
 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100876 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1445

 A Review Paper on Design of DMA Controller

Using VHDL

Vibhu Chinmay , Shubham Sachdeva

Student (B.Tech 5
th
 sem) Department of Electronics and Computers Engineering

Dronacharya College of Engineering, Gurgaon-123506, India

Abstract: In this paper, an attempt has been made to

review the design of Direct Memory Access (DMA)

Controller using VHDL. Direct Memory Access is a

method of transferring data between peripherals and

memory without using the CPU. The 8237A Multimode

DMA Controller is a peripheral interface circuit for

microprocessor systems. It is designed to improve

system performance by allowing external devices to

directly transfer information from the system memory.

Memory-to memory transfer capability is also provided.

The 8237A offers a wide variety of programmable

control features to enhance data throughput and system

optimization and to allow dynamic reconfiguration

under program control.

Keywords: DMA, VHDL, IP Core.

I.INTRODUCTION

 Many system-on-chip (SoC) integrated

circuits contain embedded cores with different scan

frequencies. To better meet the test requirements for

such heterogeneous SoCs, leading tester companies

have recently introduced port-scalable testers, and

Many IP core design software like Xilinx, Leonardo

Spectrum, and Modelsim etc. which can used to

design IP core like DMA ,Interrupt Controller etc.

These IP core can be Power aware an Implement on

SoC by choosing different design technique and

various modeling techniques .These all modeling

technique and tolls like Xilinx ISE also provide RTL

view which will help to make IP cores to use in any

Processor design .Here in these project we will see an

Intel 8237 DMA IP core design which is using a very

different kind of design technique not used up till

now. So by this project we will prove that if we are

trying & use various modeling techniques for

designing IP cores than it may be used in various

power level requirement circuits & processors & it

may also power aware. These IP cores are ASIC

application specific IC so we can control its power,

speed, size etc. to implement before on an embedded

circuit. So an IP core design is a part of a Main

embedded circuit and control the working of that

circuit or processor.

Today’s SoCs are composed of a wide variety of

modules, such as microprocessor cores, memories,

peripherals, and customized blocks directly related to

the targeted application. To effectively perform

simulation-based design verification of peripheral

cores, it is necessary to stimulate the description in a

broad range of behavior possibilities, checking the

produced results. Different strategies for generating

suitable stimuli have been proposed by the research

community to functionally verify these modules and

their interconnection when embedded in a SoC:

however, their verification often remains a largely

manual and unstructured operation. In this paper we

describe a general approach to develop concise and

effective sets of inputs by modeling the configuration

modes of a peripheral with a graph, and creating

paths able to cover all of its nodes: proper stimuli for

the device are then directly derived from the paths.

The resulting inputs sequences are aimed at design

verification of system peripherals such as DMA

controllers, and can be applied via simulation by

means of dedicated test-benches or by setting up an

environment including a processor, which executes a

proper test program. In the latter case, the developed

programs can be exploited in later stages for testing,

by adding suitable observability features.

Experimental results demonstrating the method

effectiveness are reported.

IP Core (Intellectual Property)

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100876 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1446

An IP (intellectual property) core is a block of logic

or data that is used in making a field programmable

gate array (FPGA) or application-specific integrated

circuit (ASIC) for a product. As essential elements of

design reuse, IP cores are part of the growing

electronic design automation (EDA) industry trend

towards repeated use of previously designed

components. Ideally, an IP core should be entirely

portable - that is, able to easily be inserted into any

vendor technology or design methodology. Universal

Asynchronous Receiver/ Transmitter (UART’s),

central processing units (CPU’s), Ethernet

controllers, and PCI interfaces are all examples of IP

cores. IP cores fall into one of three categories: hard

cores, firm cores, or soft cores. Hard cores are

physical manifestations of the IP design. These are

best for plug-and-play applications, and are less

portable and flexible than the other two types of

cores. Like the hard cores, firm (sometimes called

semi-hard) cores also carry placement data but are

configurable to various applications. The most

flexible of the three, soft cores exist either as a net-

list (a list of the logic gate s and associated

interconnections making up an integrated circuit) or

hardware description language (HDL) code. In

electronic design a semiconductor intellectual

property core, IP block, IP core or logic core is a

reusable unit of logic, cell, or chip layout design that

is the intellectual property of one party. IP cores may

be licensed to another party or can be owned and

used by a single party alone. The term is derived

from the licensing of the patent and source code

copyright intellectual property rights that subsist in

the design. IP cores can be used as building blocks

within ASIC chip designs or FPGA logic designs.

DMA Controller

Direct memory access (DMA) is a process in which

an external device takes over the control of system

bus from the CPU.

DMA is for high-speed data transfer from/to mass

storage peripherals, e.g. hard disk drive, magnetic

tape, CD-ROM, and sometimes video controllers. For

example, a hard disk may boast a transfer rate of 5 M

bytes per second, i.e.1 byte transmission every 200

ns. To make such data transfer via the CPU is both

undesirable and unnecessary.

The basic idea of DMA is to transfer blocks of data

directly between memory and peripherals. The data

don’t go through the microprocessor but the data bus

is occupied. “Normal” transfer of one data byte takes

up to 29 clock cycles. The DMA transfer requires

only 5 clock cycles. Nowadays, DMA can transfer

data as fast as 60 M byte per second. The transfer rate

is limited by the speed of memory and peripheral

devices. A DMA controller interfaces with several

peripherals that may request DMA. The controller

decides the priority of simultaneous DMA requests

communicates with the peripheral and the CPU, and

provides memory addresses for data transfer. DMA

controller commonly used with 8088 is the 8237

programmable device. The 8237 is in fact a special

purpose microprocessor.

Normally it appears as part of the system controller

chip-sets. The 8237 is a 4-channel device. Each

channel is dedicated to a specific peripheral device

and capable of addressing 64 K bytes section of

memory.

DMA 8237 IP Core

The 8237 programmable DMA controller core is a

peripheral interface circuit for microprocessor

systems. The core is designed to be used in

conjunction with an external 8-bit address latch. It

contains four independent channels and may be

expanded to any number of channels by cascading

additional controller chips. Each channel has a full

64-K address and word count capability.

Some Important Signal Pins

DREQi (DMA request): Used to request a DMA

transfer for a particular DMA channel.

DACKi (DMA channel acknowledge):

Acknowledges a channel DMA request from a

device.

HRQ (Hold request): Requests a DMA transfer.

HLDA (Hold acknowledge): signals the 8237 that the

Micro-processor has relinquished control of the

address, data and control buses.

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100876 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1447

AEN (Address enable): Enables the DMA address

latch connected to the 8237 and disable any buffers in

the system connected to the microprocessor. (Use to

take the control of the address bus from the

microprocessor).

ADSTB (Address strobe): Functions as ALE to latch

address during the DMA transfer.

EOP (End of process): Signals the end of the DMA

process.

IOR (I/O read): Used as an input strobe to read data

from the 8237 during programming and used as an

output strobe to read data from the port during a

DMA write cycle.

IOW (I/O write): Used as an input strobe to write

data to the 8237 during programming and used as an

output strobe to write data to the port during a DMA

read cycle.

MEMW (Memory write): Used as an output to cause

memory to write data during a DMA write cycle.

MEMR (Memory read): Used as an output to cause

memory to read data during a DMA read cycle.

Internal Register

The current address register (CAR) is used to hold

the 16-bit memory address used for the DMA

transfer. The current word count register (CWCR)

programs a channel for the number of bytes (up to

64K) transferred during a DMA action. The base

address (BA) and base word count (BWC) registers

are used when auto-initialization is selected for a

channel. In this mode, their contents will be reloaded

to the CAR and CWCR after the DMA action is

completed. Each channel has its own CAR, CWCR,

BA and BWC. The command register (CR) programs

the operation.

8237 DMA Controller

The mode register (MR) programs the mode of

operation for a CHANNAL the request register (RR)

is used to request a DMA transfer via software,

which is very useful in memory-to-memory transfers.

The mask register set/reset (MRSR) sets or clears the

channel mask to disable or enable particular DMA

channels. The mask register (MSR) clears or sets all

of the masks with one command instead of individual

channels as with the MRSR. The status register (SR)

shows the status of each DMA channel.

Figure 1: 8237 DMA Controller

Basic DMA Operation

The direct memory access (DMA) I/O technique

provides direct access to the memory while the

microprocessor is temporarily disabled. A DMA

controller temporarily borrows the address bus, data

bus, and control bus from the microprocessor and

transfers the data bytes directly between an I/O port

and a series of memory locations. The DMA transfer

is also used to do high-speed memory-to memory

transfers. Two control signals are used to request and

acknowledge a DMA transfer in the microprocessor-

based system.

The HOLD signal is a bus request signal which asks

the microprocessor to release control of the buses

after the current bus cycle. The HLDA signal is a bus

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100876 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1448

grant signal which indicates that the microprocessor

has indeed released control of its buses by placing the

buses at their high-impedance states. The HOLD

input has a higher priority than the INTR or NMI

Interrupt input.

Figure 2: When DMA Operates

Figure 3: When DMA Does Not Operate

The following sequence of steps takes place for a

DMA transfer in cycle-stealing mode:

 Each time the peripheral is able to transfer a byte

it asserts its DMA request line to the DMA

controller.

 The DMA controller asserts the CPU’s hold

request pin.

 When the CPU control circuitry is able to

suspend execution (at the end of an instruction or

by inserting wait states in T3) it asserts the hold

acknowledge (HOLDA) signal to the DMA

controller and floats the address, data and control

bus signals.

 The DMA controller then puts the memory

address on the address bus, asserts either

MEMR* plus IOW* or MEMW* plus IOR* on

the control bus and asserts the appropriate DMA

acknowledge line to the peripheral.

 The peripheral responds to the DMA

acknowledge signal by reading or writing it’s

data to the data bus

 At the same time the memory responds to the

MEMR*/MEMW* control signal which causes

the data to be read/written directly from/to

memory.

 At the end of the bus cycle the DMA controller

then negates hold request line and the CPU can

continue to execute until the next DMA request.

Figure 4: Block Diagram

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100876 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1449

VHDL

VHDL (VHSIC hardware description language)

VHSIC: very high-speed integrated circuit is a

hardware description language used in electronic

design automation to describe digital and mixed-

signal systems such as field-programmable gate

arrays and integrate circuits.

VHDL is a fairly general-purpose language, and it

doesn't require a simulator on which to run the code.

There are many VHDL compilers, which build

executable binaries. It can read and write files on the

host computer, so a VHDL program can be written

that generates another VHDL program to be

incorporated in the design being developed. Because

of this general-purpose nature, it is possible to use

VHDL to write a testbench that verifies the

functionality of the design using files on the host

computer to define stimuli, interacts with the user,

and compares results with those expected.

It is relatively easy for an inexperienced developer to

produce code that simulates successfully but that

cannot be synthesized into a real device, or is too

large to be practical. One particular pitfall is the

accidental production of transparent latches rather

than D-type flip-flops as storage elements.

VHDL is not a case sensitive language. One can

design hardware in a VHDL IDE (such as Xilinx or

Quartus) to produce the RTL schematic of the desired

circuit. After that, the generated schematic can be

verified using simulation software (such as

ModelSim) which shows the waveforms of inputs

and outputs of the circuit after generating the

appropriate testbench. To generate an appropriate

testbench for a particular circuit or VHDL code, the

inputs have to be defined correctly. For example, for

clock input, a loop process or an iterative statement is

required.

The key advantage of VHDL when used for systems

design is that it allows the behavior of the required

system to be described (modeled) and verified

(simulated) before synthesis tools translate the design

into real hardware (gates and wires). Another benefit

is that VHDL allows the description of a concurrent

system (many parts, each with its own sub-behavior,

working together at the same time). VHDL is a

Dataflow language, unlike procedural computing

languages such as BASIC, C, and assembly code,

which all run sequentially, one instruction at a time.

A final point is that when a VHDL model is

translated into the "gates and wires" that are mapped

onto a programmable logic device such as a CPLD or

FPGA, and then it is the actual hardware being

configured, rather than the VHDL code being

"executed" as if on some form of a processor chip.

There are various types of Modeling in VHDL

Language.

Conclusions

This Project will also provide the knowledge that

how to start and design an Processor or IP This

project will provide knowledge about the DMA 8237

and also give knowledge about the IP core the cost of

IP core is very high in today’s Market so the project

is beneficial for me as far as it will use in many

industries. This design is also used such kind of

modeling style and tool that the digits is also power

aware in generation type DMA’s core.

References

1. Intel 8237 data sheet

2. Design of Two-Dimension DMA Controller in

Media Multi-Processor SoC files

3. Direct Memory Access and DMA-controlled I/O

4. Modern development of DMA

5. Device Driver and DMA Controller Synthesis

6. Asynchronous System Bus Enhancement by

Interrupt and DMA Technique

7. The research of a parallel DMA control

mechanism in DSP

8. DMA control and transmission signal control

9. System-on-Chip (SoC) for Hand-held Compute-

intensive Embedded Systems

10. DMA-Aware Memory Energy Management.

11. Stepwise Refinement of Behavioral VHDL

Specifications by Separation of Synchronization

and

Functionality

12. www.arm.com, www.amba.com, www.intel.com

