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Abstract- In the two decades since FPGAs introduced, 

the way which digital logic is designed and deployed has 

been radically changed. FPGAs have made possible 

entirely new types of applications. It is very important 

to design microprocessor as the part of core of 

electronic systems, so development and production. On 

making use of the technology of FPGA to design the 

microprocessor of logic function, it can quickly realize 

the function, complete design, cut down development 

cycle, save cost and quickly realize productions. The 

subject of the Paper is to design VLIW (is the 

abbreviation of "Very Long Instruction Word") 

microprocessor based on FPGA. It designs VLIW 

microprocessor which contains 64-bit instruction word 

and 192-bit data, each VLIW instruction word consists 

of three operations in parallel. The VLIW 

microprocessor can be designed using a pipeline 

technology of four stages, and have been implemented 

by taking advantage of the technology of FPGAs. 

According to the basic principle of VLIW 

microprocessor, it is rationally divided into five main 

modules: Fetch module, Decode module, Register file, 

Execute module, and Write back module. Each main 

module is reasonably divided again, and realized the 

function of every module based on the principle of 

FPGAs, so as to implement five main modules. 
 

Index Terms– FPGA, digital logic, microprocessor, 

VLIW, pipeline technology 

I. INTRODUCTION 

The objective is to design a 64-bit VLIW 

Microprocessor supporting the following instruction 

set: addition, subtraction and multiplication. Second 

objective is to model the dynamic branch prediction 

in 4-stage 64-bit microprocessor to achieve better 

throughput. Figure 1.1 shows the complete 

implementation steps in designing a processor. The 

programming objective of the pipelining fall into the 

following categories: 

1. Accuracy: The application produces that results 

that are close to the correct results. 

2. Performance: The application produces the most 

efficient code possible. 

3. Latency: The application produces a single output 

with in less time. 

4. Throughput: The application produces more 

number of tasks that can be completed per unit time. 

5. Area: The application produces less number of flip 

flops and slices. 

 
TOOLS USED 

The tools used in the thesis are as follows:- 

Simulation Software: 

1. Xilinx 13.1 and design compiler are used for 

synthesis and analysis. 

2. Modelsim 10.1 has been used for modeling and 

simulation 

 

Hardware used: 

Xilinx Spartan 3E (Family), XC4VFX12 (Device), 

Tool used HDL (Top Level Source Type), XST-

VHDL/VERILOG 

(Synthesis Tool). ISE Simulator -VHDL/VERILOG 

(simulator) and Verilog (Preferred Language).. 
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II. VLIW (VERY LONG INSTRUCTION WORD) 

VLIW has been developed to exploit Instruction-

Level Parallelism by using a long instruction word 

which contains multiple fixed numbers of operations. 

Those operations can be fetched, decoded, issued, 

and executed at the same time without causing any 

data or control hazards. 

Therefore, all operations within a single VLIW 

instruction must be absolutely independent. Very 

long instruction word (VLIW) describes a computer 

processing architecture in which a language compiler 

or pre-processor breaks program instruction down 

into basic operations that can be performed by the 

processor in parallel (that is, at the same time). These 

operations are put into a very long instruction word 

which the processor can then take apart without 

further analysis, handing each operation to an 

appropriate functional unit. VLIW is sometimes 

viewed as the next step beyond the reduced 

instruction set computing (RISC) architecture, which 

also works with a limited set of relatively basic 

instructions and can usually execute more than one 

instruction at a time (a characteristic referred to as 

superscalar). The main advantage of VLIW 

processors is that complexity is moved from the 

hardware to the software, which means that the 

hardware can be smaller, cheaper, and require less 

power to operate. The Crusoe family of processors 

from Transmeta uses very long instruction words that 

are assembled by a pre-processor that is located in a 

flash memory chip. Because the processor does not 

need to have the ability to discover and schedule 

parallel operations, the processor contains only about 

a fourth of the transistor s of a regular processor. The 

lower power requirement enables computers based on 

Crusoe technology to be operated by battery almost 

all day without a recharge. The Crusoe processors 

emulate Intel's x86 processor instruction set. 

Theoretically, pre-processors could be designed to 

emulate other processor architectures. Crusoe- 

Crusoe is a family of "smart" microprocessors from 

Transmeta that combines a relatively simple, low 

powered 

hardware processor with software that makes the 

hardware processor look like an x86 Intel. 
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III. CONCEPT AND BENEFITS (VLIW) 

In VLIW architecture, parallel execution of multiple 

instructions is made possible by issuing a long 

instruction word. A single long instruction word is 

designed to achieve simultaneous execution of a 

fixed number of multiple operations. Those 

operations must be independent of each other to 

avoid possible data hazards. Indeed, several 

independent instructions are integrated inside a very 

long instruction word. 
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The VLIW instruction is wide enough to allow the 

concurrent operation of multiple functional units. Its 

size normally ranges from 64 to 128 bits, and even up 

to 1024 bits. Figure above shows a typical format of 

VLIW instructions. Many bits on the long instruction 

enable a single instruction word to sufficiently 

control the several functional units directly and 

independently in every cycle. Since it is the long 

instruction word which delivers the potential ILP to 

the hardware, a VLIW processor can be designed 

with a simpler hardware compared to an equivalent 

superscalar processor: it need not include the special 

units the run-time dependency check and instruction 

scheduling. The block diagram of a simple VLIW 

processor is shown in Figure below. VLIW 

architecture is, by essence, meant to activate multiple 

functional units at the same time. Therefore, the 

VLIW compiler should uncover independent 

operations to be executed in parallel. This means that 

the compiler must perform a detailed analysis on the 

dataflow and control-flow at compile time (which is 

when the potential ILP is fixed). Since the ILP within 

a basic block is quite limited, the VLIW architecture 

needs to examine more instructions to find more ILP. 

It is possibly achieved by looking at the instruction 

stream beyond the control-flow limits. For that 

purpose, several techniques such as loop unrolling 

and trace scheduling have been introduced in the 

VLIW design techniques. In addition, VLIW can 

uncover more parallelism by searching over a wider 

range of static code. Also, it is quite beneficial to 

know the source code structure to find parallelism in 

the VLIW architecture. 

However, several limitations such as long 

compilation time, not enough compatibility, and code 

explosion make VLIW architectures difficult to use 

in practice. In conclusion, we can say that VLIW 

architectures do not have the hardware complexity of 

current superscalar architectures. 

some methods for exploiting fine-grain parallelism 

include: 

 pipelining 

 multiple processors 

 superscalar implementation 

 specifying multiple independent operations 

per instruction 

Pipelining is now universally implemented in high 

performance processors. Little more can be gained by 

improving the implementation of a single pipeline. 

Using multiple processors improves performance for 

only a restricted set of applications. Superscalar 

implementations can improve performance for all 

types of applications. Superscalar (super: beyond; 

scalar: one dimensional) means the ability to fetch, 

issue to execution units, and complete more than one 

instruction at a time. Superscalar implementations are 

required when architectural compatibility must be 

preserved, and they will be used for entrenched 

architectures with legacy software, such as the x86 

architecture that dominates the desktop computer 

market. Specifying multiple operations per 

instruction creates a very-long instruction word 

architecture or VLIW. A VLIW implementation has 

capabilities very similar to those of a superscalar 

processor-issuing and completing more than one 

operation at a time-with one important exception: the 

VLIW hardware is not responsible for discovering 

opportunities to execute multiple operations 

concurrently. For the VLIW implementation, the long 

instruction word already encodes the concurrent 

operations. This explicit encoding leads to 

dramatically reduced hardware complexity compared 

to a high-degree superscalar implementation of a 

RISC or CISC. The big advantage of VLIW, then, is 

that a highly concurrent (parallel) implementation is 

much simpler and cheaper to build than equivalently 

concurrent RISC or CISC chips. VLIW is a simpler 

way to build a superscalar microprocessor. 

IV. PIPELINING AND BRANCH PREDICTION 

MECHANISM 

It is a technique that allows for simultaneous 

execution of parts, or stages, of instructions to more 

efficiently process them. It is first introduced in IBM 

7030 (Stretch Computer). 

1986 was the first pipelined CISC processor. RISC 

processors in 80s were pipelined and were efforts to 

get IPC of 1. With a 

RISC processor, 1 instruction is executed while the 

next is being decoded and its operands are being 

loaded while the following instruction is being 

fetched all at the same time. 

Thus typical pipeline generally consists of four 

stages: 

 Stage 1: Fetches instruction from memory. 

 Stage 2: Decodes instruction and fetches any 

required operands 
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 Stage 3: Executes instructions 

 Stage 4: Stores results 

Each stage processes instructions simultaneously 

after a delay to fill the pipeline and this allows CPU 

to execute 1 instruction per clock cycle. 

Apart from the CISC and RISC microprocessors, 

there has a different generation of microprocessor 

based on a concept called very long instruction word 

(VLIW). VLIW microprocessors make use of a 

concept of instruction level parallelism (ILP) 

executing multiple instructions in parallel. VLIW 

microprocessors have not the only type of 

microprocessors that take advantage of executing 

multiple instructions in parallel. Superscalar super 

pipeline CISC/RISC microprocessors are also able to 

achieve parallel execution of instructions. 

V. PRINCIPLE OF PIPELINING 

The basic principle behind pipelining is to allow to 

start the process of executing one instruction before 

the previous one has completed and it shows that 

even if there are delays in any one stage of the 

process for one instruction, it is still more efficient 

than non-pipelined processors. Figure 3.2 shows the 

processing of a sequence of instructions using a basic 

pipeline and Figure 3.3 shows the processing of a 

sequence of instructions using 4-stage pipelined. 

1) Fetch 

2) Decode 

3) Execute 

4) Write back 

 

 

 
Figure: Processing of a sequence of instructions using 

basic pipeline 
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VI. DESIGN ISSUES 

 Data dependencies and branch instructions 

have to be handled carefully. 

 Data dependency means next instruction 

depends on result of last one which has not 

taken place due to previous one in pipeline. 

Conditional jumps may be problem if last 

stage in pipeline and condition changes later 

after jump has been processed 

 

Design issues – single cycle instruction 

 Microprocessor stalled when instruction 

stage does not take one clock cycle. 

 Stalling can be because of delays in reading 

from memory, poor instruction set design, 

dependencies between instructions. 

 

Performance issues in Pipelined systems 

 Memory speed - caches. Fast memory b/w 

processor and slower memory. 

 Copy from main memory also kept in cache 

to speed up further references. 

 Caches - problem of coherency. Results kept 

in cache must go to main before it is Read or 

deleted in cache. 

 Instruction Latency: Poor instructions that 

may take more than one clock should be 

avoided. 

 Highly encoded instructions that use 

complex decoders 

 Variable length instructions with multiple 

references to memory. 

 Instructions that access main memory. 

 Complex instructions that require multiple 

clocks like floating point multiplication. 
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 Dependency Issues – If one instruction sets 

the conditions in the condition code Register 

and next tries to read those bits, 2nd has to 

wait for 1
st
 to complete. 

 Instruction scheduling – and common sub 

expression elimination. 

 

Pipeline Clock Rate 

The clock rate of the pipeline and the CPU is limited 

to its slowest stage. 

Example1:  stage pipeline with delays of 20ns, 20ns, 

100ns, 40ns. 

The clock period must be at least 100ns to handle the 

delay at the 3rd stage (100ns). This Results in a 

maximum clock rate of 10MHz. 

Thus, when all stages have same delay time, the 

pipeline will achieve maximum Performance. 

The Speedup ratio (Sn) is expressed by this formula: 

Sn = n * T1 / (n + k – 1) * Tk 

n = number of instructions 

T1 = time needed to process 1 instruction (non-

pipeline) k = number of stages in the pipeline  

Tk = clock period of the pipeline 

 

Example 2: Let T1 = 180 ns (time needed to process 

1 instruction) k = 4 (stages in the pipeline) 

Tk = 50 ns (clock period of the pipeline) 

Applying the formula, it results out as: 

Sn = n * 180 / (n + 4 – 1) * 50 

For steady state (n > ∞), the maximum speedup is 

Sn = 180 / 50 is 3.6. But in reality, the speedup would 

be slightly less than this for some reasons. The reason 

is that this does not account for the first few cycles 

needed to fill the pipeline; in addition the 180ns 

includes the time needed for the latches at the end of 

each stage. In a non-pipelined CPU, these latches and 

their associated delays do not exist and the actual 

time needed to process an instruction would be 

slightly less than 180ns. 

VII. FIELD PROGRAMMABLE GATE ARRAY 

A field programmable gate array (FPGA) is a 

semiconductor device that can be configured by the 

customer or the designer after manufacturing hence 

the name “field-programmable”. Field Programmable 

gate arrays (FPGAs) are truly revolutionary devices 

that blend the benefits of both hardware and software. 

FPGAs are programmed using a logic circuit diagram 

or a source code in Hardware Description Language 

(HDL) to specify how the chip will work. They can 

be used to implement any logical function that an 

Application Specific Integrated Circuit (ASIC) could 

perform but the ability to update the functionality 

after shipping offers advantages for many 

applications. FPGAs contain programmable logic 

components called “logic blocks”, and a hierarchy of 

reconfigurable interconnects that allow the blocks to 

be “wired together” somewhat like a one chip 

programmable breadboard. Logic blocks can be 

configured to perform complex combinational 

functions or merely simple logic gates like AND and 

XOR. In most FPGAs, the logic block also includes 

memory elements, which may be simple flip flops or 

more complete blocks of memory. FPGAs blend the 

benefits of both hardware and software. 

VIII. FPGA FOR FLOATING POINT 

COMPUTATIONS 

With gate counts approaching ten million gates, 

FPGA’s are quickly becoming suitable for major 

floating point computations. However, to date, few 

comprehensive tools that allow for floating point unit 

trade offs have been developed. 

Most commercial and academic floating point 

libraries provide only a small number of floating 

point modules with fixed parameters of bit-width, 

area and speed. Due to these limitations, user designs 

must be modified to accommodate the available 

units. The balance between FPGA floating point unit 

resources and performance is influenced by subtle 

context and design requirements. Generally, 

implementation requirements are characterized by 

throughput, latency and area. FPGAs are often used 

in place of software to take advantage of inherent 

parallelism and specialization. For data intensive 

applications, data throughput is critical. 

1. If floating point computation is in a dependent 

loop, computation latency could be an overall 

performance bottleneck. 

IX. FPGA IMPLEMENTATION 

The FPGA that is used for the implementation of the 

circuit is the Xilinx Spartan 3E (Family), XC4VFX12 

(Device). The working environment/tool for the 

design is the Xilinx ISE 
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Figure: FPGA Design Flow  

X.CONCLUSION 

A design of 4-stage 64-bit VLIW microprocessor 

performing arithmetic, logical and compare operation 

and branch instructions is presented in this paper. 

According to the basic principle of VLIW 

microprocessor, it is rationally divided into five main 

modules. Such as fetch module, decode module, 

register file, execute module, write back module. 

Each main module is reasonably divided again, and 

realized the function of every module based on the 

principle of FPGAs, so as to implement five main 

modules. At last, the whole function of VLIW 

microprocessor is completely finished. It completes 

the data of empty operation, addition, subtraction, 

multiplication, load, and move, read, comparison, 

XOR, NAND, NOR, NOT, shift left, shift right, 

barrel shift left, barrel shift right in VLIW 

Microprocessor. 
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