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Abstract- Data warehousing and on-line analytical 

processing (OLAP) are essential elements of decision 

support, which has increasingly become a focus of the 

database industry. Many commercial products and 

services are now available, and all of the principal 

database management system vendors now have offerings 

in these areas. Decision support places some rather 

different requirements on database technology compared 

to traditional on-line transaction processing applications. 

This paper provides an overview of data warehousing and 

OLAP technologies, with an emphasis on their new 

requirements. We describe back end tools for extracting, 

cleaning and loading data into a data warehouse; 

multidimensional data models typical of OLAP; front end 

client tools for querying and data analysis; server 

extensions for efficient query processing; and tools for 

metadata management and for managing the warehouse. 

In addition to surveying the state of the art, this paper 

also identifies some promising research issues, some of 

which are related to problems that the database research 

community has worked on for years, but others are only 

just beginning to be addressed. This overview is based on 

a tutorial that the authors presented at the VLDB 

Conference, 1996. 

Index Terms- Data warehouse, OLAP, architecture, utility 

tools, Design 

I. INTRODUCTION 

Data warehousing is a collection of decision support 

technologies, aimed at enabling the knowledge worker 

(executive, manager, and analyst) to make better and 

faster decisions. The past three years have seen 

explosive growth, both in the number of products and 

services offered and in the adoption of these 

technologies by industry. According to the META 

Group, the data warehousing market, including 

hardware, database software, and tools, is projected to 

grow from $2 billion in 1995 to $8 billion in 1998. 

Data warehousing technologies have been successfully 

deployed in many industries: manufacturing (for order 

shipment and customer support), retail (for user 

profiling and inventory management), financial 

services (for claims analysis, risk analysis, credit card 

analysis, and fraud detection), transportation (for fleet 

management), telecommunications (for call analysis 

and fraud detection), utilities (for power usage 

analysis), and healthcare (for outcomes analysis). This 

paper presents a roadmap of data warehousing 

technologies, focusing on the special requirements that 

data warehouses place on database management 

systems (DBMSs). 

A data warehouse is a “subject-oriented, integrated, 

time-varying, non-volatile collection of data that is 

used primarily in organizational decision making.”1 

Typically, the data warehouse is maintained separately 

from the organization’s operational databases. There 

are many reasons for doing this. The data warehouse 

supports on-line analytical processing (OLAP), the 

functional and performance requirements of which are 

quite different from those of the on-line transaction 

processing (OLTP) applications traditionally supported 

by the operational databases. 

OLTP applications typically automate clerical data 

processing tasks such as order entry and banking 

transactions that are the bread-and-butter day-to-day 

operations of an organization. These tasks are 

structured and repetitive, and consist of short, atomic, 

isolated transactions. The transactions require detailed, 

up-to-date data, and read or update a few (tens of) 

records accessed typically on their primary keys. 

Operational databases tend to be hundreds of 

megabytes to gigabytes in size. Consistency and 

recoverability of the database are critical, and 

maximizing transaction throughput is the key 

performance metric. Consequently, the database is 

designed to reflect the operational semantics of known 

applications, and in particular, to minimize concurrency 

conflicts. 

Data warehouses, in contrast, are targeted for decision 

support. Historical, summarized and consolidated data 
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is more important than detailed, individual records. 

Since data warehouses contain consolidated data, 

perhaps from several operational databases, over 

potentially long periods of time, they tend to be orders 

of magnitude larger than operational databases; 

enterprise data warehouses are projected to be 

hundreds of gigabytes to terabytes in size. The 

workloads are query intensive with mostly ad hoc, 

complex queries that can access millions of records and 

perform a lot of scans, joins, and aggregates. Query 

throughput and response times are more important than 

transaction throughput. 

To facilitate complex analyses and visualization, the 

data in a warehouse is typically modeled multi-

dimensionally. For example, in a sales data warehouse, 

time of sale, sales district, Sales person, and product 

might be some of the dimensions of interest. Often, 

these dimensions are hierarchical; time of sale may be 

organized as a day-month-quarter-year hierarchy, 

product as a product-category-industry hierarchy. 

Typical OLAP operations include rollup (increasing 

the level of aggregation) and drill-down (decreasing the 

level of aggregation or increasing detail) along one or 

more dimension hierarchies, slice_and_dice (selection 

and projection), and pivot (re-orienting the 

multidimensional view of data). 

Given that operational databases are finely tuned to 

support known OLTP workloads, trying to execute 

complex OLAP queries against the operational 

databases would result in unacceptable performance. 

Furthermore, decision support requires data that might 

be missing from the operational databases; for instance, 

understanding trends or making predictions requires 

historical data, whereas operational databases store 

only current data. Decision support usually requires 

consolidating data from many heterogeneous sources: 

these might include external sources such as stock 

market feeds, in addition to several operational 

databases. The different sources might contain data of 

varying quality, or use inconsistent representations, 

codes and formats, which have to be reconciled. 

Finally, supporting the multidimensional data models 

and operations typical of OLAP requires special data 

organization, access methods, and implementation 

methods, not generally provided by commercial 

DBMSs targeted for OLTP. It is for all these reasons 

that data warehouses are implemented separately from 

operational databases. 

Data warehouses might be implemented on standard or 

extended relational DBMSs, called Relational OLAP 

(ROLAP) servers. These servers assume that data is 

stored in relational databases, and they support 

extensions to SQL and special access and 

implementation methods to efficiently implement the 

multidimensional data model and operations. In 

contrast, multidimensional OLAP (MOLAP) servers 

are servers that directly store multidimensional data in 

special data structures (e.g., arrays) and implement the 

OLAP operations over these special data structures. 

Research in data warehousing is fairly recent, and has 

focused primarily on query processing and view 

maintenance issues. There still are many open research 

problems. Ongoing research efforts are concentrated on 

creating a benchmark for combined OLTP and OLAP 

systems, which is derived from real customer systems 

and data, multi-tenancy for in-memory column data 

bases as well as optimizations around the delta merge 

process. 

II. ARCHITECTURE AND END-TO-END PROCESS 

Figure 1 shows a typical data warehousing architecture. 

 

Figure 1. Data Warehousing Architecture 

It includes tools for extracting data from multiple 

operational databases and external sources; for 

cleaning, transforming and integrating this data; for 

loading data into the data warehouse; and for 

periodically refreshing the warehouse to reflect updates 

at the sources and to purge data from the warehouse, 

perhaps onto slower archival storage. In addition to the 

main warehouse, there may be several departmental 

data marts. Data in the warehouse and data marts is 

stored and managed by one or more warehouse servers, 

which present multidimensional views of data to a 
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variety of front end tools: query tools, report writers, 

analysis tools, and data mining tools. Finally, there is a 

repository for storing and managing metadata, and 

tools for monitoring and administering the 

warehousing system. 

The warehouse may be distributed for load balancing, 

scalability, and higher availability. In such a distributed 

architecture, the metadata repository is usually 

replicated with each fragment of the warehouse, and 

the entire warehouse is administered centrally. An 

alternative architecture, implemented for expediency 

when it may be too expensive to construct a single 

logically integrated enterprise warehouse, is a 

federation of warehouses or data marts, each with its 

own repository and decentralized administration. 

Designing and rolling out a data warehouse is a 

complex process, consisting of the following activities: 

• Define the architecture, do capacity planning, and 

select the storage servers, database and OLAP 

servers, and tools. 

• Integrate the servers, storage, and client tools. 

• Design the warehouse schema and views. 

• Define the physical warehouse organization, data 

placement, partitioning, and access methods. 

• Connect the sources using gateways, ODBC 

drivers, or other wrappers. 

• Design and implement scripts for data extraction, 

cleaning, transformation, load, and refresh. 

• Populate the repository with the schema and view. 

• Definitions, scripts, and other metadata. 

• Design and implement end-user applications. 

• Roll out the warehouse and applications. 

III. BACK END TOOLS AND UTILITIES 

Data warehousing systems use a variety of data 

extraction and cleaning tools, and load and refresh 

utilities for populating warehouses. Data extraction 

from “foreign” sources is usually implemented via 

gateways and standard interfaces (such as Information 

Builders EDA/SQL, ODBC, Oracle Open Connect, 

Sybase Enterprise Connect, and Informix Enterprise 

Gateway). 

Data Cleaning 

Since a data warehouse is used for decision making, it 

is important that the data in the warehouse be correct. 

However, since large volumes of data from multiple 

sources are involved, there is a high probability of 

errors and anomalies in the data.. Therefore, tools that 

help to detect data anomalies and correct them can have 

a high payoff. Some examples where data cleaning 

becomes necessary are: inconsistent field lengths, 

inconsistent descriptions, inconsistent value 

assignments, missing entries and violation of integrity 

constraints. Not surprisingly, optional fields in data 

entry forms are significant sources of inconsistent data. 

There are three related, but somewhat different, classes 

of data cleaning tools. Data migration tools allow 

simple transformation rules to be specified; e.g., 

“replace the string gender by sex”. Warehouse Manager 

from Prism is an example of a popular tool of this kind. 

Data scrubbing tools use domain-specific knowledge 

(e.g., postal addresses) to do the scrubbing of data. 

They often exploit parsing and fuzzy matching 

techniques to accomplish cleaning from multiple 

sources. Some tools make it possible to specify the 

“relative cleanliness” of sources. Tools such as 

Integrity and Trillium fall in this category. Data 

auditing tools make it possible to discover rules and 

relationships (or to signal violation of stated rules) by 

scanning data. Thus, such tools may be considered 

variants of data mining tools. For example, such a tool 

may discover a suspicious pattern (based on statistical 

analysis) that a certain car dealer has never received 

any complaints. 

Load 

After extracting, cleaning and transforming, data must 

be loaded into the warehouse. Additional preprocessing 

may still be required: checking integrity constraints; 

sorting; summarization, aggregation and other 

computation to build the derived tables stored in the 

warehouse; building indices and other access paths; and 

partitioning to multiple target storage areas. Typically, 

batch load utilities are used for this purpose. In addition 

to populating the warehouse, a load utility must allow 

the system administrator to monitor status, to cancel, 

suspend and resume a load, and to restart after failure 

with no loss of data integrity. 

The load utilities for data warehouses have to deal with 

much larger data volumes than for operational 

databases. There is only a small time window (usually 

at night) when the warehouse can be taken offline to 

refresh it. Sequential loads can take a very long time, 

e.g., loading a terabyte of data can take weeks and 

months! Hence, pipelined and partitioned parallelism is 

typically exploited. Doing a full load has the advantage 
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that it can be treated as a long batch transaction that 

builds up a new database. While it is in progress, the 

current database can still support queries; when the 

load transaction commits, the current database is 

replaced with the new one. Using periodic checkpoints 

ensures that if a failure occurs during the load, the 

process can restart from the last checkpoint. 

However, even using parallelism, a full load may still 

take too long. Most commercial utilities (e.g., Red 

Brick Table 

Management Utility) use incremental loading during 

refresh to reduce the volume of data that has to be 

incorporated  into the warehouse. Only the updated 

tuples are inserted. However, the load process now is 

harder to manage. The incremental load conflicts with 

ongoing queries, so it is treated as a sequence of shorter 

transactions (which commit periodically, e.g., after 

every 1000 records or every few seconds), but now this 

sequence of transactions has to be coordinated to 

ensure consistency of derived data and indices with the 

base data. 

 

Refresh 

Refreshing a warehouse consists in propagating 

updates on source data to correspondingly update the 

base data and derived data stored in the warehouse. 

There are two sets of issues to consider: when to 

refresh, and how to refresh. Usually, the warehouse is 

refreshed periodically (e.g., daily or weekly). Only if 

some OLAP queries need current data (e.g., up to the 

minute stock quotes), is it necessary to propagate every 

update. The refresh policy is set by the warehouse 

administrator, depending on user needs and traffic, and 

may be different for different sources. 

Refresh techniques may also depend on the 

characteristics of the source and the capabilities of the 

database servers. 

Extracting an entire source file or database is usually 

too expensive, but may be the only choice for legacy 

data sources. Most contemporary database systems 

provide replication servers that support incremental 

techniques for propagating updates from a primary 

database to one or more replicas. Such replication 

servers can be used to incrementally refresh a 

warehouse when the sources change. There are two 

basic replication techniques: data shipping and 

transaction shipping. 

In data shipping (e.g., used in the Oracle Replication 

Server, Praxis Omni Replicator), a table in the 

warehouse is treated as a remote snapshot of a table in 

the source database. After row triggers are used to 

update a snapshot log table whenever the source table 

changes; and an automatic refresh schedule (or a 

manual refresh procedure) is then set up to propagate 

the updated data to the remote snapshot. 

In transaction shipping (e.g., used in the Sybase 

Replication Server and Microsoft SQL Server), the 

regular transaction log is used, instead of triggers and a 

special snapshot log table. At the source site, the 

transaction log is sniffed to detect updates on replicated 

tables, and those log records are transferred to a 

replication server, which packages up the 

corresponding transactions to update the replicas. 

Transaction shipping has the advantage that it does not 

require triggers, which can increase the workload on 

the operational source databases. However, it cannot 

always be used easily across DBMSs from different 

vendors, because there are no standard APIs for 

accessing the transaction log.  

Such replication servers have been used for refreshing 

data warehouses. However, the refresh cycles have to 

be properly chosen so that the volume of data does not 

overwhelm the incremental load utility. 

In addition to propagating changes to the base data in 

the warehouse, the derived data also has to be updated 

correspondingly. The problem of constructing logically 

correct updates for incrementally updating derived data 

(materialized views) has been the subject of much 

research. For data warehousing, the most significant 

classes of derived data are summary tables, single-table 

indices and join indices. 

IV. CONCEPTUAL MODEL AND FRONT END 

TOOLS 

A popular conceptual model that influences the front-

end tools, database design, and the query engines for 

OLAP is the multidimensional view of data in the 

warehouse. In a multidimensional data model, there is a 

set of numeric measures that are the objects of analysis. 

Examples of such measures are sales, budget, revenue, 

inventory, ROI (return on investment). Each of the 

numeric measures depends on a set of dimensions, 

which provide the context for the measure. 

For example, the dimensions associated with a sale 

amount can be the city, product name, and the date 
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when the sale was made. The dimensions together are 

assumed to uniquely determine the measure. Thus, the 

multidimensional data views a measure as a value in 

the multidimensional space of dimensions. Each 

dimension is described by a set of attributes. For 

example, the Product dimension may consist of four 

attributes: the category and the industry of the product, 

year of its introduction, and the average profit margin. 

For example, the soda Surge belongs to the category 

beverage and the food industry, was introduced in 

1996, and may have an average profit margin of 80%. 

The attributes of a dimension may be related via a 

hierarchy of relationships. In the above example, the 

product name is related to its category and the industry 

attribute through such a hierarchical relationship. 

 
Figure 2. Multidimensional data model 

Another distinctive feature of the conceptual model for 

OLAP is its stress on aggregation of measures by one 

or more dimensions as one of the key operations; e.g., 

computing and ranking the total sales by each county 

(or by each year). Other popular operations include 

comparing two measures (e.g., sales and budget) 

aggregated by the same dimensions. Time is a 

dimension that is of particular significance to decision 

support (e.g., trend analysis). Often, it is desirable to 

have built-in knowledge of calendars and other aspects 

of the time dimension. 

Front End Tools 

The multidimensional data model grew out of the view 

of business data popularized by PC spreadsheet 

programs that were extensively used by business 

analysts. The spreadsheet is still the most compelling 

front-end application for OLAP. The challenge in 

supporting a query environment for OLAP can be 

crudely summarized as that of supporting spreadsheet 

operations efficiently over large multi-gigabyte 

databases. 

We shall briefly discuss some of the popular operations 

that are supported by the multidimensional spreadsheet 

applications. One such operation is pivoting. Consider 

the multidimensional schema of Figure 2 represented in 

a spreadsheet where each row corresponds to a sale. Let 

there be one column for each dimension and an extra 

column that represents the amount of sale. The simplest 

view of pivoting is that it selects two dimensions that 

are used to aggregate a measure, e.g., sales in the above 

example. The aggregated values are often displayed in 

a grid where each value in the (x, y) coordinate 

corresponds to the aggregated value of the measure 

when the first dimension has the value x and the second 

dimension has the value y. Thus, in our example, if the 

selected dimensions are city and year, then the x-axis 

may represent all values of city and the y-axis may 

represent the years. The point (x, y) will represent the 

aggregated sales for city x in the year y. Thus, what 

were values in the original spreadsheets have now 

become row and column headers in the pivoted 

spreadsheet. 

 Other operators related to pivoting are rollup or drill-

down. Rollup corresponds to taking the current data 

object and doing a further group-by on one of the 

dimensions. Thus, it is possible to roll-up the sales data, 

perhaps already aggregated on city, additionally by 

product. The drill-down operation is the converse of 

rollup. Slice_and_dice corresponds to reducing the 

dimensionality of the data, i.e., taking a projection of 

the data on a subset of dimensions for selected values 

of the other dimensions. For example, we can 

slice_and_dice sales data for a specific product to 

create a table that consists of the dimensions city and 

the day of sale. The other popular operators include 

ranking (sorting), selections and defining computed 

attributes. 

Although the multidimensional spreadsheet has 

attracted a lot of interest since it empowers the end user 

to analyze business data, this has not replaced 

traditional analysis by means of a managed query 

environment. These environments use stored 

procedures and predefined complex queries to provide 

packaged analysis tools. Such tools often make it 

possible for the end-user to query in terms of domain-

specific business data. These applications often use raw 

data access tools and optimize the access patterns 

depending on the back end database server. In addition, 

there are query environments (e.g., Microsoft Access) 

that help build ad hoc SQL queries by “pointing-and-
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clicking”. Finally, there are a variety of data mining 

tools that are often used as front end tools to data 

warehouses. 

V. DATABASE DESIGN METHODOLOGY 

The multidimensional data model described above is 

implemented directly by MOLAP servers. We will 

describe these briefly in the next section. However, 

when a relational ROLAP server is used, the 

multidimensional model and its operations have to be 

mapped into relations and SQL queries. In this section, 

we describe the design of relational database schemas 

that reflect the multidimensional views of data. 

Entity Relationship diagrams and normalization 

techniques are popularly used for database design in 

OLTP environments. However, the database designs 

recommended by ER diagrams are inappropriate for 

decision support systems where efficiency in querying 

and in loading data (including incremental loads) are 

important. 

Most data warehouses use a star schema to represent 

the multidimensional data model. The database consists 

of a single fact table and a single table for each 

dimension. Each tuple in the fact table consists of a 

pointer (foreign key – often uses a generated key for 

efficiency) to each of the dimensions that provide its 

multidimensional coordinates, and stores the numeric 

measures for those coordinates. Each dimension table 

consists of columns that correspond to attributes of the 

dimension. Figure 3 shows an example of a star 

schema. 

 
Figure 3. A Star Schema 

Star schemas do not explicitly provide support for 

attribute hierarchies. Snowflake schemas provide a 

refinement of star schemas where the dimensional 

hierarchy is explicitly represented by normalizing the 

dimension tables, as shown in Figure 4. This leads to 

advantages in maintaining the dimension tables. 

However, the de-normalized structure of the 

dimensional tables in star schemas may be more 

appropriate for browsing the dimensions. 

Fact constellations are examples of more complex 

structures in which multiple fact tables share 

dimensional tables. For example, projected expense and 

the actual expense may form a fact constellation since 

they share many dimensions. 

 
Figure 4. A Snowflake Schema 

In addition to the fact and dimension tables, data 

warehouses store selected summary tables containing 

pre-aggregated data. In the simplest cases, the pre-

aggregated data corresponds to aggregating the fact 

table on one or more selected dimensions. Such pre-

aggregated summary data can be represented in the 

database in at least two ways. Let us consider the 

example of a summary table that has total sales by 

product by year in the context of the star schema of 

Figure 3. We can represent such a summary table by a 

separate fact table which shares the dimension Product 

and also a separate shrunken dimension table for time, 

which consists of only the attributes of the dimension 

that makes sense for the summary table (i.e., year). 

Alternatively, we can represent the summary table by 

encoding the aggregated tuples in the same fact table 

and the same dimension tables without adding new 

tables. 
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This may be accomplished by adding a new level field 

to each dimension and using nulls: We can encode a 

day, a month or a year in the Date dimension table as 

follows: (id0, 0, 22, 01, 1960) represents a record for 

Jan 22, 1960, (id1, 1, NULL, 01, 1960) represents the 

month Jan 1960 and (id2, 2, NULL, NULL, 1960) 

represents the year 1960. The second attribute 

represents the new attribute level: 0 for days, 1 for 

months, 2 for years. In the fact table, a record 

containing the foreign key id2 represents the 

aggregated sales for a Product in the year 1960. The 

latter method, while reducing the number of tables, is 

often a source of operational errors since the level field 

needs be carefully interpreted. 

 

VI. METADATA AND WAREHOUSE 

MANAGEMENT 

Since a data warehouse reflects the business model of 

an enterprise, an essential element of a warehousing 

architecture is metadata management. Many different 

kinds of metadata have to be managed. Administrative 

metadata includes all of the information necessary for 

setting up and using a warehouse: descriptions of the 

source databases, back-end and front-end tools; 

definitions of the warehouse schema, derived data, 

dimensions and hierarchies, predefined queries and 

reports; data mart locations and contents; physical 

organization such as data partitions; data extraction, 

cleaning, and transformation rules; data refresh and 

purging policies; and user profiles, user authorization 

and access control policies. Business metadata includes 

business terms and definitions, ownership of the data, 

and charging policies. Operational metadata includes 

information that is collected during the operation of the 

warehouse: the lineage of migrated and transformed 

data; the currency of data in the warehouse (active, 

archived or purged); and monitoring information such 

as usage statistics, error reports, and audit trails. 

Often, a metadata repository is used to store and 

manage all the metadata associated with the 

warehouse. The repository enables the sharing of 

metadata among tools and processes for designing, 

setting up, using, operating, and administering a 

warehouse. Commercial examples include Platinum 

Repository and Prism Directory Manager. 

Creating and managing a warehousing system is hard. 

Many different classes of tools are available to 

facilitate different aspects of the process described in 

Section 2. Development tools are used to design and 

edit schemas, views, scripts, rules, queries, and reports. 

Planning and analysis tools are used for what-if 

scenarios such as understanding the impact of schema 

changes or refresh rates, and for doing capacity 

planning. Warehouse management tools (e.g., HP 

Intelligent Warehouse Advisor, IBM Data Hub, Prism 

Warehouse Manager) are used for monitoring a 

warehouse, reporting statistics and making suggestions 

to the administrator: usage of partitions and summary 

tables, query execution times, types and frequencies of 

drill downs or rollups, which users or groups request 

which data, peak and average workloads over time, 

exception reporting, detecting runaway queries, and 

other quality of service metrics. System and network 

management tools (e.g., HP OpenView, IBM NetView, 

and Tivoli) are used to measure traffic between clients 

and servers, between warehouse servers and 

operational databases, and so on. Finally, only recently 

have workflow management tools been considered for 

managing the extract scrub- transform-load-refresh 

process. The steps of the process can invoke 

appropriate scripts stored in the repository, and can be 

launched periodically, on demand, or when specified 

events occur. The workflow engine ensures successful 

completion of the process, persistently records the 

success or failure of each step, and provides failure 

recovery with partial roll back, retry, or roll forward. 

VII. RESEARCH ISSUES 

Data cleaning is a problem that is reminiscent of 

heterogeneous data integration, a problem that has been 

studied for many years. But here the emphasis is on 

data inconsistencies instead of schema inconsistencies. 

Data cleaning, as we indicated, is also closely related to 

data mining, with the objective of suggesting possible 

inconsistencies. 

The problem of physical design of data warehouses 

should rekindle interest in the well-known problems of 

index selection, data partitioning and the selection of 

materialized views. However, while revisiting these 

problems, it is important to recognize the special role 

played by aggregation. 

Decision support systems already provide the field of 

query optimization with increasing challenges in the 

traditional questions of selectivity estimation and cost-

based algorithms that can exploit transformations 

without exploding the search space (there are plenty of 

transformations, but few reliable cost estimation 
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techniques and few smart cost-based algorithms/search 

strategies to exploit them). Partitioning the 

functionality of the query engine between the 

middleware (e.g., ROLAP layer) and the back end 

server is also an interesting problem. 

The management of data warehouses also presents new 

challenges. Detecting runaway queries, and managing 

and scheduling resources are problems that are 

important but have not been well solved. Some work 

has been done on the logical correctness of 

incrementally updating materialized views, but the 

performance, scalability, and recoverability properties 

of these techniques have not been investigated. In 

particular, failure and check pointing issues in load and 

refresh in the presence of many indices and 

materialized views needs further research. The 

adaptation and use of workflow technology might help, 

but this needs further investigation. 
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