to the specified server and port.

Some methods of interest in the Socket class are

listed here. Notice that both the client and server have

a Socket object, so these methods can be invoked by

both the client and server.

public void connect(SocketAddress host, int

timeout) throws IOException

This method connects the socket to the specified host.

This method is needed only when you instantiated the

Socket using the no-argument constructor.

public InetAddress getInetAddress()

This method returns the address of the other

computer that this socket is connected to.

public int getPort()

Returns the port the socket is bound to on the remote

machine.

public int getLocalPort()

Returns the port the socket is bound to on the local

machine.

public SocketAddress getRemoteSocketAddress()

Returns the address of the remote socket.

public InputStream getInputStream() throws

IOException

Returns the input stream of the socket. The input

stream is connected to the output stream of the

remote socket.

public OutputStream getOutputStream() throws

IOException

Returns the output stream of the socket. The output

stream is connected to the input stream of the remote

socket

public void close() throws IOException

Closes the socket, which makes this Socket object no

longer capable of connecting again to any server

2.4. InetAddress Class Method

This class represents an Internet Protocol (IP)

address. Here are following useful methods

which you would need while doing socket

programming:

static InetAddress getByAddress(byte[] addr)

Returns an InetAddress object given the raw IP

address.

static InetAddress getByAddress(String

host, byte[] addr)

Create an InetAddress based on the provided

host name and IP address.

static InetAddress getByName(String host)

Determines the IP address of a host, given the

host's name.

String getHostAddress()

Returns the IP address string in textual

presentation.

String getHostName()

Gets the host name for this IP address.

static InetAddress InetAddress

getLocalHost()

Returns the local host.

String toString()

Converts this IP address to a String.

byte[] getAddress()

Internet addresses are looked up in a series of

hierarchically cached servers. That means that your

local computer might know a particular name-to-IP-

address mapping automatically, such as for itself and

nearby servers. For other names, it may ask a local

DNS server for IP address information. If that server

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100840 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1417

doesn’t have a particular address, it can go to a

remote site and ask for it. This can continue all the

way up to the root server, called InterNIC

(internic.net). This process might take a long time, so

it is wise to structure your code so that you cache IP

address information locally rather than look it up

repeatedly.

3. TCP/IP SOCKETS

3.1. TCP/IP Client Sockets

TCP/IP sockets are used to implement reliable,

bidirectional, persistent, point-to- point, stream-based

connections between hosts on the Internet. A socket

can be used to connect Java’s I/O system to other

programs that may reside either on the local machine

or on any other machine on the Internet. There are

two kinds of TCP sockets in Java. One is for servers,

and the other is for clients. The ServerSocket class is

designed to be a “listener,” which waits for clients to

connect before doing anything. The Socket class is

designed to connect to server sockets and initiate

protocol exchanges. The creation of a Socket object

implicitly establishes a connection between the client

and server. There are no methods or constructors that

explicitly expose the details ofestablishing that

connection. Here are two constructors used to create

client sockets:

Socket(String hostName, int port) Creates a

socket connecting the local host to the Named host

and port; can throw an UnknownHostException or

an IOException. Socket(InetAddress ipAddress,

int port) Creates a socket using a preexisting

netAddress object and a port; can throw an

IOException. A socket can be examined at any time

for the address and port information associated with

it, by use of the following methods:

InetAddress getInetAddress()Returns the

InetAddress associated with the Socket object. nt

getPort() Returns the remote port to which this

Socket object is connected. int getLocalPort()

Returns the local port to which this Socket object is

connected.

Once the Socket object has been created, it can also

be examined to gain access to the input and output

streams associated with it. Each of these methods can

throw an IOException if the sockets have been

invalidated by a loss of connection on the Net. These

streams are used exactly like the I/O streams to send

and receive data.

InputStream getInputStream() Returns the

InputStream associated with the invoking socket.

OutputStream getOutputStream() Returns the

OutputStream associated with the invoking socket.

THE JAVA LIBRARY Java 2, version 1.4 added the

getChannel() method to Socket. This method

returns a channel connected to the Socket object.

Channels are used by the new I/O classes contained

in java.nio.

3.2. TCP/IP Server Sockets
The ServerSocket class is used to create servers that

listen for either local or remote client programs to

connect to them on published ports. Since the Web is

driving most of the activity on the Internet, this

section develops an operational web (http) server.

ServerSockets are quite different from normal

Sockets. When you create a ServerSocket, it will

register itself with the system as having an interest in

client connections. The constructors for

ServerSocket reflect the port number that you wish

to accept connections on and, optionally, how long

you want the queue for said port to be. The

queuelength tells the system how many client

connections it can leave pending before it should

simply refuse connections. The default is 50. The

constructors might throw an IOException under

adverse conditions. Here are the constructors:

ServerSocket(int port) Creates server socket

on the specified port

with a queue length

of 50. Creates a

server socket on the

specified port

with

a maximum queue length of maxQueue.

ServerSocket(int port, int maxQueue, InetAddress

localAddress)

Creates a server socket on the specified port with a

maximum queue length of maxqueue. On a

multihomed host,localaddress specifies the IP address

to which this socket binds.

ServerSocket has a method calledaccept(), which is

a blocking call that will wait for a client to initiate

communications, and then return with a normal

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100858 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1418

Socket that is then used for communication with the

client. Java 2, version 1.4 added thegetChannel()

method to ServerSocket. This method returns

achannel connected to the ServerSocket object.

Channels are used by the new I/O classes contained

in java.nio.

4. EXAMPLES

4.1. Socket Client Example

The following Greeting Client is a client program

that connects to a server by using a socket and sends

a gree ting, and then wai ts for a response .

// File Name GreetingClient.java

import java.net.*;

import java.io.*;

publicclassGreetingClient

{

publicstaticvoid main(String[] args)

{

String serverName =args[0];

int port =Integer.parseInt(args[1]);

try

{

System.out.println("Connecting to "+ serverName

+" on port "+ port);

Socket client =newSocket(serverName, port);

System.out.println("Just connected to "

+client.getRemoteSocketAddress());

OutputStream outToServer

=client.getOutputStream();

DataOutputStreamout=

newDataOutputStream(outToServer);

out.writeUTF("Hello from "

+client.getLocalSocketAddress());

InputStream inFromServer =client.getInputStream();

DataInputStreamin=

newDataInputStream(inFromServer);

System.out.println("Server says "+in.readUTF());

client.close();

}catch(IOException e)

{

e.printStackTrace();
}

}

}

4.2. Socket Server Example

The following Greeting Server program is an

example of a server application that uses the Socket

class to listen for clients on a port number specified

by a command-line argument:

// File Name GreetingServer.java

import java.net.*;

import java.io.*;

publicclassGreetingServerextendsThread

{

privateServerSocket serverSocket;

publicGreetingServer(int port)throwsIOException

{

serverSocket=newServerSocket(port);

serverSocket.setSoTimeout(10000);

}

publicvoid run()

{

while(true)

{

try

{

System.out.println("Waiting for client on port "+

serverSocket.getLocalPort()+"...");

Socket server =serverSocket.accept();

System.out.println("Just connected to "

+server.getRemoteSocketAddress());

DataInputStreamin=

newDataInputStream(server.getInputStream());

System.out.println(in.readUTF());

DataOutputStreamout=

newDataOutputStream(server.getOutputStream());

out.writeUTF("Thank you for connecting to "

+server.getLocalSocketAddress()+"\nGoodbye!");

server.close();

}catch(SocketTimeoutException s)

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100840 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1419

{

System.out.println("Socket timed out!");

break;

}catch(IOException e)

{

e.printStackTrace();

break;

}

}

}

publicstaticvoid main(String[] args)

{

int port =Integer.parseInt(args[0]);

try

{

Thread t =newGreetingServer(port);

t.start();

}catch(IOException e)

{

e.printStackTrace();

}

}

}

Compile client and server and then start server as

follows:

$ javaGreetingServer6066

Waitingfor client on port 6066...

Check client program as follows:

$ javaGreetingClient localhost 6066

Connecting to localhost on port 6066

Just connected to localhost/127.0.0.1:6066

Server says Thank you for connecting to

/127.0.0.1:6066

REFERENCES

1.http://ijera.com/papers/Vol3_issue1/GU311299130

5.pdf

2.Mc Graw Hill “The Complete Reference: Java 2”

Fifth Edition

3.http://www.tutorialspoint.com/java/java_networkin

g.htm

4.http://docs.oracle.com/javase/tutorial/networking/so

ckets/clientServer.html

