
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101014 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2098

Manufacturing of 64-Bit VLIW Microprocessor

Meenakshi, Anirudh, Deepika

Department of Electronics and Communication,

Dronacharya College of Engineering, Gurgaon, India

Abstract- In the two decades since FPGAs introduced,

the way which digital logic is designed and deployed has

been radically changed. FPGAs have made possible

entirely new types of applications. It is very important

to design microprocessor as the part of core of

electronic systems, so development and production. On

making use of the technology of FPGA to design the

microprocessor of logic function, it can quickly realize

the function, complete design, cut down development

cycle, save cost and quickly realize productions. The

subject of the Paper is to design VLIW (is the

abbreviation of "Very Long Instruction Word")

microprocessor based on FPGA. It designs VLIW

microprocessor which contains 64-bit instruction word

and 192-bit data, each VLIW instruction word consists

of three operations in parallel. The VLIW

microprocessor can be designed using a pipeline

technology of four stages, and have been implemented

by taking advantage of the technology of FPGAs.

According to the basic principle of VLIW

microprocessor, it is rationally divided into five main

modules: Fetch module, Decode module, Register file,

Execute module, and Write back module. Each main

module is reasonably divided again, and realized the

function of every module based on the principle of

FPGAs, so as to implement five main modules.

Index Terms– FPGA, digital logic, microprocessor,

VLIW, pipeline technology

I. INTRODUCTION

The objective is to design a 64-bit VLIW

Microprocessor supporting the following instruction

set: addition, subtraction and multiplication. Second

objective is to model the dynamic branch prediction

in 4-stage 64-bit microprocessor to achieve better

throughput. Figure 1.1 shows the complete

implementation steps in designing a processor. The

programming objective of the pipelining fall into the

following categories:

1. Accuracy: The application produces that results

that are close to the correct results.

2. Performance: The application produces the most

efficient code possible.

3. Latency: The application produces a single output

with in less time.

4. Throughput: The application produces more

number of tasks that can be completed per unit time.

5. Area: The application produces less number of flip

flops and slices.

TOOLS USED

The tools used in the thesis are as follows:-

Simulation Software:

1. Xilinx 13.1 and design compiler are used for

synthesis and analysis.

2. Modelsim 10.1 has been used for modeling and

simulation

Hardware used:

Xilinx Spartan 3E (Family), XC4VFX12 (Device),

Tool used HDL (Top Level Source Type), XST-

VHDL/VERILOG

(Synthesis Tool). ISE Simulator -VHDL/VERILOG

(simulator) and Verilog (Preferred Language)..

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101014 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2099

II. VLIW (VERY LONG INSTRUCTION WORD)

VLIW has been developed to exploit Instruction-

Level Parallelism by using a long instruction word

which contains multiple fixed numbers of operations.

Those operations can be fetched, decoded, issued,

and executed at the same time without causing any

data or control hazards.

Therefore, all operations within a single VLIW

instruction must be absolutely independent. Very

long instruction word (VLIW) describes a computer

processing architecture in which a language compiler

or pre-processor breaks program instruction down

into basic operations that can be performed by the

processor in parallel (that is, at the same time). These

operations are put into a very long instruction word

which the processor can then take apart without

further analysis, handing each operation to an

appropriate functional unit. VLIW is sometimes

viewed as the next step beyond the reduced

instruction set computing (RISC) architecture, which

also works with a limited set of relatively basic

instructions and can usually execute more than one

instruction at a time (a characteristic referred to as

superscalar). The main advantage of VLIW

processors is that complexity is moved from the

hardware to the software, which means that the

hardware can be smaller, cheaper, and require less

power to operate. The Crusoe family of processors

from Transmeta uses very long instruction words that

are assembled by a pre-processor that is located in a

flash memory chip. Because the processor does not

need to have the ability to discover and schedule

parallel operations, the processor contains only about

a fourth of the transistor s of a regular processor. The

lower power requirement enables computers based on

Crusoe technology to be operated by battery almost

all day without a recharge. The Crusoe processors

emulate Intel's x86 processor instruction set.

Theoretically, pre-processors could be designed to

emulate other processor architectures. Crusoe-

Crusoe is a family of "smart" microprocessors from

Transmeta that combines a relatively simple, low

powered

hardware processor with software that makes the

hardware processor look like an x86 Intel.

Architecture

characteristic

CISC RISC VLIW

Instruction size Varies 1 size

(32bits)

One size

Instruction

format

Flied

placement

varies

Regular,

consistent

placement

Regular,

consistent

placement

Instruction

Semantics

Varies

from

simple

To

complex;

Possibly

many

dependent

operations

Almost

always

one

simple

operations

Many

simple,

independe

nt

Operation

s

Registers instruction

Few,

sometimes

special

Many,

general

purpose

Many,

General

purpose

Memory

References

Bundled

with

operations

in

many

different

types of

Instructions

Not

bundled

with

operations

, i.e.,

load/store

architectur

e

Not

bundled

with

operations

,

i.e.,

load/store

architectur

e

Hardware

Design

Focus

Exploit

microcode

Implement

ations

Exploit

implement

ations One

pipeline

&no

microcode

No

complex

design

logic

Comparison between CISC, RISC, VLIW

Architecture

III. CONCEPT AND BENEFITS (VLIW)

In VLIW architecture, parallel execution of multiple

instructions is made possible by issuing a long

instruction word. A single long instruction word is

designed to achieve simultaneous execution of a

fixed number of multiple operations. Those

operations must be independent of each other to

avoid possible data hazards. Indeed, several

independent instructions are integrated inside a very

long instruction word.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101014 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2100

The VLIW instruction is wide enough to allow the

concurrent operation of multiple functional units. Its

size normally ranges from 64 to 128 bits, and even up

to 1024 bits. Figure above shows a typical format of

VLIW instructions. Many bits on the long instruction

enable a single instruction word to sufficiently

control the several functional units directly and

independently in every cycle. Since it is the long

instruction word which delivers the potential ILP to

the hardware, a VLIW processor can be designed

with a simpler hardware compared to an equivalent

superscalar processor: it need not include the special

units the run-time dependency check and instruction

scheduling. The block diagram of a simple VLIW

processor is shown in Figure below. VLIW

architecture is, by essence, meant to activate multiple

functional units at the same time. Therefore, the

VLIW compiler should uncover independent

operations to be executed in parallel. This means that

the compiler must perform a detailed analysis on the

dataflow and control-flow at compile time (which is

when the potential ILP is fixed). Since the ILP within

a basic block is quite limited, the VLIW architecture

needs to examine more instructions to find more ILP.

It is possibly achieved by looking at the instruction

stream beyond the control-flow limits. For that

purpose, several techniques such as loop unrolling

and trace scheduling have been introduced in the

VLIW design techniques. In addition, VLIW can

uncover more parallelism by searching over a wider

range of static code. Also, it is quite beneficial to

know the source code structure to find parallelism in

the VLIW architecture.

However, several limitations such as long

compilation time, not enough compatibility, and code

explosion make VLIW architectures difficult to use

in practice. In conclusion, we can say that VLIW

architectures do not have the hardware complexity of

current superscalar architectures.

some methods for exploiting fine-grain parallelism

include:

 pipelining

 multiple processors

 superscalar implementation

 specifying multiple independent operations

per instruction

Pipelining is now universally implemented in high

performance processors. Little more can be gained by

improving the implementation of a single pipeline.

Using multiple processors improves performance for

only a restricted set of applications. Superscalar

implementations can improve performance for all

types of applications. Superscalar (super: beyond;

scalar: one dimensional) means the ability to fetch,

issue to execution units, and complete more than one

instruction at a time. Superscalar implementations are

required when architectural compatibility must be

preserved, and they will be used for entrenched

architectures with legacy software, such as the x86

architecture that dominates the desktop computer

market. Specifying multiple operations per

instruction creates a very-long instruction word

architecture or VLIW. A VLIW implementation has

capabilities very similar to those of a superscalar

processor-issuing and completing more than one

operation at a time-with one important exception: the

VLIW hardware is not responsible for discovering

opportunities to execute multiple operations

concurrently. For the VLIW implementation, the long

instruction word already encodes the concurrent

operations. This explicit encoding leads to

dramatically reduced hardware complexity compared

to a high-degree superscalar implementation of a

RISC or CISC. The big advantage of VLIW, then, is

that a highly concurrent (parallel) implementation is

much simpler and cheaper to build than equivalently

concurrent RISC or CISC chips. VLIW is a simpler

way to build a superscalar microprocessor.

IV. PIPELINING AND BRANCH PREDICTION

MECHANISM

It is a technique that allows for simultaneous

execution of parts, or stages, of instructions to more

efficiently process them. It is first introduced in IBM

7030 (Stretch Computer).

1986 was the first pipelined CISC processor. RISC

processors in 80s were pipelined and were efforts to

get IPC of 1. With a

RISC processor, 1 instruction is executed while the

next is being decoded and its operands are being

loaded while the following instruction is being

fetched all at the same time.

Thus typical pipeline generally consists of four

stages:

 Stage 1: Fetches instruction from memory.

 Stage 2: Decodes instruction and fetches any

required operands

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101014 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2101

 Stage 3: Executes instructions

 Stage 4: Stores results

Each stage processes instructions simultaneously

after a delay to fill the pipeline and this allows CPU

to execute 1 instruction per clock cycle.

Apart from the CISC and RISC microprocessors,

there has a different generation of microprocessor

based on a concept called very long instruction word

(VLIW). VLIW microprocessors make use of a

concept of instruction level parallelism (ILP)

executing multiple instructions in parallel. VLIW

microprocessors have not the only type of

microprocessors that take advantage of executing

multiple instructions in parallel. Superscalar super

pipeline CISC/RISC microprocessors are also able to

achieve parallel execution of instructions.

V. PRINCIPLE OF PIPELINING

The basic principle behind pipelining is to allow to

start the process of executing one instruction before

the previous one has completed and it shows that

even if there are delays in any one stage of the

process for one instruction, it is still more efficient

than non-pipelined processors. Figure 3.2 shows the

processing of a sequence of instructions using a basic

pipeline and Figure 3.3 shows the processing of a

sequence of instructions using 4-stage pipelined.

1) Fetch

2) Decode

3) Execute

4) Write back

Figure: Processing of a sequence of instructions using

basic pipeline

Cycle

Instructio

n

In proc

essin

g

 out

put

1. 1. F1

2. 2. F2 D1

3. 3. F3 D2 E1

4. 4. F4 D3 E2 W

b

1

Ins.

1

5. 5. F5 D4 E3 W

b

2

Ins

2

Processing of a sequence of instructions using a 4-

stage pipeline

VI. DESIGN ISSUES

 Data dependencies and branch instructions

have to be handled carefully.

 Data dependency means next instruction

depends on result of last one which has not

taken place due to previous one in pipeline.

Conditional jumps may be problem if last

stage in pipeline and condition changes later

after jump has been processed

Design issues – single cycle instruction

 Microprocessor stalled when instruction

stage does not take one clock cycle.

 Stalling can be because of delays in reading

from memory, poor instruction set design,

dependencies between instructions.

Performance issues in Pipelined systems

 Memory speed - caches. Fast memory b/w

processor and slower memory.

 Copy from main memory also kept in cache

to speed up further references.

 Caches - problem of coherency. Results kept

in cache must go to main before it is Read or

deleted in cache.

 Instruction Latency: Poor instructions that

may take more than one clock should be

avoided.

 Highly encoded instructions that use

complex decoders

 Variable length instructions with multiple

references to memory.

 Instructions that access main memory.

 Complex instructions that require multiple

clocks like floating point multiplication.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101014 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2102

 Dependency Issues – If one instruction sets

the conditions in the condition code Register

and next tries to read those bits, 2nd has to

wait for 1
st
 to complete.

 Instruction scheduling – and common sub

expression elimination.

Pipeline Clock Rate

The clock rate of the pipeline and the CPU is limited

to its slowest stage.

Example1: stage pipeline with delays of 20ns, 20ns,

100ns, 40ns.

The clock period must be at least 100ns to handle the

delay at the 3rd stage (100ns). This Results in a

maximum clock rate of 10MHz.

Thus, when all stages have same delay time, the

pipeline will achieve maximum Performance.

The Speedup ratio (Sn) is expressed by this formula:

Sn = n * T1 / (n + k – 1) * Tk

n = number of instructions

T1 = time needed to process 1 instruction (non-

pipeline) k = number of stages in the pipeline

Tk = clock period of the pipeline

Example 2: Let T1 = 180 ns (time needed to process

1 instruction) k = 4 (stages in the pipeline)

Tk = 50 ns (clock period of the pipeline)

Applying the formula, it results out as:

Sn = n * 180 / (n + 4 – 1) * 50

For steady state (n > ∞), the maximum speedup is

Sn = 180 / 50 is 3.6. But in reality, the speedup would

be slightly less than this for some reasons. The reason

is that this does not account for the first few cycles

needed to fill the pipeline; in addition the 180ns

includes the time needed for the latches at the end of

each stage. In a non-pipelined CPU, these latches and

their associated delays do not exist and the actual

time needed to process an instruction would be

slightly less than 180ns.

VII. FIELD PROGRAMMABLE GATE ARRAY

A field programmable gate array (FPGA) is a

semiconductor device that can be configured by the

customer or the designer after manufacturing hence

the name “field-programmable”. Field Programmable

gate arrays (FPGAs) are truly revolutionary devices

that blend the benefits of both hardware and software.

FPGAs are programmed using a logic circuit diagram

or a source code in Hardware Description Language

(HDL) to specify how the chip will work. They can

be used to implement any logical function that an

Application Specific Integrated Circuit (ASIC) could

perform but the ability to update the functionality

after shipping offers advantages for many

applications. FPGAs contain programmable logic

components called “logic blocks”, and a hierarchy of

reconfigurable interconnects that allow the blocks to

be “wired together” somewhat like a one chip

programmable breadboard. Logic blocks can be

configured to perform complex combinational

functions or merely simple logic gates like AND and

XOR. In most FPGAs, the logic block also includes

memory elements, which may be simple flip flops or

more complete blocks of memory. FPGAs blend the

benefits of both hardware and software.

VIII. FPGA FOR FLOATING POINT

COMPUTATIONS

With gate counts approaching ten million gates,

FPGA’s are quickly becoming suitable for major

floating point computations. However, to date, few

comprehensive tools that allow for floating point unit

trade offs have been developed.

Most commercial and academic floating point

libraries provide only a small number of floating

point modules with fixed parameters of bit-width,

area and speed. Due to these limitations, user designs

must be modified to accommodate the available

units. The balance between FPGA floating point unit

resources and performance is influenced by subtle

context and design requirements. Generally,

implementation requirements are characterized by

throughput, latency and area. FPGAs are often used

in place of software to take advantage of inherent

parallelism and specialization. For data intensive

applications, data throughput is critical.

1. If floating point computation is in a dependent

loop, computation latency could be an overall

performance bottleneck.

IX. FPGA IMPLEMENTATION

The FPGA that is used for the implementation of the

circuit is the Xilinx Spartan 3E (Family), XC4VFX12

(Device). The working environment/tool for the

design is the Xilinx ISE

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101014 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2103

Figure: FPGA Design Flow

X.CONCLUSION

A design of 4-stage 64-bit VLIW microprocessor

performing arithmetic, logical and compare operation

and branch instructions is presented in this paper.

According to the basic principle of VLIW

microprocessor, it is rationally divided into five main

modules. Such as fetch module, decode module,

register file, execute module, write back module.

Each main module is reasonably divided again, and

realized the function of every module based on the

principle of FPGAs, so as to implement five main

modules. At last, the whole function of VLIW

microprocessor is completely finished. It completes

the data of empty operation, addition, subtraction,

multiplication, load, and move, read, comparison,

XOR, NAND, NOR, NOT, shift left, shift right,

barrel shift left, barrel shift right in VLIW

Microprocessor.

REFERENCES

[1] Fisher, Joseph A, Paolo Faraboschi, and Cliff

Young. “Embedded Computing a VLIW Approach to

Architecture, Compilers and Tools,” New York:

Morgan Kaufmann, 2004.

[2] Alex K.Jonaes, Raymond Hoare, Dara Kasic,

Justin Stander, Gayatri Mehta, and josh Fazekas “A

VLIW Processor With Hardware Functions

Increasing Performance while Reducing Power,”

IEEE Transactions on circuits and system-II: express

briefs, Vol.53, no.11, Nov 2006.

[3] Rong-Jian Chen, Yi-Te Lai and Jui-Lin Lai,

“Architecture Design and VLSI Hardware

Implementation of Image Encryption/Decryption

System Using Re-configurable 2-D Von Neumann

Cellular Automata,” IEEE Proceedings of ISCAS,pp.

153-156, 2006.

[4] Smith, J. E. “A Study of branch prediction

Strategies,” Proceedings of the 8th Annual

International Symposium on Computer Architecture,

pp. 135-148, Minneapolis, Jun 1981.

[5] Ball, T. and Larus, J. “Branch Prediction for

Free,” Proceedings of the SigPlan93 Conference on

Programming Language and Implementation, pp.

300-313, Jun 1993.

[6] Fisher, J. A. and Freudenberger, S. M. “Predicting

Conditional Branch Directions from Previous Runs

of a Program,” Proceedings of the 5thInternational

Conference on Architectural Support for

Programming Languages and Operating Systems,

Boston, Mass, pp. 85 –95, Oct 1, 2004.

[7] Lee, J. and Smith, J. “Branch Prediction

Strategies and Branch Target Buffer

Design,” IEEE Journals on Computers, pp. 6 –22, Jan

1984.

[8] Perleberg, C. and Smith, J. “Branch Target

Buffer-Design and Optimization,”

IEEE Journal on Computers, vol. 4, pp. 396 –411,

1993. Intel Corp, 1999.

[9] Sechrest, S., Lee, C. and Mudge, T. “The Role of

Adaptivity in Two-level Branch Prediction”, Micro-

28, Ann Arbor, Michigan, pp. 264 –269, Nov 1995.

[10] Arthur Abnous and Nader Bagherzadeh

“Pipelining and Bypassing in a VLIW Processor,”

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101014 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2104

IEEE transactions on parallel and distributed systems,

Vol.

5, no. 6, Jun 1994.

[11]Arthur Abnous and Nader Bagherzadeh

“Architectural design and analysis of electrical and

computer engineering

