
© 2014 IJIRT | Volume 1 Issue 6 | ISSN: 2349-6002

IJIRT 101072 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1826

AVL TREE AND ITS OPERATIONS

Siddharth Nair, Simran Singh Oberoi, Shubham Sharma

ECE Dept, Dronacharya College of Engg

Abstract - This research paper focuses on AVL tree and

the various operations that are performed in AVL

tree.These operations are namely insertion, deletion,

searching, and traversal. This paper in brief discusses

about the all the operation of AVL tree.

Index Terms- AVL, binary, insertion, deletion, self-

balancing, subtrees, nodes, traversal, rotation,

operation

I. INTRODUCTION

In computer science, an AVL tree is a self-balancing

binary search tree. It was the first such data

structure to be invented.
[1]

 In an AVL tree,

the heights of the two child subtrees of any node

differ by at most one; if at any time they differ by

more than one, rebalancing is done to restore this

property. Lookup, insertion, and deletion all

take O(log n) time in both the average and worst

cases, where n is the number of nodes in the tree

prior to the operation. Insertions and deletions may

require the tree to be rebalanced by one or more tree

rotations.

The AVL tree is named after its

two Soviet inventors, Georgy Adelson-Velsky and E.

M. Landis, who published it in their 1962 paper "An

algorithm for the organization of information".
[2]

AVL

trees are often compared with red-black trees because

both support the same set of operations and

take O(log n) time for the basic operations. For

lookup-intensive applications, AVL trees are faster

than red-black trees because they are more rigidly

balanced.
[3]

 Similar to red-black trees, AVL trees are

height-balanced. Both are in general not weight-

balanced nor μ-balanced for any ;
[4]

 that is,

sibling nodes can have hugely differing numbers of

descendants.

II. OPERATIONS

Tree rotations

Basic operations of an AVL tree involve carrying out

the same actions as would be carried out on an

unbalanced binary search tree, but modifications are

followed by zero or more operations called tree

rotations, which help to restore the height balance of

the subtrees.

Searching

Searching in an AVL tree is done as in any binary

search tree. The special thing about AVL trees is that

the number of comparisons required, i.e. the AVL

tree's height, is guaranteed never to exceed log(n).

Traversal

Once a node has been found in a balanced tree,

the next or previous nodes can be explored

in amortized constant time. Some instances of

exploring these "nearby" nodes require traversing up

to log(n) links (particularly when moving from the

rightmost leaf of the root's left subtree to the root or

from the root to the leftmost leaf of the root's right

subtree; in the example AVL tree, moving from node

14 to the next but one node 19 takes 4 steps).

However, exploring all nnodes of the tree in this

manner would use each link exactly twice: one

traversal to enter the subtree rooted at that node,

another to leave that node's subtree after having

explored it. And since there are n−1 links in any tree,

the amortized cost is found to be 2×(n−1)/n, or

approximately 2.

http://en.wikipedia.org/wiki/File:BinaryTreeRotations.svg

© 2014 IJIRT | Volume 1 Issue 6 | ISSN: 2349-6002

IJIRT 101072 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1827

Insertion

Pictorial description of how rotations rebalance an

AVL tree. The numbered circles represent the nodes

being rebalanced. The lettered triangles represent

subtrees which are themselves balanced AVL trees.

A blue number next to a node denotes possible

balance factors (those in parentheses occurring only

in case of deletion).

After inserting a node, it is necessary to check each

of the node's ancestors for consistency with the rules

of AVL ("retracing"). The balance factor is calculated

as follows: balanceFactor = height(left subtree) -

height(right subtree). Since with a single insertion the

height of an AVL subtree cannot increase by more

than one, the temporary balance factor of a node will

be in the range from −2 to +2. For each node

checked, if the balance factor remains in the range

from −1 to +1 then only corrections of the balance

factor, but no rotations are necessary. However, if

balance factor becomes less than −1 or greater than

+1, the subtree rooted at this node is unbalanced.

Description of the Rotation

Let us first assume the balance factor of a node P is 2

(as opposed to the other possible unbalanced value

−2). This case is depicted in the left column of the

illustration with P:=5. We then look at the left subtree

(the larger one) with root N. If this subtree does not

lean to the right - i.e. N has balance factor 1 (or,

when deletion also 0) - we can rotate the whole tree

to the right to get a balanced tree. This is labelled as

the "Left Left Case" in the illustration with N:=4. If

the subtree does lean to the right - i.e. N:=3 has

balance factor −1 - we first rotate the subtree to the

left and end up the previous case. This second case is

labelled as "Left Right Case" in the illustration.If the

balance factor of the node P is −2 (this case is

depicted in the right column of the illustration P:=3)

we can mirror the above algorithm. I.e. if the root N

of the (larger) right subtree has balance factor −1 (or,

when deletion also 0) we can rotate the whole tree to

the left to get a balanced tree. This is labelled as the

"Right Right Case" in the illustration with N:=4. If

the root N:=5 of the right subtree has balance factor 1

("Right Left Case") we can rotate the subtree to the

right to end up in the "Right Right Case".

After a rotation a subtree has the same height as

before, so retracing can stop. In order to restore the

balance factors of all nodes, first observe that all

nodes requiring correction lie along the path used

during the initial insertion. If the above procedure is

applied to nodes along this path, starting from the

bottom (i.e. the inserted node), then every node in the

tree will again have a balance factor of −1, 0, or 1.

The time required is O(log n) for lookup, plus a

maximum of O(log n) retracing levels on the way

back to the root, so the operation can be completed in

O(log n) time.

Deletion

Let node X be the node with the value we need to

delete, and let node Y be a node in the tree we need

to find to take node X's place, and let node Z be the

actual node we take out of the tree.

http://en.wikipedia.org/wiki/File:AVL_Tree_Rebalancing.svg

© 2014 IJIRT | Volume 1 Issue 6 | ISSN: 2349-6002

IJIRT 101072 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1828

Deleting a node with two children from a binary

search tree using the in-order predecessor (rightmost

node in the left subtree, labelled 6).

Steps to consider when deleting a node in an AVL

tree are the following:

1. If node X is a leaf or has only one child, skip

to step 5 with Z:=X.

2. Otherwise, determine node Y by finding the

largest node in node X's left subtree (the in-

order predecessor of X − it does not have a

right child) or the smallest in its right

subtree (the in-order successor of X − it

does not have a left child).

3. Exchange all the child and parent links of

node X with those of node Y. In this step,

the in-order sequence between nodes X and

Y is temporarily disturbed, but the tree

structure doesn't change.

4. Choose node Z to be all the child and parent

links of old node Y = those of new node X.

5. If node Z has a subtree (which then is a leaf)

attach it to Z's parent.

6. If node Z was the root (its parent is null),

update root.

7. Delete node Z.

8. Retrace the path back up the tree (starting

with node Z's parent) to the root, adjusting

the balance factors as needed.

Since with a single deletion the height of an AVL

subtree cannot decrease by more than one, the

temporary balance factor of a node will be in the

range from −2 to +2.

If the balance factor becomes ±2 then the subtree is

unbalanced and needs to be rotated. The various

cases of rotations are depicted in

section "Insertion" together with a brief description.

The retracing can stop if the balance factor becomes

±1 indicating that the height of that subtree has

remained unchanged. This can also result from a

rotation when the higher child tree has a balance

factor of 0. (In case of an insertion the higher child

tree involved in a rotation always has a balance factor

of ±1.)

If the balance factor becomes 0 then the height of the

subtree has decreased by one and the retracing needs

to continue. This can also result from a rotation.

The time required is O(log n) for lookup, plus a

maximum of O(log n) retracing levels on the way

back to the root, so the operation can be completed in

O(log n) time.

III. CONCLUSION

With the help of this paper we are able to study and

understand the AVL tree and also its various

operations.

REFERENCES

1) www.google.com

2) www.wikipedia.com

3) Data Structure- AK Sharma

http://en.wikipedia.org/wiki/File:Binary_search_tree_delete.svg

