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Abstract - This research paper focuses on AVL tree and 

the various operations that are performed in AVL 

tree.These operations are namely insertion, deletion, 

searching, and traversal.  This paper in brief discusses 

about the all the operation of AVL tree. 
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I. INTRODUCTION 

In computer science, an AVL tree is a self-balancing 

binary search tree. It was the first such data 

structure to be invented.
[1]

 In an AVL tree, 

the heights of the two child subtrees of any node 

differ by at most one; if at any time they differ by 

more than one, rebalancing is done to restore this 

property. Lookup, insertion, and deletion all 

take O(log n) time in both the average and worst 

cases, where n is the number of nodes in the tree 

prior to the operation. Insertions and deletions may 

require the tree to be rebalanced by one or more tree 

rotations. 

The AVL tree is named after its 

two Soviet inventors, Georgy Adelson-Velsky and E. 

M. Landis, who published it in their 1962 paper "An 

algorithm for the organization of information".
[2]

AVL 

trees are often compared with red-black trees because 

both support the same set of operations and 

take O(log n) time for the basic operations. For 

lookup-intensive applications, AVL trees are faster 

than red-black trees because they are more rigidly 

balanced.
[3]

 Similar to red-black trees, AVL trees are 

height-balanced. Both are in general not weight-

balanced nor μ-balanced for any ;
[4]

 that is, 

sibling nodes can have hugely differing numbers of 

descendants. 

 

 

 

 

 

II. OPERATIONS 

 
Tree rotations 

Basic operations of an AVL tree involve carrying out 

the same actions as would be carried out on an 

unbalanced binary search tree, but modifications are 

followed by zero or more operations called tree 

rotations, which help to restore the height balance of 

the subtrees. 

Searching 

Searching in an AVL tree is done as in any binary 

search tree. The special thing about AVL trees is that 

the number of comparisons required, i.e. the AVL 

tree's height, is guaranteed never to exceed log(n). 

Traversal 

Once a node has been found in a balanced tree, 

the next or previous nodes can be explored 

in amortized constant time. Some instances of 

exploring these "nearby" nodes require traversing up 

to log(n) links (particularly when moving from the 

rightmost leaf of the root's left subtree to the root or 

from the root to the leftmost leaf of the root's right 

subtree; in the example AVL tree, moving from node 

14 to the next but one node 19 takes 4 steps). 

However, exploring all nnodes of the tree in this 

manner would use each link exactly twice: one 

traversal to enter the subtree rooted at that node, 

another to leave that node's subtree after having 

explored it. And since there are n−1 links in any tree, 

the amortized cost is found to be 2×(n−1)/n, or 

approximately 2. 

 

http://en.wikipedia.org/wiki/File:BinaryTreeRotations.svg
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Insertion 

 
Pictorial description of how rotations rebalance an 

AVL tree. The numbered circles represent the nodes 

being rebalanced. The lettered triangles represent 

subtrees which are themselves balanced AVL trees. 

A blue number next to a node denotes possible 

balance factors (those in parentheses occurring only 

in case of deletion). 

 

After inserting a node, it is necessary to check each 

of the node's ancestors for consistency with the rules 

of AVL ("retracing"). The balance factor is calculated 

as follows: balanceFactor = height(left subtree) - 

height(right subtree). Since with a single insertion the 

height of an AVL subtree cannot increase by more 

than one, the temporary balance factor of a node will 

be in the range from −2 to +2. For each node 

checked, if the balance factor remains in the range 

from −1 to +1 then only corrections of the balance 

factor, but no rotations are necessary. However, if 

balance factor becomes less than −1 or greater than 

+1, the subtree rooted at this node is unbalanced. 

Description of the Rotation 

Let us first assume the balance factor of a node P is 2 

(as opposed to the other possible unbalanced value 

−2). This case is depicted in the left column of the 

illustration with P:=5. We then look at the left subtree 

(the larger one) with root N. If this subtree does not 

lean to the right - i.e. N has balance factor 1 (or, 

when deletion also 0) - we can rotate the whole tree 

to the right to get a balanced tree. This is labelled as 

the "Left Left Case" in the illustration with N:=4. If 

the subtree does lean to the right - i.e. N:=3 has 

balance factor −1 - we first rotate the subtree to the 

left and end up the previous case. This second case is 

labelled as "Left Right Case" in the illustration.If the 

balance factor of the node P is −2 (this case is 

depicted in the right column of the illustration P:=3) 

we can mirror the above algorithm. I.e. if the root N 

of the (larger) right subtree has balance factor −1 (or, 

when deletion also 0) we can rotate the whole tree to 

the left to get a balanced tree. This is labelled as the 

"Right Right Case" in the illustration with N:=4. If 

the root N:=5 of the right subtree has balance factor 1 

("Right Left Case") we can rotate the subtree to the 

right to end up in the "Right Right Case". 

 

After a rotation a subtree has the same height as 

before, so retracing can stop. In order to restore the 

balance factors of all nodes, first observe that all 

nodes requiring correction lie along the path used 

during the initial insertion. If the above procedure is 

applied to nodes along this path, starting from the 

bottom (i.e. the inserted node), then every node in the 

tree will again have a balance factor of −1, 0, or 1. 

The time required is O(log n) for lookup, plus a 

maximum of O(log n) retracing levels on the way 

back to the root, so the operation can be completed in 

O(log n) time. 

Deletion 

Let node X be the node with the value we need to 

delete, and let node Y be a node in the tree we need 

to find to take node X's place, and let node Z be the 

actual node we take out of the tree. 

http://en.wikipedia.org/wiki/File:AVL_Tree_Rebalancing.svg
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Deleting a node with two children from a binary 

search tree using the in-order predecessor (rightmost 

node in the left subtree, labelled 6). 

Steps to consider when deleting a node in an AVL 

tree are the following: 

1. If node X is a leaf or has only one child, skip 

to step 5 with Z:=X. 

2. Otherwise, determine node Y by finding the 

largest node in node X's left subtree (the in-

order predecessor of X − it does not have a 

right child) or the smallest in its right 

subtree (the in-order successor of X − it 

does not have a left child). 

3. Exchange all the child and parent links of 

node X with those of node Y. In this step, 

the in-order sequence between nodes X and 

Y is temporarily disturbed, but the tree 

structure doesn't change. 

4. Choose node Z to be all the child and parent 

links of old node Y = those of new node X. 

5. If node Z has a subtree (which then is a leaf) 

attach it to Z's parent. 

6. If node Z was the root (its parent is null), 

update root. 

7. Delete node Z. 

8. Retrace the path back up the tree (starting 

with node Z's parent) to the root, adjusting 

the balance factors as needed. 

Since with a single deletion the height of an AVL 

subtree cannot decrease by more than one, the 

temporary balance factor of a node will be in the 

range from −2 to +2. 

If the balance factor becomes ±2 then the subtree is 

unbalanced and needs to be rotated. The various 

cases of rotations are depicted in 

section "Insertion" together with a brief description. 

The retracing can stop if the balance factor becomes 

±1 indicating that the height of that subtree has 

remained unchanged. This can also result from a 

rotation when the higher child tree has a balance 

factor of 0. (In case of an insertion the higher child 

tree involved in a rotation always has a balance factor 

of ±1.) 

If the balance factor becomes 0 then the height of the 

subtree has decreased by one and the retracing needs 

to continue. This can also result from a rotation. 

The time required is O(log n) for lookup, plus a 

maximum of O(log n) retracing levels on the way 

back to the root, so the operation can be completed in 

O(log n) time. 

III. CONCLUSION 

With the help of this paper we are able to study and 

understand the AVL tree and also its various 

operations.  
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