
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100984 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 314

AN ENHANCEMENT OF MAJOR SORTING

 ALGORITHMS

Proteep Benerjee, Ritu Verma, Sagar Dudega

Abstract- One of the fundamental issues in computer

science is ordering a list of items. Although there is a

huge number of sorting algorithms, sorting problem has

attracted a great deal of research; because efficient

sorting is important to optimize the use of other

algorithms. This paper presents two new sorting

algorithms, enhanced selection sort and enhanced

bubble Sort algorithms. Enhanced selection sort is an

enhancement on selection sort by making it slightly

faster and stable sorting algorithm. Enhanced bubble

sort is an enhancement on both bubble sort and

selection sort algorithms with O(nlgn) complexity

instead of O(n2) for bubble sort and selection sort

algorithms. The two new algorithms are analyzed,

implemented, tested, and compared and the results

were promising.

Index Terms- Enhanced selection sort, enhanced bubble

sort, selection sort, bubble sort, number of swaps, time

complexity.

I. INTRODUCTION

Information growth rapidly in our world and to

search for this information, it should be ordered in

some sensible order. Many years ago, it was

estimated that more than half the time on many

commercial computers was spent in sorting.

Fortunately this is no longer true, since sophisticated

methods have been devised for organizing data,

methods which do not require that the data be kept in

any special order [9]. Many algorithms are very well

known for sorting the unordered lists. Most important

of them are Heap sort, Bubble sort, Insertion sort and

shell sort [17]. As stated in [5], sorting has been

considered as a fundamental problem in the study of

algorithms, that due to many reasons:

• The need to sort information is inherent in many

applications.

• Algorithms often use sorting as a key subroutine.

• In algorithm design there are many essential

techniques represented in the body of sorting

algorithms.

• Many engineering issues come to the fore when

implementing sorting algorithms. Efficient sorting is

other algorithms that require sorted lists to work

important to optimize the use of correctly; it is also

often in producing human-readable output. Formally,

the output should satisfy two major conditions:

• The output is in non-decreasing order.

• The output is a permutation, or reordering, of the

input. Since the early beginning of computing, the

problem has attracted many researchers, perhaps due

to sorting the complexity of solving it efficiently.

Bubble sort was analyzed as early as 1956 [2]. Many

researchers considered sorting as a solved problem.

Even so, useful new sorting algorithms are still being

invented, for example, library sort was first published

in 2004. Sorting algorithms are prevalent in

introductory computer science classes, where the

abundance of algorithms for the problem provides a

gentle introduction to a variety of core algorithm

concepts [1, 19]. In [1], they classified sorting

algorithms by:

• Computational complexity (worst, average and best

behavior) of element comparisons in terms of list size

(n). For typical sorting algorithms good behavior is

O(n log n) and bad behavior is Ω(n²). Ideal behavior

for a sort is O(n). Sort algorithms which only use an

abstract key comparison operation always need Ω(n

log n) comparisons in the worst case.

• Number of swaps (for in-place algorithms).

• Stability: stable sorting algorithms maintain the

relative order of records with equal keys (values).

That is, a sorting algorithm is stable if whenever

there are two records R and S with the same key and

with R appearing before S in the original list, R will

appear before S in the sorted list.

• Usage of memory and other computer resources.

Some sorting algorithms are “in place”, such that

only O(1) or O(log n) memory is needed beyond the

items being sorted, while others need to create

auxiliary locations for data to be temporarily stored.

• Recursion: some algorithms are either recursive or

non recursive, while others may be both (e.g., merge

sort).

• Whether or not they are a comparison sort. A

comparison sort examines the data only by

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100984 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 315

comparing two elements with a comparison operator.

In this paper, two new sorting algorithms are

presented. These new algorithms may consider as

selection sort as well as bubble sort algorithms. The

study shows that the proposed algorithms are more

efficient, theoretically, analytically, and practically as

compared to the original sorting algorithms. Section

2 presents the concept of enhanced Selection Sort

(SS) algorithm and its pseudocode. Furthermore, the

implementation, analysis, and comparison with

selection sort are highlighted. Section 3 introduces

enhanced bubble sort algorithm and its pseudocode,

implementation, analysis, and comparison with

bubble sort. Also, a real-world case study for the

proposed algorithms is presented in section 4.

Finally, conclusions were presented in section 5.

II. ENHANCED SELECTION SORT

2.1. Concept

 Inserting an array of elements and sorting these

elements in the same array (in-place) by finding the

maximum element and exchanging it with the last

element, and then decreasing the size of the array by

one for next call. In fact, the Enhanced Selection Sort

(ESS) algorithm is an enhancement to the SS

algorithm in decreasing number of swap operations,

making the algorithm to be data dependent, and in

making it stable. The differences between ESS and

SS algorithms are discussed in section 2.5.

2.2. Procedures

The procedures of the algorithms can be described as

follows:

• Inserting all elements of the array.

• Calling the “Enhanced Selection Sort” function with

passing the array and its size as parameters.

• Finding the maximum element in the array and

swapping it with the last index of the same array.

• Decreasing the size of the array by one.

• Calling the “Enhanced Selection Sort” function

recursively. The size of the array is decremented by

one after each call of the “Enhanced Selection Sort”

function. Operationally, the (size) after the first call

became (size-1), and after the second call became

(size-2), and so on.

2.3. Pseudocode

In simple pseudocode, enhanced selection sort

algorithm might be expressed as:

function enhanced selection sort (array , size)

1 if size > 1 then

2 var index, temp, max

3 index := size-1

4 max := array(index)

5 for a:= 0 to size-2 do

6 if array(a) ≥ max then

7 max := array(a)

8 index := a

9 end if

10 end for

11 if index ≠ size-1 then

12 temp := array(size-1)

13 array(size-1) := max

14 array(index) := temp

15 end if

16 size := size-1

17 return Enhanced Selection Sort (array , size)

18 else

19 return array

20 end if

2.5. Comparison with SS Algorithm SS algorithm,

works by selecting the smallest unsorted

item remaining in the array, and then swapping it

with the item in the next position to be filled. The

selection sort has a complexity of O(n2) [8, 11]. In

simple pseudocode, selection sort algorithm might be

expressed as:

Function SelectionSort(array, size)

1 var I, j

2 var min, temp

3 for I := 0 to size-2 do

4 min := I

5 for j := i+1 to size-1 do

6 if array(j) < array(min)

7 min := j

8 end if

9 end for j

10 temp := array(i)

11 array(i) := array(min)

12 array(min) := temp

13 end for I

The main advantage enhanced selection sort over

selection sort algorithms is: selection sort always

performs O(n) swaps while enhanced selection sort

depends on the state of the input array. In other

words, if the input array is already sorted, the ESS

does not perform any swap operation, but selection

sort performs n swap operations. Writing in memory

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100984 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 316

is more expensive in time than reading, since EBS

performs less number of swaps (read/write) then it is

more efficient than selection sort when dealing with

an array stored in a secondary memory or in

EEPROM (electrically erasable programmable read

only memory). However, there are many similarities

between ESS and SS algorithms.

To prove that ESS algorithm is relatively faster than

SS algorithm, we implement each of them using C++,

and measure the execution time of both programs

with the same input data, and using the same

computer. The built-in function (clock ()) in C++ is

used to get the elapsed time of the two algorithms.

#include<iostream.h>

#include<ctime>

#include <cstdlib>

int sort(int[], int);

void main()

{

 clock_t Start, Time;

 Start = clock();

 // the function call goes here

 Time = (clock() – Start);

 cout<<”Execution Time : “<<Time<<” ms.”<<endl;

}

3. Enhanced Bubble Sort

The history of Bubble sort algorithm may elaborate

as follows:

In 1963 FORTRAN textbook [13] states the

following code to what so called “Jump-down” sort.

1 void JumpDownSort(Vector a, int n){

2 for(int j=n-1; j> o; j--)

3 for(int k=0; k< j;k++)

4 if (a[j] < a[k])

5 Swap(a,k,j);}

3.1. Concept and Procedures of EBS

The proposed algorithm is considered as an

enhancement to the original Bubble sort algorithm

and it works as follows:

Inserting an array of elements and sorting these

elements in the same array (in place) by finding the

minimum and the maximum elements and

exchanging the minimum with the first element and

the maximum with the last element, and then

decreasing the size of the array by two for next call.

The detailed procedures of the algorithm can be

summarized as follows:

1. Inserting all elements of the array.

2. Defining and initializing two variables, (firstindex

= 0) and (lastindex = size-1).

3. Calling the “Enhanced Bubble Sort” function with

passing the array, its size, firstindex, and lastindex as

parameters of the function.

4. In the “Enhanced Bubble Sort” function, the

operation now is to find the maximum and the

minimum and saving the index value of the max of

the array in the variable maxcounter, and the index

value of the min in elements the variable mincounter.

5. Put the max in the lastindex and min in the

firstindex of the array without losing the last values

of the first index and the last index of the original

array.

6. Decreasing the value of lastindex by one and

increasing the value of firstindex by one.

Operationally, the size of the array after the first call

became (size-2), and after the second call it actually

became (size-4), and so on.

7. Calling the “Enhanced Bubble Sort “ array

recursively while the size of the array is greater than

one (size>1). Then returning the sorted array

III. CONCLUSIONS

In this paper, two new sorting algorithms are

presented. ESS has O(n2) complexity, but it is faster

than SS, especially if the input array is stored in

secondary memory, since it performs less number of

swap operations. SS can be specially implemented to

be stable. One way of doing this is to artificially

extend the key comparison, so that comparisons

between two objects with other equal keys are

decided using the order of the entries in the original

data order as a tie-breaker. ESS is stable without the

need to this special implementation EBS is definitely

faster than BS, since BS performs O(n2) operations

but EBS performs O(nlgn) operations to sort n

elements. Furthermore, the proposed algorithms are

compared with some recent sorting algorithms; shell

sort and enhanced shell sort. These algorithms are

applied on a real-world case study of sorting a

database of (12500) records and the results showed

that the EBS also increases the efficiency of both

shell sort and enhanced shell sort algorithms.

REFERENCES

[1] Aho A., Hopcroft J., and Ullman J., The Design

and Analysis of Computer Algorithms, Addison

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100984 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 317

Wesley, 1974.

[2] Astrachanm O., Bubble Sort: An Archaeological

Algorithmic Analysis, Duk University, 2003.

[3] Bell D., “The Principles of Sorting,” Computer

Journal of the Association for Computing

Machinery, vol. 1, no. 2, pp. 71-77, 1958.

[4] Box R. and Lacey S., “A Fast Easy Sort,”

Computer Journal of Byte Magazine, vol. 16,

no. 4, pp. 315-315, 1991.

[5] Cormen T., Leiserson C., Rivest R., and Stein

C., Introduction to Algorithms, McGraw Hill,

2001.

[6] Deitel H. and Deitel P., C++ How to Program,

Prentice Hall, 2001.

[7] Friend E., “Sorting on Electronic Computer

Systems,” Computer Journal of ACM, vol. 3,

no. 2, pp. 134-168, 1956.

