
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101012 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2091

IMPLEMENTATION OF JAVA

TECHNOLOGIES IN IMAGING

Abhineet Sinha, Vishal Kumar, Mohit Panchal

Student, B.tech, Electronics and Computers Engineering,

Dronacharya College of Engineering, Khentawas, Gurgaon

Abstract- Digital imaging in Java has been supported since its

first release, through the java.awt and java.awt.image class

packages. Now there are three distinct java imaging APIs

namely , the basic AWT imaging API, Java 2D API and Java

Advance Imaging (JAI) API. This paper firstly summarizes

and compares important features of AWT, Java2D and JAI

APIs. Then the Java2D and JAI technologies are compared

based on practical results obtained by evaluation of

convolution.

Index Terms– AWT, PixelGrabber, RMI

I. INTRODUCTION

Image Processing or Imaging has an important role to

play in many fields like entertainment, health care,

internet and also high tech areas like medical imaging,

satellite imaging, and astronomy. Since Java technology

gives the flexibility through its “write once run

anywhere” concept and provides many advanced image

processing features it is well suited for developing image

processing applications which can run on almost any

machine.

Early versions of the Java AWT provided a simple

rendering package suitable for rendering common HTML

pages, but without the features necessary for complex

imaging. The Java 2D API extended the early AWT by

adding support for more general graphics and rendering

operations. The Java Advanced Imaging (JAI) API

further extends the Java platform (including the Java 2D

API) by allowing sophisticated, high-performance image

processing to be incorporated into Java applets and

applications.

II. THEORETICAL COMPARISON BETWEEN

AWT, Java2D AND JAI APIs

The AWT class for image representation is

java.awt.image. In Java 2D primary image

representation class is

java.awt.BufferedImage.

javax.media.jai.PlanerImage is central.

Image data representation is important in image analysis.

In AWT when an image is loaded, pixels are encapsulated

in the Image object. The Image class in java.awt.image

has no methods for reading or writing pixels directly from

an Image object. To read pixels one needs to extract them

using the PixelGrabber class. AWT uses a single element

to represent the pixel components and color model, and

to interprete the pixels. Image data is stored as as array.

Java 2D uses SampleModel and ColorModel classes

associated with BufferedImage to read and write pixel

data. Data is stored in a DataBuffer object. JAI, in

addition to SampleModel and ColorModel, has classes

that extend both these two classes .

In imaging, an operation is often performed on a set of

images. AWT & Java2D does not support image sets. JAI

has several sophisticated classes that support image

collection. It makes use of collection data structure

already available in Java.

In case of handling large images , AWT cannot handle

large images. Java 2D is not well suited to handle large

images because immediate mode model stores the entire

image in cache. JAI because its tile based has good

support for handling large images.

AWT has no explicit support for network imaging. Java

2D has no explicit support for network imaging. JAI

explicitely makes use of RMI(remote method invocation)

for server side imaging. It also has operators that support

IIP (Internet Imaging Protocol).

For sophisticated image geometry or data manipulation

operations imaging operators are very important. AWT

has no imaging operators . Java 2D supports only a few

basic single input/single output operations in the form of

classes like AffineTransformOp, ConvolveOp,

LookupOp etc. JAI has a large array of imaging operators

that can assist in the I/O, display, manipulation,

enhancement, and analysis of images.

Looking into the support for image properties, AWT

supports width and height properties. Java 2D supports

width and height properties. JAI has extensive support for

property management. One can create properties such as

Region of Interest(ROI) and save them along with the

image.

Finally, AWT supports only GIF and JPEG image

loading. Starting with jdk1.3 this has extended to PNG.

Java 2D has no explicit support for image loading,

saving APIs. The image I/O package in JAI 1.0.2 and 1.1

supports several image formats, including GIF, JPEG,

BMP, TIFF, PNG, PPM, and Flash\Pix. Except for GIF

and FlashPix images in all of these formats can be saved.

III. PRACTICAL COMPARISON BETWEEN Java2D

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101012 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2092

AND JAI APIs

The practical comparison is done between Java2D and

JAI APIs based on the operation of convolution.

Convolutions are useful for a wide variety of digital

image processing operations, including smoothing of

noisy images (spatial averaging) and sharpening of

images by edge enhancement, utilizing Laplacian,

sharpening, or gradient filters. In addition, local contrast

can be adjusted through the use of maximum, minimum,

or median filters, and images can be transformed from

the spatial to the frequency domain with convolution

kernels.

In the simplest form, a two-dimensional convolution

operation on a digital image utilizes a two-dimensional

convolution kernel

K k[i][j i, j m m . Convolution kernels
typically feature an odd number of rows and columns in

the form of a square, with a 3 x 3 pixel mask being the

most common form, but 5 x 5 and 7 x 7 kernels are also

frequently employed. The convolution operation is

performed individually on each

pixel of the original input image

F f [i][j i, j n so that
the

pixels in the

output image are given by the equation

g[x][y]

m m

k[i][j] f [x i][y j] .

i m j m

(1

) To perform a convolution on an entire image, the sum

operation must be repeated for each pixel of the original

image. Thus, convolution is computationally very

intensive and hence evaluation and comparison of total

processor time involved to execute this operation in

different Java technologies is important.

3.1 Dependency of the Execution Times on the Kernel

Data

Firstly, we would like to find the dependency of the

execution times on the kernel data. The execution times

have been measured for the 3*3 kernels for edge

detection, smoothing, and blurring. From Table 1 and 2

we can find that the convolution method in the Java 2D

API does depend on the kernel data since the similar

method for the JAI API doe not depend. Moreover, the

same conclusions have been found for the similar 5*5,

7*7 and 9*9 kernels.

Table 1. Java2D Execution Times for for 3*3 Kernels

for Edge Detection, Smoothing, Bluring.

Image Size 11.6 19.2 33.3 47.2 154 275

Edge

Detection 17 23 45 78 334 1104

Smoothing 15 18 35 56 265 551

Blurring 10 21 70 102 345 728

 Edge Detection Smoothing

Blurring

120

0

100

0

(m
s)

800

600

T
im

e

400

 200

 0

 11.6 19.2 33.3 47.2 154 275

Size

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101012 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2093

Figure 1.

Table 2. JAI Execution Times for 3*3 Kernels for Edge

Detection, Smoothing, Bluring.

Image Size 11.6 19.2 33.3 47.2 154 275

Edge

Detection 26 28 42 46 53 70

Smoothing 26 28 42 44 53 69

Blurring 26 29 43 46 54 71

 Edge Detection Smoothing

Blurring

 80

 70

(m
s)

 60

50

T
im

e 40

30

 20

 10

 0

 11.6 19.2 33.3 47.2 154 275

 Size (K)

Figure 2.

3.2 Dependency of the Execution Times on the Kernel

Size

The second practical comparison tests how the

convolution depends on the kernel sizes. In this case the

execution times have been found for the 3*3, 5*5, 7*7

blurring kernels (see Table 3, 4). As we expect the Java

2D convolution depends on the kernel size. More

importantly, we have found that the JAI convolution does

not depend on the kernel size. The transformation only

depends on the image size.

Table 3. Java 2D Execution Times for the 3*3, 5*5 and

7*7 Blurring Kernels.
Image Size 11.6 19.2 33.3 47.2 154 275

3*3 Kernel 12 23 68 110 352 740

5*5 Kernel 56 68 104 328 682 1167

7*7 Kernel 362 451 709 2325 4882 8384

Figure 3.

Table 4. JAI Execution Times for the 3*3, 5*5 and 7*7

Blurring Kernels.

Image Size

11.

6 19.2 33.3 47.2 154 275

3*3 Kernel 26 28 42 46 53 70

5*5 Kernel 25 29 42 45 52 72

7*7 Kernel 24 27 40 47 51 71

 3*3 Kernel 5*5 Kernel 7*7 Kernel

 80

 70
(m

s)

60

50

T
im

e

40

30

 20

 10

 0

 11.6 19.2 33.3 47.2 154 275

 Size (K)

Figure 4.

3.3 Direct Comparison of Java2D and JAI
Finally, a direct comparison between Java 2D and JAI

APIs has been done based on a benchmark containing a

sequence of 3*3,

 Java2D Execution Time JAI

Execution Time

80

0

70

0

(m
s)

60

0

50

0

40

0

T
im

e

30

0

20

0

10

0

 0

 11.6 19.2 21.5

26.

2

27.

2

28.

5

33.

3

47.

2 154

27

5

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101012 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2094

Size (K)

Figure 5.

Table 5. Execution Times for Java 2D vs JAI.

Image

27.2

Size 11.6 19.2 21.5 26.2 28.5 33.3 47.2 154 275

Java2D 10 21 26 34 35 45 70 140 345 728

JAI 26 29 31 36 35 42 43 46 54 73

IV. CONCLUSION

Results from above tables and graphs indicate that JAI is

independent of change in Kernel Data or Kernel Size for

Convolution Operation , while Java2D is dependent on

change in Kernel Data or Kernel Size used to perform

Convolution Operation. Also while comparing

Convolution Operation in JAI and Java2D technology one

can find a ‘Threshold Point’ at which JAI and Java2D

execution Time is same. Below this threshold point as

image size decreases Java2D behaves better than JAI and

above this threshold point as image size increases JAI

behaves better than Java2D.

REFERENCES

[1] Jonathan Knudsen (1999), JAVA 2D Graphics, O’Reilly

Publication.

[2] Laurence H. Rodrigues, Building Imaging Applications with

Java™ Technology.

[3] Sun’s Java Web Page, java.sun.com

[4] http://micro.magnet.fsu.edu/primer/digitalimaging/index.html

Author Profile

Abhineet Sinha - Research interest is in the area of

organization designs that maximize innovative patents. Under

the Guidance of senior professor I wish to learn and

analytically approach various research fields in depth . At

DCE additionally, I also am a Resource Executive for the

Society of Innovation Development.

Vishal Kumar – a diligent scholar and a hard working

individual who continues his focused effort in order to

achieve his goals. Working on this paper has been

informative and revisiting and has created a curiosity about

this field of research

Mohit Panchal- An Associate researcher and scholar at our

university. His contribution to this work is appreciable.

