
 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100878 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1454

 Digital Signal Processing: A Hardware-Based

Approach

NAVEEN KUMAR,PRAVESH SHARMA,RAHUL SHARMA

(DRONACHARYA COLLEGE OF ENGINEERING)

I. INTRODUCTION

 Teaching Digital Signal Processing (DSP)

has included the utilization of a simulation tool (ST)

for student projects and homework. The leading ST

in academia is MATLAB by MathWorks. MATLAB

is a vector based environment that is conducive to

DSP simulation. Specifically, filter design is

simulated utilizing a C-like code. Students are able

to enter a filter design as a discrete time sequence or

a discrete transfer function. MATLAB has build in

functions that generate deterministic and non-

deterministic signals which can then be inputted to

the designed filter. The output of the filter can then

be analyzed in the time-domain or frequency-domain

utilizing other MATLAB functions. MATLAB,

however, is not conducive to teaching the structural

aspects of filter design.

Simulink is a block based design system that

provides a graphical environment and a customizable

set of block libraries that allows the user to simulate

and test a variety of systems such as digital filters
1
.

Simulink has an extensive DSP library that contains

blocks for implementing everything from signal

generation to adaptive filtering. Even though

Simulink is a more realistic implementation

environment than MATLAB, it is still purely

simulation. Realizing the need for users to be able to

perform real hardware implementations, MathWorks

collaborated with Xilinx to produce System

Generator (SG). SG is a group of extensive libraries

that are included in Simulink. The SG libraries

include hardware based blocks that interact with

traditional Simulink blocks. Therefore, hardware

designs can be synthesized, downloaded to a Xilinx

Field Programmable Gate Array (FPGA) and then

compared in real time to their Simulink simulation

counterparts.

 Simulink IIR Filter Design

 IIR filter design is a standard topic in any DSP

course. Specifically, second order lowpass, highpass,

bandpass and bandstop filters can be implemented

and analyzed. Shown in equation 1, is a well known

transfer function of a second order notch IIR filter
2
.

 H(z) =1 −Kβ(1(1−+2αβ)zz−−11++αz−2z)−2)

 (1)

 In the transfer function of equation 1, αdetermines

the 3-dB bandwidth, βdetermines the center

frequency and K determines the maximum magnitude

value. This filter can be implemented in Simulink in

various ways. One implementation method is the

utilization of a built in IIR filter block where the user

can specify the numerator and denominator

coefficients of the transfer function. Shown in figure

1, however, is a discrete time equation

implementation of the notch IIR filter in equation 1

withα=.1,β=.2, K =.55. In this design, a white noise

sequence is sampled at 10 000 samples per second

and inputted to the notch filter. Its output spectrum is

then analyzed using a fast Fourier transform (FFT)

block.

Figure 1: Simulink Notch Filter

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 10078 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1455

 The notch filter of equation 1 is implemented using

an embedded MATLAB function and delay blocks as

shown in figure 1. This implementation is a direct

implementation of the discrete time equation that

represents the transfer function as shown in equation

2. y[n] =β(1+α)y[n−1]−αy[n−2]+Kx[n]−2

Kβx[n−1]+Kx[n−2] (2)

System Generator IIR Filter Design

The Simulink implementation of the IIR filter as

shown in figure 1, does not take into account

structure.

Shown in figure 2, is a well known structure for IIR

filters is Direct Form II
1
. Direct Form II is a canonic

IIR filter structure wherein the number of delays is

equal to the order of the filter. Canonic structures are

important to minimize hardware components.

Figure 2: Generalized Direct Form II IIR

Structure

A Direct Form II structure that represents the notch

filter in equation 1 can be implemented utilizing

hardware blocks in SG
3
. Specifically, the only SG

hardware blocks that will be needed are delays,

adders and multipliers. Shown in figure 3, is the SG

implementation of the Direct Form II structure.

 Figure 3: SG Implementation of Direct

form IIR Filter

 The Gateway-In blocks are essentially analog to

digital converters (ADC). The Gateway-In blocks

sample and quantize signals from the Simulink

environment so they can be processed by digital SG

hardware blocks. The Gateway-Out block is the

opposite of the Gateway-In block. The Gateway-Out

acts as a digital to analog converter (DAC) for

outputting signals to be analyzed back to the

Simulink environment.

 One distinct difference between the Simulink

structure in figure 2 and the SG structure in figure 3

is the addition of two extra delays (delay2 and

delay3). The structure in figure 2 assumes that

multipliers a1aM and b1-bN have a latency of zero.

In hardware design, however, blocks sometimes have

latency which can throw off the synchronization of

the data pipeline. Since SG multipliers Mult1, Mult2,

Mult3, Mult4 and Mult5 each have a default latency

of 3 samples, it is necessary to add delay2 and delay3

which have a latency of 3 in order to maintain the

integrity of equation 2. Furthermore, unlike the

structure in figure 2, quantization error becomes an

important issue. Specifically, each SG hardware

block of figure 3 has a finite wordlength. Before

setting the fixed number of bits for each block, the

user must have knowledge of the range of data points

being used in the design. Knowledge of the data

range allows for optimal setting of integer and

fractional bits.

 ML402 Board

 After the initial design, the next logical step is to

implement and verify the functionality of the SG

hardware design on an FPGA. The ML402 is a

development platform used for hardware verification

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100878 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1456

that includes a Xilinx Virtex 4 FPGA, push buttons,

slide switches, LEDs and an LCD. Shown in figure

4, is the ML402 board
4
.

Figure 4: ML402 Board

 An important feature of the ML402 is the Xilinx

Virtex 4 FPGA
5
. The Virtex 4 can come in a variety

of device packages. Specifically, one device package

is the Virtex 4 XC4VSX35. The XC4VSX35 is a

DSP focused device that comprises 192 embedded

multipliers, 192 18KB of block RAM and 34,560

logic cells. This is the device that was targeted in

this publication.

 Hardware Analysis and Verification

 Hardware synthesis is the process of translating and

mapping a hardware design into a targeted

architecture. The SG implementation of an IIR filter

as shown in figure 3 must be synthesized to the

XC4VSX35 FPGA of the ML402 board. Shown in

figure 5, is a screen shot of the SG window wherein

synthesis options are selected.

Figure 5: SG Synthesis Options

 In figure 5, it is shown that the compilation device is

selected as the Virtex 4 ML402 board. This selection

will allow Simulink to pass signals and retrieve

signals from the ML402 board during a process

called Hardware Co-Simulation. Hardware Co-

Simulation is a process wherein the synthesized

design is running on the hardware board while the

Simulink simulation model is running on the PC.

This allows the output of the hardware

implementation to be simultaneously compared with

the output of the simulation for verification purposes.

When synthesis is complete, SG provides a report

which details the amount and type of FPGA

resources that were needed to implement the design.

The IIR filter design of figure 3 utilized 20 embedded

multipliers (10% of available multipliers) and 1100

hardware slices (7% of available slices). The design

utilized 20 embedded multipliers instead of the five

shown in the design because of the data wordlength.

For this particular synthesis, the data wordlength was

set at 32 bits for each block. On the Virtex 4,

however, each embedded multiplier can only perform

an 18-bit by 18-bit multiplication. Therefore, in

order to produce a 32-bit by 32-bit multiplication,

four 18-bit multipliers were utilized for each fully

pipelined multiplication. This multiplier pipeline

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 10078 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1457

also increased the minimum latency of each

multiplication to 5 clock cycles. Shown in figure 6, is

the hardware co-simulation setup after a successful

synthesis. The synthesized block is shown on the

bottom wherein it is connected to the Simulink inputs

and outputs in the same manner as the other models.

 After the synthesized block has been connected in

the model, hardware co-simulation can be executed.

During co-simulation, the synthesized design is

downloaded to the target device (ML402 Virtex 4).

The design then runs on the FPGA and

communicates with the host PC via a JTAG cable.

JTAG cable is a standard communication protocol

that is widely used in Xilinx development boards.

JTAG allows Simulink to pass the inputs through the

Gateway-In to the Virtex 4. The Virtex 4 then

performs the notch filter as designed and passes the

output back to Simulink through the Gateway-Out.

This provides a means for comparing the simulation

output with the actual hardware output output.

Shown in figure 7 and 8, are comparisons of the

spectrums of the Simulink white noise input,

Simulink notch filter output and hardware notch filter

output. Figures 7 and 8 have data wordlengths of 8

bits and 12 bits respectively. The spectrum output of

the 8-bit hardware implemented notch filter in figure

7 does not perform as well as the Matlab simulation.

The spectrum output of the 12-bit hardware

implementation notch filter in figure 8, however,

performs similar to the Matlab Simulation.

Figure 7: Filter Output Spectrum (8-bit word)

Figure 8: Filter Output Spectrum

(12-bit word)

 Conclusion

 Teaching and understanding pertinent topics of

Digital Signal Processing can no longer be limited to

computer based simulation. Particularly, analysis of

multirate filtering and filter structures can benefit

from a hardware based approach. Hardware

implementation of fundamental DSP topics

introduces the student to effects that are oblivious to

computer simulation. Specifically, finite wordlength

effects, floating point vs. fixed point number

representation and pipeline synchronization. Xilinx

System Generator provides an easy to use

software/hardware hybrid platform for basic to

advanced hardware designs. Furthermore, students

are not required to study hardware description

 © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100878 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1458

language, which translates to a fluent introduction of

System Generator into the course.

REFERENCES

[1] Sanjit K. Mitra, “Digital Signal Processing: A

Computer Based Approach”, McGraw Hill, 2006.

[2] MathWorks, Simulink,

http://www.mathworks.com/products/simulink/.

[3] Xilinx, System Generator,

http://www.xilinx.com/ise/optional_prod/system_

generator.htm.

[4] Xilinx, Virtex 4,

http://www.xilinx.com/products/silicon_solutions

/fpgas/virtex/virtex4/index.htm.

[5] Xilinx, ML402,

http://www.xilinx.com/products/boards/ml402/ref

erence_designs.htm.

