
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100908 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1236

An Overview of Data Warehousing and

OLAP Technology

Sweta Singh, Parul Malhan

Student, B.Tech, Department of Electronics and Computers Engineering

 Dronacharya College of Engineering, Gurgaon, India

Abstract- Data warehousing and on-line analytical

processing (OLAP) are essential elements of decision

support, which has increasingly become a focus of the

database industry. Many commercial products and

services are now available, and all of the principal

database management system vendors now have offerings

in these areas. Decision support places some rather

different requirements on database technology compared

to traditional on-line transaction processing applications.

This paper provides an overview of data warehousing and

OLAP technologies, with an emphasis on their new

requirements. We describe back end tools for extracting,

cleaning and loading data into a data warehouse;

multidimensional data models typical of OLAP; front end

client tools for querying and data analysis; server

extensions for efficient query processing; and tools for

metadata management and for managing the warehouse.

In addition to surveying the state of the art, this paper

also identifies some promising research issues, some of

which are related to problems that the database research

community has worked on for years, but others are only

just beginning to be addressed. This overview is based on

a tutorial that the authors presented at the VLDB

Conference, 1996.

Index Terms- Data warehouse, OLAP, architecture, utility

tools, Design

I. INTRODUCTION

Data warehousing is a collection of decision support

technologies, aimed at enabling the knowledge worker

(executive, manager, and analyst) to make better and

faster decisions. The past three years have seen

explosive growth, both in the number of products and

services offered and in the adoption of these

technologies by industry. According to the META

Group, the data warehousing market, including

hardware, database software, and tools, is projected to

grow from $2 billion in 1995 to $8 billion in 1998.

Data warehousing technologies have been successfully

deployed in many industries: manufacturing (for order

shipment and customer support), retail (for user

profiling and inventory management), financial

services (for claims analysis, risk analysis, credit card

analysis, and fraud detection), transportation (for fleet

management), telecommunications (for call analysis

and fraud detection), utilities (for power usage

analysis), and healthcare (for outcomes analysis). This

paper presents a roadmap of data warehousing

technologies, focusing on the special requirements that

data warehouses place on database management

systems (DBMSs).

A data warehouse is a “subject-oriented, integrated,

time-varying, non-volatile collection of data that is

used primarily in organizational decision making.”1

Typically, the data warehouse is maintained separately

from the organization’s operational databases. There

are many reasons for doing this. The data warehouse

supports on-line analytical processing (OLAP), the

functional and performance requirements of which are

quite different from those of the on-line transaction

processing (OLTP) applications traditionally supported

by the operational databases.

OLTP applications typically automate clerical data

processing tasks such as order entry and banking

transactions that are the bread-and-butter day-to-day

operations of an organization. These tasks are

structured and repetitive, and consist of short, atomic,

isolated transactions. The transactions require detailed,

up-to-date data, and read or update a few (tens of)

records accessed typically on their primary keys.

Operational databases tend to be hundreds of

megabytes to gigabytes in size. Consistency and

recoverability of the database are critical, and

maximizing transaction throughput is the key

performance metric. Consequently, the database is

designed to reflect the operational semantics of known

applications, and in particular, to minimize concurrency

conflicts.

Data warehouses, in contrast, are targeted for decision

support. Historical, summarized and consolidated data

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100908 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1237

is more important than detailed, individual records.

Since data warehouses contain consolidated data,

perhaps from several operational databases, over

potentially long periods of time, they tend to be orders

of magnitude larger than operational databases;

enterprise data warehouses are projected to be

hundreds of gigabytes to terabytes in size. The

workloads are query intensive with mostly ad hoc,

complex queries that can access millions of records and

perform a lot of scans, joins, and aggregates. Query

throughput and response times are more important than

transaction throughput.

To facilitate complex analyses and visualization, the

data in a warehouse is typically modeled multi-

dimensionally. For example, in a sales data warehouse,

time of sale, sales district, Sales person, and product

might be some of the dimensions of interest. Often,

these dimensions are hierarchical; time of sale may be

organized as a day-month-quarter-year hierarchy,

product as a product-category-industry hierarchy.

Typical OLAP operations include rollup (increasing

the level of aggregation) and drill-down (decreasing the

level of aggregation or increasing detail) along one or

more dimension hierarchies, slice_and_dice (selection

and projection), and pivot (re-orienting the

multidimensional view of data).

Given that operational databases are finely tuned to

support known OLTP workloads, trying to execute

complex OLAP queries against the operational

databases would result in unacceptable performance.

Furthermore, decision support requires data that might

be missing from the operational databases; for instance,

understanding trends or making predictions requires

historical data, whereas operational databases store

only current data. Decision support usually requires

consolidating data from many heterogeneous sources:

these might include external sources such as stock

market feeds, in addition to several operational

databases. The different sources might contain data of

varying quality, or use inconsistent representations,

codes and formats, which have to be reconciled.

Finally, supporting the multidimensional data models

and operations typical of OLAP requires special data

organization, access methods, and implementation

methods, not generally provided by commercial

DBMSs targeted for OLTP. It is for all these reasons

that data warehouses are implemented separately from

operational databases.

Data warehouses might be implemented on standard or

extended relational DBMSs, called Relational OLAP

(ROLAP) servers. These servers assume that data is

stored in relational databases, and they support

extensions to SQL and special access and

implementation methods to efficiently implement the

multidimensional data model and operations. In

contrast, multidimensional OLAP (MOLAP) servers

are servers that directly store multidimensional data in

special data structures (e.g., arrays) and implement the

OLAP operations over these special data structures.

Research in data warehousing is fairly recent, and has

focused primarily on query processing and view

maintenance issues. There still are many open research

problems. Ongoing research efforts are concentrated on

creating a benchmark for combined OLTP and OLAP

systems, which is derived from real customer systems

and data, multi-tenancy for in-memory column data

bases as well as optimizations around the delta merge

process.

II. ARCHITECTURE AND END-TO-END PROCESS

Figure 1 shows a typical data warehousing architecture.

Figure 1. Data Warehousing Architecture

It includes tools for extracting data from multiple

operational databases and external sources; for

cleaning, transforming and integrating this data; for

loading data into the data warehouse; and for

periodically refreshing the warehouse to reflect updates

at the sources and to purge data from the warehouse,

perhaps onto slower archival storage. In addition to the

main warehouse, there may be several departmental

data marts. Data in the warehouse and data marts is

stored and managed by one or more warehouse servers,

which present multidimensional views of data to a

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100908 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1238

variety of front end tools: query tools, report writers,

analysis tools, and data mining tools. Finally, there is a

repository for storing and managing metadata, and

tools for monitoring and administering the

warehousing system.

The warehouse may be distributed for load balancing,

scalability, and higher availability. In such a distributed

architecture, the metadata repository is usually

replicated with each fragment of the warehouse, and

the entire warehouse is administered centrally. An

alternative architecture, implemented for expediency

when it may be too expensive to construct a single

logically integrated enterprise warehouse, is a

federation of warehouses or data marts, each with its

own repository and decentralized administration.

Designing and rolling out a data warehouse is a

complex process, consisting of the following activities:

• Define the architecture, do capacity planning, and

select the storage servers, database and OLAP

servers, and tools.

• Integrate the servers, storage, and client tools.

• Design the warehouse schema and views.

• Define the physical warehouse organization, data

placement, partitioning, and access methods.

• Connect the sources using gateways, ODBC

drivers, or other wrappers.

• Design and implement scripts for data extraction,

cleaning, transformation, load, and refresh.

• Populate the repository with the schema and view.

• Definitions, scripts, and other metadata.

• Design and implement end-user applications.

• Roll out the warehouse and applications.

III. BACK END TOOLS AND UTILITIES

Data warehousing systems use a variety of data

extraction and cleaning tools, and load and refresh

utilities for populating warehouses. Data extraction

from “foreign” sources is usually implemented via

gateways and standard interfaces (such as Information

Builders EDA/SQL, ODBC, Oracle Open Connect,

Sybase Enterprise Connect, and Informix Enterprise

Gateway).

Data Cleaning

Since a data warehouse is used for decision making, it

is important that the data in the warehouse be correct.

However, since large volumes of data from multiple

sources are involved, there is a high probability of

errors and anomalies in the data.. Therefore, tools that

help to detect data anomalies and correct them can have

a high payoff. Some examples where data cleaning

becomes necessary are: inconsistent field lengths,

inconsistent descriptions, inconsistent value

assignments, missing entries and violation of integrity

constraints. Not surprisingly, optional fields in data

entry forms are significant sources of inconsistent data.

There are three related, but somewhat different, classes

of data cleaning tools. Data migration tools allow

simple transformation rules to be specified; e.g.,

“replace the string gender by sex”. Warehouse Manager

from Prism is an example of a popular tool of this kind.

Data scrubbing tools use domain-specific knowledge

(e.g., postal addresses) to do the scrubbing of data.

They often exploit parsing and fuzzy matching

techniques to accomplish cleaning from multiple

sources. Some tools make it possible to specify the

“relative cleanliness” of sources. Tools such as

Integrity and Trillium fall in this category. Data

auditing tools make it possible to discover rules and

relationships (or to signal violation of stated rules) by

scanning data. Thus, such tools may be considered

variants of data mining tools. For example, such a tool

may discover a suspicious pattern (based on statistical

analysis) that a certain car dealer has never received

any complaints.

Load

After extracting, cleaning and transforming, data must

be loaded into the warehouse. Additional preprocessing

may still be required: checking integrity constraints;

sorting; summarization, aggregation and other

computation to build the derived tables stored in the

warehouse; building indices and other access paths; and

partitioning to multiple target storage areas. Typically,

batch load utilities are used for this purpose. In addition

to populating the warehouse, a load utility must allow

the system administrator to monitor status, to cancel,

suspend and resume a load, and to restart after failure

with no loss of data integrity.

The load utilities for data warehouses have to deal with

much larger data volumes than for operational

databases. There is only a small time window (usually

at night) when the warehouse can be taken offline to

refresh it. Sequential loads can take a very long time,

e.g., loading a terabyte of data can take weeks and

months! Hence, pipelined and partitioned parallelism is

typically exploited. Doing a full load has the advantage

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100908 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1239

that it can be treated as a long batch transaction that

builds up a new database. While it is in progress, the

current database can still support queries; when the

load transaction commits, the current database is

replaced with the new one. Using periodic checkpoints

ensures that if a failure occurs during the load, the

process can restart from the last checkpoint.

However, even using parallelism, a full load may still

take too long. Most commercial utilities (e.g., Red

Brick Table

Management Utility) use incremental loading during

refresh to reduce the volume of data that has to be

incorporated into the warehouse. Only the updated

tuples are inserted. However, the load process now is

harder to manage. The incremental load conflicts with

ongoing queries, so it is treated as a sequence of shorter

transactions (which commit periodically, e.g., after

every 1000 records or every few seconds), but now this

sequence of transactions has to be coordinated to

ensure consistency of derived data and indices with the

base data.

Refresh

Refreshing a warehouse consists in propagating

updates on source data to correspondingly update the

base data and derived data stored in the warehouse.

There are two sets of issues to consider: when to

refresh, and how to refresh. Usually, the warehouse is

refreshed periodically (e.g., daily or weekly). Only if

some OLAP queries need current data (e.g., up to the

minute stock quotes), is it necessary to propagate every

update. The refresh policy is set by the warehouse

administrator, depending on user needs and traffic, and

may be different for different sources.

Refresh techniques may also depend on the

characteristics of the source and the capabilities of the

database servers.

Extracting an entire source file or database is usually

too expensive, but may be the only choice for legacy

data sources. Most contemporary database systems

provide replication servers that support incremental

techniques for propagating updates from a primary

database to one or more replicas. Such replication

servers can be used to incrementally refresh a

warehouse when the sources change. There are two

basic replication techniques: data shipping and

transaction shipping.

In data shipping (e.g., used in the Oracle Replication

Server, Praxis Omni Replicator), a table in the

warehouse is treated as a remote snapshot of a table in

the source database. After row triggers are used to

update a snapshot log table whenever the source table

changes; and an automatic refresh schedule (or a

manual refresh procedure) is then set up to propagate

the updated data to the remote snapshot.

In transaction shipping (e.g., used in the Sybase

Replication Server and Microsoft SQL Server), the

regular transaction log is used, instead of triggers and a

special snapshot log table. At the source site, the

transaction log is sniffed to detect updates on replicated

tables, and those log records are transferred to a

replication server, which packages up the

corresponding transactions to update the replicas.

Transaction shipping has the advantage that it does not

require triggers, which can increase the workload on

the operational source databases. However, it cannot

always be used easily across DBMSs from different

vendors, because there are no standard APIs for

accessing the transaction log.

Such replication servers have been used for refreshing

data warehouses. However, the refresh cycles have to

be properly chosen so that the volume of data does not

overwhelm the incremental load utility.

In addition to propagating changes to the base data in

the warehouse, the derived data also has to be updated

correspondingly. The problem of constructing logically

correct updates for incrementally updating derived data

(materialized views) has been the subject of much

research. For data warehousing, the most significant

classes of derived data are summary tables, single-table

indices and join indices.

IV. CONCEPTUAL MODEL AND FRONT END

TOOLS

A popular conceptual model that influences the front-

end tools, database design, and the query engines for

OLAP is the multidimensional view of data in the

warehouse. In a multidimensional data model, there is a

set of numeric measures that are the objects of analysis.

Examples of such measures are sales, budget, revenue,

inventory, ROI (return on investment). Each of the

numeric measures depends on a set of dimensions,

which provide the context for the measure.

For example, the dimensions associated with a sale

amount can be the city, product name, and the date

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100908 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1240

when the sale was made. The dimensions together are

assumed to uniquely determine the measure. Thus, the

multidimensional data views a measure as a value in

the multidimensional space of dimensions. Each

dimension is described by a set of attributes. For

example, the Product dimension may consist of four

attributes: the category and the industry of the product,

year of its introduction, and the average profit margin.

For example, the soda Surge belongs to the category

beverage and the food industry, was introduced in

1996, and may have an average profit margin of 80%.

The attributes of a dimension may be related via a

hierarchy of relationships. In the above example, the

product name is related to its category and the industry

attribute through such a hierarchical relationship.

Figure 2. Multidimensional data model

Another distinctive feature of the conceptual model for

OLAP is its stress on aggregation of measures by one

or more dimensions as one of the key operations; e.g.,

computing and ranking the total sales by each county

(or by each year). Other popular operations include

comparing two measures (e.g., sales and budget)

aggregated by the same dimensions. Time is a

dimension that is of particular significance to decision

support (e.g., trend analysis). Often, it is desirable to

have built-in knowledge of calendars and other aspects

of the time dimension.

Front End Tools

The multidimensional data model grew out of the view

of business data popularized by PC spreadsheet

programs that were extensively used by business

analysts. The spreadsheet is still the most compelling

front-end application for OLAP. The challenge in

supporting a query environment for OLAP can be

crudely summarized as that of supporting spreadsheet

operations efficiently over large multi-gigabyte

databases.

We shall briefly discuss some of the popular operations

that are supported by the multidimensional spreadsheet

applications. One such operation is pivoting. Consider

the multidimensional schema of Figure 2 represented in

a spreadsheet where each row corresponds to a sale. Let

there be one column for each dimension and an extra

column that represents the amount of sale. The simplest

view of pivoting is that it selects two dimensions that

are used to aggregate a measure, e.g., sales in the above

example. The aggregated values are often displayed in

a grid where each value in the (x, y) coordinate

corresponds to the aggregated value of the measure

when the first dimension has the value x and the second

dimension has the value y. Thus, in our example, if the

selected dimensions are city and year, then the x-axis

may represent all values of city and the y-axis may

represent the years. The point (x, y) will represent the

aggregated sales for city x in the year y. Thus, what

were values in the original spreadsheets have now

become row and column headers in the pivoted

spreadsheet.

 Other operators related to pivoting are rollup or drill-

down. Rollup corresponds to taking the current data

object and doing a further group-by on one of the

dimensions. Thus, it is possible to roll-up the sales data,

perhaps already aggregated on city, additionally by

product. The drill-down operation is the converse of

rollup. Slice_and_dice corresponds to reducing the

dimensionality of the data, i.e., taking a projection of

the data on a subset of dimensions for selected values

of the other dimensions. For example, we can

slice_and_dice sales data for a specific product to

create a table that consists of the dimensions city and

the day of sale. The other popular operators include

ranking (sorting), selections and defining computed

attributes.

Although the multidimensional spreadsheet has

attracted a lot of interest since it empowers the end user

to analyze business data, this has not replaced

traditional analysis by means of a managed query

environment. These environments use stored

procedures and predefined complex queries to provide

packaged analysis tools. Such tools often make it

possible for the end-user to query in terms of domain-

specific business data. These applications often use raw

data access tools and optimize the access patterns

depending on the back end database server. In addition,

there are query environments (e.g., Microsoft Access)

that help build ad hoc SQL queries by “pointing-and-

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100908 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1241

clicking”. Finally, there are a variety of data mining

tools that are often used as front end tools to data

warehouses.

V. DATABASE DESIGN METHODOLOGY

The multidimensional data model described above is

implemented directly by MOLAP servers. We will

describe these briefly in the next section. However,

when a relational ROLAP server is used, the

multidimensional model and its operations have to be

mapped into relations and SQL queries. In this section,

we describe the design of relational database schemas

that reflect the multidimensional views of data.

Entity Relationship diagrams and normalization

techniques are popularly used for database design in

OLTP environments. However, the database designs

recommended by ER diagrams are inappropriate for

decision support systems where efficiency in querying

and in loading data (including incremental loads) are

important.

Most data warehouses use a star schema to represent

the multidimensional data model. The database consists

of a single fact table and a single table for each

dimension. Each tuple in the fact table consists of a

pointer (foreign key – often uses a generated key for

efficiency) to each of the dimensions that provide its

multidimensional coordinates, and stores the numeric

measures for those coordinates. Each dimension table

consists of columns that correspond to attributes of the

dimension. Figure 3 shows an example of a star

schema.

Figure 3. A Star Schema

Star schemas do not explicitly provide support for

attribute hierarchies. Snowflake schemas provide a

refinement of star schemas where the dimensional

hierarchy is explicitly represented by normalizing the

dimension tables, as shown in Figure 4. This leads to

advantages in maintaining the dimension tables.

However, the de-normalized structure of the

dimensional tables in star schemas may be more

appropriate for browsing the dimensions.

Fact constellations are examples of more complex

structures in which multiple fact tables share

dimensional tables. For example, projected expense and

the actual expense may form a fact constellation since

they share many dimensions.

Figure 4. A Snowflake Schema

In addition to the fact and dimension tables, data

warehouses store selected summary tables containing

pre-aggregated data. In the simplest cases, the pre-

aggregated data corresponds to aggregating the fact

table on one or more selected dimensions. Such pre-

aggregated summary data can be represented in the

database in at least two ways. Let us consider the

example of a summary table that has total sales by

product by year in the context of the star schema of

Figure 3. We can represent such a summary table by a

separate fact table which shares the dimension Product

and also a separate shrunken dimension table for time,

which consists of only the attributes of the dimension

that makes sense for the summary table (i.e., year).

Alternatively, we can represent the summary table by

encoding the aggregated tuples in the same fact table

and the same dimension tables without adding new

tables.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100908 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1242

This may be accomplished by adding a new level field

to each dimension and using nulls: We can encode a

day, a month or a year in the Date dimension table as

follows: (id0, 0, 22, 01, 1960) represents a record for

Jan 22, 1960, (id1, 1, NULL, 01, 1960) represents the

month Jan 1960 and (id2, 2, NULL, NULL, 1960)

represents the year 1960. The second attribute

represents the new attribute level: 0 for days, 1 for

months, 2 for years. In the fact table, a record

containing the foreign key id2 represents the

aggregated sales for a Product in the year 1960. The

latter method, while reducing the number of tables, is

often a source of operational errors since the level field

needs be carefully interpreted.

VI. METADATA AND WAREHOUSE

MANAGEMENT

Since a data warehouse reflects the business model of

an enterprise, an essential element of a warehousing

architecture is metadata management. Many different

kinds of metadata have to be managed. Administrative

metadata includes all of the information necessary for

setting up and using a warehouse: descriptions of the

source databases, back-end and front-end tools;

definitions of the warehouse schema, derived data,

dimensions and hierarchies, predefined queries and

reports; data mart locations and contents; physical

organization such as data partitions; data extraction,

cleaning, and transformation rules; data refresh and

purging policies; and user profiles, user authorization

and access control policies. Business metadata includes

business terms and definitions, ownership of the data,

and charging policies. Operational metadata includes

information that is collected during the operation of the

warehouse: the lineage of migrated and transformed

data; the currency of data in the warehouse (active,

archived or purged); and monitoring information such

as usage statistics, error reports, and audit trails.

Often, a metadata repository is used to store and

manage all the metadata associated with the

warehouse. The repository enables the sharing of

metadata among tools and processes for designing,

setting up, using, operating, and administering a

warehouse. Commercial examples include Platinum

Repository and Prism Directory Manager.

Creating and managing a warehousing system is hard.

Many different classes of tools are available to

facilitate different aspects of the process described in

Section 2. Development tools are used to design and

edit schemas, views, scripts, rules, queries, and reports.

Planning and analysis tools are used for what-if

scenarios such as understanding the impact of schema

changes or refresh rates, and for doing capacity

planning. Warehouse management tools (e.g., HP

Intelligent Warehouse Advisor, IBM Data Hub, Prism

Warehouse Manager) are used for monitoring a

warehouse, reporting statistics and making suggestions

to the administrator: usage of partitions and summary

tables, query execution times, types and frequencies of

drill downs or rollups, which users or groups request

which data, peak and average workloads over time,

exception reporting, detecting runaway queries, and

other quality of service metrics. System and network

management tools (e.g., HP OpenView, IBM NetView,

and Tivoli) are used to measure traffic between clients

and servers, between warehouse servers and

operational databases, and so on. Finally, only recently

have workflow management tools been considered for

managing the extract scrub- transform-load-refresh

process. The steps of the process can invoke

appropriate scripts stored in the repository, and can be

launched periodically, on demand, or when specified

events occur. The workflow engine ensures successful

completion of the process, persistently records the

success or failure of each step, and provides failure

recovery with partial roll back, retry, or roll forward.

VII. RESEARCH ISSUES

Data cleaning is a problem that is reminiscent of

heterogeneous data integration, a problem that has been

studied for many years. But here the emphasis is on

data inconsistencies instead of schema inconsistencies.

Data cleaning, as we indicated, is also closely related to

data mining, with the objective of suggesting possible

inconsistencies.

The problem of physical design of data warehouses

should rekindle interest in the well-known problems of

index selection, data partitioning and the selection of

materialized views. However, while revisiting these

problems, it is important to recognize the special role

played by aggregation.

Decision support systems already provide the field of

query optimization with increasing challenges in the

traditional questions of selectivity estimation and cost-

based algorithms that can exploit transformations

without exploding the search space (there are plenty of

transformations, but few reliable cost estimation

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100908 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1243

techniques and few smart cost-based algorithms/search

strategies to exploit them). Partitioning the

functionality of the query engine between the

middleware (e.g., ROLAP layer) and the back end

server is also an interesting problem.

The management of data warehouses also presents new

challenges. Detecting runaway queries, and managing

and scheduling resources are problems that are

important but have not been well solved. Some work

has been done on the logical correctness of

incrementally updating materialized views, but the

performance, scalability, and recoverability properties

of these techniques have not been investigated. In

particular, failure and check pointing issues in load and

refresh in the presence of many indices and

materialized views needs further research. The

adaptation and use of workflow technology might help,

but this needs further investigation.

REFERENCES

[1] Inmon, W.H., Building the Data Warehouse. John

Wiley, 1992.

[2] http://www.olapcouncil.org

[3] Codd, E.F., S.B. Codd, C.T. Salley, “Providing

OLAP (On-Line Analytical Processing) to User

Analyst: An IT Mandate.”

[4] http://pwp.starnetinc.com/larryg/articles.html

[5] Kimball, R. The Data Warehouse Toolkit. John

Wiley, 1996.

[6] Barclay, T., R. Barnes, J. Gray, P. Sundaresan,

“Loading Databases using Dataflow Parallelism.”

SIGMOD Record, Vol. 23, No. 4, Dec.1994.

[7] Blakeley, J.A., N. Coburn, P. Larson. “Updating

Derived Relations: Detecting Irrelevant and

Autonomously Computable Updates.” ACM

TODS, Vol. 4, No. 3, 1989.

[8] Gupta, A., I.S. Mumick, “Maintenance of

Materialized Views: Problems, Techniques, and

Applications.” Data Eng. Bulletin, Vol. 18, No. 2,

June 1995.

[9] Zhuge, Y., H. Garcia-Molina, J. Hammer, J.

Widom, “View Maintenance in a Warehousing

Environment, Proc. Of SIGMOD Conf., 1995.

[10] Roussopoulos, N., et al., “The Maryland ADMS

Project: Views R Us.” Data Eng. Bulletin, Vol.

18, No.2, June 1995.

[11] O’Neil P., Quass D. “Improved Query

Performance with Variant Indices”, to appear in

Proc. of SIGMOD Conf., 1997.

[12] O’Neil P., Graefe G. “Multi-Table Joins through

Bitmapped Join Indices” SIGMOD Record, Sep

1995.

[13] Harinarayan V., Rajaraman A., Ullman J.D.

“Implementing Data Cubes Efficiently” Proc. of

SIGMOD Conf., 1996.

[14] Chaudhuri S., Krishnamurthy R., Potamianos S.,

Shim K. “Optimizing Queries with Materialized

Views” Intl. Conference on Data Engineering,

1995.

[15] Chaudhuri S., Dayal U. “An Overview of Data

Warehousing and OLAP Technology” ACM

Sigmod Record, March 1997.

