
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101023 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 338

CONCEPT OF POLYMORPHISM IN OBJECT

ORIENTED PROGRAMMING

Anoop & Sunil Rai

Department Of Electronics And Computer

Dronacharya College Of Engineering, Gurgaon, Haryana

Abstract- The objective of this paper is to

comprehensive study related to concept of

Polymorphism in Object Oriented programming i.e,

OOPS. Polymorphism is the ability to exist in different

forms. OOP allows objects belonging to different data

types to respond to calls of methods of the same name,

each one according to an appropriate type-specific

behavior. In object-oriented programming,

polymorphism refers to a programming language's

ability to process objects differently depending on their

data type or class. We will now attempt to describe

more precisely the concept of polymorphism.

Index Terms- OOPS; class; polymorphism.

I. INTRODUCTION

The word Polymorphism means of many forms. In

programming this word is meant to reuse the single

code multiple times. In object oriented programming

it’s a big question that why the Polymorphism is

done, what is the purpose of it in our code?

There are lots of people who don't even know the

purpose and usage of Polymorphism. Polymorphism

is the 3rd main pillar of OOP without it the object

oriented programming is incomplete. Lets go in the

depth of Polymorphism.

II. WHY POLYMORPHISM IS DONE IN OOP?

It’s obvious that when we do inheritance between

two classes, all the methods and properties of the first

class are derived to the other class so that this

becomes the child class which adobes all the

functionality of base class. It can also possesses its

own separate methods.

But there is a big problem in inheriting the second

class to the first class as it adobes all the methods

same as the base class has, which means that after

inheritance both (base class& child class) have the

methods of same name and same body as shown in

this example:

____Base Class___

public class fish

{

 public void eat()

 {

 console.writeline("fish eat");

 }

 public void swim()

 {

 console.writeline("fish swim");

 }

 }

______Derived Class______

Class Dolphen:fish

{

 public void eat()

 {

 console.writeline("fish eat");

 }

 public void swim()

 {

 console.writeline("fish swim");

 }

}

III. TYPES OF POLYMORPHISM

In general there are three types of polymorphism:

 Overloading polymorphism

 Parametric polymorphism

 Inclusion polymorphism

http://www.webopedia.com/TERM/O/object_oriented_programming_OOP.html
http://www.webopedia.com/TERM/P/programming_language.html
http://www.webopedia.com/TERM/D/data_type.html
http://www.webopedia.com/TERM/C/class.html

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101023 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 339

A. Ad hoc polymorphism

Chris Strachey chose the term ad hoc polymorphism

to refer to polymorphic functions which can be

applied to arguments of different types, but which

behave differently depending on the type of the

argument to which they are applied (also known as

function overloading or operator overloading). The

term "ad hoc" in this context is not intended to be

pejorative; it refers simply to the fact that this type of

polymorphism is not a fundamental feature of the

type system. In the example below, the Add functions

seem to work generically over various types when

looking at the invocations, but are considered to be

two entirely distinct functions by the compiler for all

intents and purposes:

B. Parametric polymorphism

Parametric polymorphism allows a function or a data

type to be written generically, so that it can handle

values identically without depending on their type.
[6]

Parametric polymorphism is a way to make a

language more expressive, while still maintaining full

static type-safety.

The concept of parametric polymorphism applies to

both data types and functions. A function that can

evaluate to or be applied to values of different types

is known as a polymorphic function. A data type that

can appear to be of a generalized type (e.g., a list

with elements of arbitrary type) is designated

polymorphic data type like the generalized type from

which such specializations are made.

Parametric polymorphism is ubiquitous in functional

programming, where it is often simply referred to as

"polymorphism". following example shows a

parameterized list data type and two parametrically

polymorphic functions on them:

C. Overloading Polymorphism

Overloading polymorphism is where functions of the

same name exist, with similar functionality, in classes

which are completely independent of each other

(these do not have to be children of the object class).

For example, the complex class, the image class and

the link class may each have the function "display".

This means that we do not need to worry about what

type of object we are dealing with if all we want to

do is display it on the screen.

Overloading polymorphism therefore allows us to

define operators whose behavior will vary depending

on the parameters that are applied to them. Therefore

it is possible, for example, to add the + operator and

make it behave differently according to whether it

refers to an operation between two integers (addition)

or between two character strings (concatenation).

IV. APPLICATION

Polymorphism is the foundation of Object Oriented

Programming. It means that one object can behave as

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101023 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 340

another project. So how does on object can become

other, it’s possible through following

1. Inheritance

2. Overriding/Implementing parent Class

behavior

3. Runtime Object binding

One of the main advantages of it is switch

implementations. Let’s say you are coding an

application which needs to talk to a database. And

you happen to define a class which does this database

operation for you and its expected to do certain

operations such as Add, Delete, Modify. You know

that database can be implemented in many ways; it

could be talking to file system or a RDBM server

such as MySQL etc. So you as programmer would

define an interface that you could use, such as...

public interface DBOperation {

 public void addEmployee(Employee

newEmployee);

 public void modifyEmployee(int id, Employee

newInfo);

 public void deleteEmployee(int id);

}

You can use polymorphism concept in many places,

one particle example would be: lets you are writing

image decoder, and you need to support the whole

bunch of images such as jpg, tif, png etc. So your

application will define an interface and work on it

directly. And you would have some runtime binding

of various implementations for each of jpg, tif, pgn

etc.

One other important use is, if you are using java,

most of the time you would work on List interface, so

that you can use Array List today or some other

interface as your application grows or its needs

change.

V. CONCLUSION

As we discussed above that polymorphism has its

importance in object oriented programming, we can

say that as time passes its importance will also

increase rapidly.

REFERENCES

1. Faizan Ahmed, www.DotNetFunda.com

2. www.CareerRide.com

3. Gurunatha Dogi, www.onlinebuff.com

4. www.wikipedia.com

5. www.health.kioskea.net

6. C. Strachey - Fundamental Concepts in

Programming Languages

7. Cory Janssen, www.techopedia.com

8. Pierce, B. C. 2002 Types and Programming

Languages. MIT Press.

9. www.techtarget.com

10. www.stackoverflow.com

