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 Music is the pleasure the human soul experiences from counting without being aware that it is counting.  
-Gottfried Wilhelm von Leibniz, a German mathematician who co-discovered calculus.  
 
Abstract- A history of mathematics includes early 

connections with music and the basic physics of sound. 

Mathematics is present in the natural occurrence of the 

ratios and intervals found in music and modern tuning 

systems. In this paper we will examine both the 

mathematics and music background for these ideas. We 

will examine the Fourier Series representations of 

sound waves and see how they relate to harmonics and 

tonal color of instruments. Some modern applications of 

the analysis will also be introduced. 

I. INTRODUCTION 

To those who have studied mathematics or music in 

any depth, it has certainly been mentioned that 

mathematics and music are deeply connected at the 

roots. This often seems to be taken as an unexplained 

given. If asked, however, to relate some specifics of 

the connection, most students of either principal may 

not have much to say. This paper is aimed at 

exploring the relation between mathematics and 

music, including a specific discipline of mathematics, 

Fourier Analysis. Fourier Analysis can be used to 

identify naturally occurring harmonics (which are, 

simply put, the basis of all musical composition), to 

model sound, and to break up sound into the pieces 

that define it.  

II. HISTORY OF FOURIER ANALYSIS 

AND MUSIC 

The connection between mathematics and music goes 

back at least as far as the sixth century B.C. with a 

Greek philosopher named Pythagoras. Most people 

will know him best for the Pythagorean Theorem in 

relation to geometry or trigonometry, but this is not 

his only claim to fame. He studied music as well, and 

understood the arithmetical relationships between 

pitches. It is said that he discovered the relationship 

between number and sound. He believed that 

numbers were the ruling principal of the universe. As 

the human ear is unable to numerically analyze 

sound, Pythagoras turned to the vibrating string, 

explored the ideas of the length of strings and 

pitches, and found simple ratios relating harmonizing 

tones [Forster]. A musical tuning system is based on 

his discoveries, and will be discussed below.  

These ratios and harmonizing tones come from the 

harmonic series, which will be discussed in detail 

later. The basic idea for now, is that harmonics are 

tones that have frequencies that are integer multiples 

of the original tone, the fundamental tone. The 

fundamental and its harmonics naturally sound good 

together. Each tone has a harmonic series, which can 

be used to fill in a scale of notes; western music is 

based on harmonics. When a note is played on an 

instrument, due to the physics of the sound waves, we 

don’t hear only that tone; we hear the played tone as 

the fundamental, as well as a combination of its 

harmonics sounding at the same time.  

After Pythagoras discovered harmonics, many more 

explored the idea more thoroughly. At least two 

unassociated men took significant steps in defining 

harmonics. The first of these is Marin Mersenne 

(1588-1648), a French theologian, philosopher, 

mathematician, and music theorist. Some sources say 

he discovered harmonics, which he called sons 

extraordinaire, but in actuality, he defined the 

harmonics that Pythagoras had already found. 

He mathematically defined the first six harmonics as 

ratios of the fundamental frequency, 1/1, 2/1, 3/1, 

4/1, 5/1, and 6/1, or the first six integer multiples of 

the original tone’s frequency [Forster]. Mersenne 

worked out tuning systems (this idea will be 

discussed below) based on harmonics. Also attributed 

with defining harmonics is Jean-Philippe Rameau 

(1683-1764), a French composer and music theorist. 
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Rameau understood harmonics in relation to 

consonances and dissonances (intervals that sound 

good or clash) and harmonies. His paper, Treatise on 

Harmony, published in the 1720’s, was a theory of 

harmony based on the fact that he heard many 

harmonics sounding simultaneously when each note 

was played. Whether  these two men’s work was 

related or not, Rameau’s Treatise on Harmony 

created a stir that initiated a revolution in music 

theory. Musicians began to notice other harmonics 

sounding in addition to the played, fundamental tone, 

notably the 12th and 17th, which are the 12th and 

17th steps in the scale of a given note, respectively 

[Sawyer].  

In the 18th century, calculus became a tool, and was 

used in discussions on vibrating strings. Brook 

Taylor, who discovered the Taylor Series, found a 

differential equation representing the vibrations of a 

string based on initial conditions, and found a sine 

curve as a solution to this equation [Archibald].  

Daniel Bernoulli (1700-1782) and Leonhard Euler 

(1707-1783), Swiss mathematicians, and Jean-

Baptiste D’Alembert (1717-1783), a French 

mathematician, physicist, philosopher, and music 

theorist, were all prominent in the ensuing 

mathematical music debate. In 1751, Bernoulli’s 

memoir of 1741-1743 took Rameau’s findings into 

account, and in 1752, D’Alembert published 

Elements of theoretical and practical music 

according to the principals of Monsieur Rameau, 

clarified, developed, and simplified. D’Alembert was 

also led to a differential equation from Taylor’s 

problem of the vibrating string,  2   2= 2  2   2  

where the origin of the coordinates is at the end of the 

string, the x-axis is the direction of the string, y is the 

displacement at time t [Archibald]. This equation is 

basically the wave equation, which will be discussed 

later.  

Euler questioned the generality of this equation; 

while D’Alembert assumed one equation to represent 

the string, Euler said it could lie along any arbitrary 

curve initially, and therefore require multiple 

different expressions to model the curve. The idea 

was that a simply plucked string at starting position 

represents two lines, which cannot be represented in 

one equation 

 

.  

 
Bernoulli disagreed. After following Rameau’s hint, 

he made an arbitrary mix of harmonics to get 

 = ₁        + ₂   2    2 + ₃   3    3 +⋯ 

[Sawyer]. His theory was that this equation could 

represent every possible vibration that could be made 

by a stretched string released from some position. 

Setting t = 0 should give the initial position of the 

string. Bernoulli said his solution was general, and 

therefore should include the solutions of Euler and 

D’Alembert. This led to the problem of expanding 

arbitrary functions with trigonometric series. This 

idea was received with much skepticism, and no 

mathematician would admit its possibility until it was 

thoroughly demonstrated by Fourier [Archibald].  

This leads us to our celebrity, Jean Baptiste Fourier, 

Baron de Fourier (1768-1830), a French 

mathematician. Fourier, the ninth child of a tailor, 

originally intended to become a priest, but decided to 

study mathematics instead. He studied at the military 

school in Auxerre, and was a staff member at the 

École Normale, and then the École Polytechnique in 

Paris, and through a recommendation to the Bishop 

of Auxerre, he was educated by the Benvenistes, a 

wealthy, scholarly family. He succeeded Lagrange at 

the École Polytechnique and travelled to Egypt in 

1798 with Napoleon, who made him governor of 

Lower Egypt. He returned to France in 1801 and 

published his paper On the Propagation of Heat in 

Solid Bodies in 1807 [Marks]. His theory about the 

solution to a heat wave equation, stating the wave 

equation could be solved with a sum of trigonometric 

functions, was criticized by scientists for fifteen years 

[Jordan]. What he came up with, effectively, was the 

Fourier Series. In 1812, the memoir of his results was 

crowned by the French Academy [Archibald]. 

III. THE FOURIER SERIES 

The Fourier Series is the key to the idea of the 

decomposition of a signal into sinusoidal 

components, and the utility of its descriptive power is 

impressive, second only to the differential equation in 

the modeling of physical phenomena, according to 

Robert Marks, author of The Handbook of Fourier 

Analysis and Its Applications. The basic Fourier 

Series takes the form of 
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The idea is that as  →∞, the Fourier Series for f(x) will have enough terms that it will converge to the function. See 
the example below. 
 

 

 
Figure b. ( )=     1  ℎ   0< < 0 

0  ℎ  − < <0 
Figure b shows a simple piecewise equation in red, 

and the partial sums in blue (summed to a given n) of 

the Fourier Series of the function for n=1, 3, 5, 7, 11, 

15. As n grows, the Fourier Series gives a closer 

approximation of the actual function. 

 

The Fourier Series is the sum of trigonometric 

functions with coefficients specific to the function 

modeled. It is a sum of continuous functions, which 

can converge pointwise to a discontinuous function, 

as seen above, where each partial sum will be a 

continuous function. It can be used to solve and 

model complicated functions, and is a solution to the 

wave equation, which is a differential equation. The 

series can model any periodic function, but can also 

be used with other functions. The concept of sums of 

trigonometric functions to model other functions was 

not a new one in Fourier’s time: Bernhard Riemann 

did some work with trigonometric functions to model 

other functions, as did Bernoulli. 

IV. SOUND BASICS 

The Fourier Series has many applications in the 

physical world, including that of modeling sound. 

Pure tones have frequency and amplitude, which 

determine the pitch and the strength of the sound, 
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respectively. These are waves, and can therefore be 

represented by sinusoidal equations. Sounds are made 

of pure tones, combined in linear combinations to 

create more complex sounds, such as chords.  

The vibrating strings and air columns on instruments 

obey the wave equation. The wave equation, as found 

by D’Alembert in equation 1, is a differential 

equation that examines the behavior of a piece of a 

string based on initial conditions, displacement, and 

release from rest. As hypothesized by Bernoulli, the 

Fourier Series is a solution to the wave equation. This 

means that Fourier Series can be used to model the 

sound waves produced by vibrating strings and air 

columns.  

Now that we’ve established the basics of sound, let’s 

return to pure tones. Pure tones are, as implied by the 

name, pure and simple sound waves, which can be 

modeled by a single trigonometric function. For 

example, the pure tone of frequency 220 Hz, which 

would be an A in musical terms, has the following 

graph: 

 

 

 

 

Figure c.  =asin(2  
(   ) ) , a is the 

amplitude of the wave.  

The frequency of 

220Hz would be an A 

in music.  

 

 

 

 

 

 

 

of frequency 220 It can 

be seen from the graphs and the equations that the two notes differ by frequency, and therefore have different 

periods, but are both simple sinusoidal functions. If we listen to these tones produced by a computer, they sound 

very simple, and almost empty. We can’t say which instrument would make these sounds, because an instrument 

cannot produce these pure tones, which we will discuss below. More complex tones, which sound less empty, are 

made by the addition of pure tones.  
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It can be seen from the graphs and the equations that 

the two notes differ by frequency, and therefore have 

different periods, but are both simple sinusoidal 

functions. If we listen to these tones produced by a 

computer, they sound very simple, and almost empty. 

We can’t say which instrument would make these 

sounds, because an instrument cannot produce these 

pure tones, which we will discuss below. More 

complex tones, which sound less empty, are made by 

the addition of pure tones. 

V. HARMONICS AND THE HARMONIC 

SERIES 

This leads us to the discussion of harmonics. As 

mentioned above, when an instrument plays a note, 

the wave produced is not just a pure tone; it is a 

complex tone based on the physics of the instrument. 

When the note is played, the fundamental frequency 

is heard, as well as overtones, or harmonics. This is 

what determines the timbre of the instrument, or the 

tonal color; timbre is why different instruments 

playing the same note do not all sound the same. The 

instrument’s timbre is what distinguishes its sound 

from that of a different instrument. The strength, or 

amplitude, of each harmonic is the difference we’re 

hearing, since each note played includes the 

fundamental tone and some harmonics. In the graphs 

below, we see the harmonics and sound waves from 

the same note on different instruments. The blue 

wave is the sound wave, and the red bars are the 

amplitudes of respective harmonics, 

 

 

 Figure e. This is a graph of a pure tone at a frequency of 349 Hz. Note it is only a sine wave, and there are no 

harmonics sounding, just the fundamental tone. This does not sound like a note played on an instrument because 

it is purely the fundamental tone, with no harmonics to add tonal color. 
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Figure f. This is a graph of an oboe playing the same tone. Note the differences in the wave. This is due to the     

harmonics that are also heard, as seen below the graph. 

 

 

 

 

 

 

 
Figure g. This is a graph of a clarinet playing the same tone. The wave is similar to that of the oboe, but still 

notably different due to the different harmonics sounding with the fundamental. 

 

Figure g. This is a graph of a clarinet playing the 

same tone. The wave is similar to that of the oboe, 

but still notably different due to the different 

harmonics sounding with the fundamental.  

http://www.jhu.edu/signals/listen-new/listen-

newindex.htm 

Harmonics are integer multiples of the fundamental 

frequency, and are therefore from the harmonic series 

of that frequency, which is the series of harmonics of 

the given fundamental. The frequency of the Mth 

harmonic of a tone is ( +1)₀, where  ₀ is the 

fundamental frequency, which is defined as the 
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lowest frequency allowed by the length of the air 

column or string. So to recap, the fundamental 

frequency is the pitch, or note, heard when the tone is 

played. The harmonics determine the timbre, or tonal 

color, of the sound. This is what differentiates the 

sounds of different instruments playing the same 

note.  

The tonal quality, or timbre, of the sound includes its 

richness or harshness. This is not necessarily a 

technical definition, but rather how the listener would 

describe the sound. These two qualities can be 

directly attributed to the upper or lower harmonics. 

Sounds that contain more upper harmonics tend to 

sound brighter, or sometimes harsh; sounds that 

contain lower harmonics sound richer or softer.  

The contributions of upper and lower harmonics can 

also be seen in the examination of white noise. White 

noise occurs when many or all equal-amplitude 

frequencies are sounded at the same time. If one 

removes the lower-register frequencies, the sound 

suddenly becomes much harsher, and it seems 

somewhat more bearable if the higher-register 

frequencies are removed. To listen to all of the above 

sound graphs, as well as white noise, visit 

http://www.jhu.edu/signals/listen-new/listen-

newindex.htm.  

So we’ve determined the importance of harmonics in 

sound, but we haven’t yet discussed their origins in 

the harmonic series. The harmonic series is the series 

of tones created by multiplying a fundamental 

frequency by integers. This can be done based on any 

fundamental frequency, and each will result in a 

unique harmonic series. This is where pure intervals, 

intervals with frequencies related by small integer 

ratios, as found by Pythagoras when he cut strings in 

half, come from and where we get the ratios for them. 

The numerator of the ratios is the multiple of the 

fundamental frequency, and the denominator is the 

number of octaves between the two; we divide by this 

to put the tone in the same octave as the fundamental.  

As an example, let’s look at the harmonic series on 

C, where C is the fundamental note or frequency. The 

first harmonic plays a C an octave higher, which 

means that the frequency ratio between octaves is 

2:1. The second harmonic is a fifth higher than that, 

with frequency three times the fundamental 

frequency. So by dividing by 2, we put the fifth in the 

same octave as the fundamental, since it is originally 

an octave too high, and thus to go up a perfect fifth, 

the ratio is 3/2. Similarly, the ratio for a perfect 

fourth in the same octave is 4:3. Going up the 

harmonic series will produce the notes of a major 

scale, where the first five tones are those of the C 

major triad, which is C, E, and G. A triad is a very 

strong musical feature in modern Western Music. So 

multiplying the fundamental by n, we go up the 

harmonics series. To go down the series, called the 

subharmonic series, we multiply by 1/n. If we 

continue the harmonic series up and down, we will 

have the major and minor scales of notes, so we can 

fill in all of the notes of the chromatic scale, which 

would be like playing every key on a piano. All notes 

except for one, called the tritone or diablus en 

musica, devil in music. The tritone is the one and 

only note between a perfect fourth and a perfect fifth, 

and by our Western standards, it sounds awful. This 

is F# for the C harmonic series. In order to finish the 

chromatic scale, we compile the major and minor 

scales from the harmonic and subharmonic series into 

one octave, and we fill in the one missing note. 

 

 
 

When Pythagoras was investigating strings, these 

small integer ratios (above) are the ones he found. To 

the left is an illustration of the ratios on a string. The 

first image is the full length of the string vibrating. 

The second is the string divided in two, which 

doubles the frequency and produces a tone an octave 

higher. The third is the string divided in three, which 

triples the frequency, and produces a tone another 

fifth higher. As these harmonics are naturally 

occurring based on the physics of sound, they sound 

naturally pleasing, particularly in the lower 

harmonics. The harmonic series is not just a 

convenient idea created by music theorists; it actually 
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exists naturally, in the physics of sound, as 

Pythagoras discovered. 

 

 Figure i.  

If A is represented by  =    , where x is the 

frequency, then B would be represented by  =   2 , 

and C would be represented by  =   3 .  

http://www.marco-

learningsystems.com/pages/sawyer/music.html  

The first image is the full length of the string 

vibrating. The second is the string divided in two, 

which doubles the frequency and produces a tone an 

octave higher. The third is the string divided in three, 

which triples the frequency, and produces a tone 

another fifth higher                

What can provide barriers with musical notation of 

the tones from the series, however, is that as we go 

up the harmonic series to higher harmonics, the step 

size decreases. This happens because we add the 

fundamental frequency to obtain each new harmonic. 

Adding x to 2x makes a much bigger difference than 

adding x to 10x. So the step size is related to the ratio 

of frequency change each time the fundamental 

frequency is added. Since a whole and half step in 

music are set step sizes, we will eventually, as the 

intervals get smaller, have intervals from the 

harmonic series that are less than half steps. Music 

notation only allows for the fixed step size between 

adjacent notes, which are half steps. The awkward 

intervals of the upper harmonics, which are not whole 

or half steps, sound unfamiliar, and are often 

considered unpleasing. This is why we say the 

interval is pleasing if the frequencies are related by 

small integers; the requirement of small integers 

keeps us in the lower harmonics. 

Harmonic series are unique to the fundamental tone. 

A very strong pure interval is the perfect fifth, which 

can be made into a circle. By a circle, we mean that if 

we start on a note, and the next addition to the circle 

is a fifth above that, then a fifth above that, and 

continue in this manner, this includes all of the notes 

in the chromatic scale. This is how music theorists 

organize relating keys. Related keys have similar key 

signatures, which define the sharps and flats in that 

key, are close to each other in the circle of fifths, and 

therefore are related by closely by fifths. If followed 

around a circle it will lead back to the original note. 

What’s interesting is that the frequency found by 

following the circle of fifths around from one note 

will not be exactly the same as if followed around 

from another starting note. Look at the note D, a step 

above a C, for example. Based on the harmonic series 

of A, two steps below a C, it is a fourth above the 

fundamental, or a fourth above an A, so the 

frequency would be 43(220)Hz = 293.3Hz. Based on 

the harmonic series of G three steps below a C, 

however, D is a fifth above the fundamental, a G, 

which means its frequency would be 32(200)Hz = 

294Hz. This difference may be small, but the 

fundamentals differ by only one whole step. It would 

be more amplified if the fundamentals were farther 

apart. If the circle of fifths based on the fundamental 

of A at 220Hz is taken all the way around to another 

A, the frequency of the new A would be 

220 32 12=28544.2Hz, which should be a power-

of-2 multiple of 220Hz, but is not. As this new A is 

seven octaves higher, the frequency, based on perfect 

octaves having frequency ratios of 2:1, should be 

220(27)=28160  . Now the difference is more 

pronounced. This is called the Pythagorean Comma, 

and will lead us later to discussions of tuning 

systems. 

 
Figure j. This is a diagram of the Circle of fifths 

Begin on any note, and the notes to either side 

 are a fifth above or below that note 

VI. TUNING SYSTEMS 

We’ve just discussed the ratios of the pure intervals 

that occur naturally in the harmonic series. But these 

exact ratios don’t always apply in modern music. The 



© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002 

IJIRT 101143 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1181 
 

above-mentioned uniqueness of each harmonic series 

and circle of fifths to its fundamental tone is the 

reason for this. If the composer wants to change keys, 

in order to have pure intervals, different frequencies 

are needed based on ratios from the new key. In 

addition, some notes from the upper harmonics will 

sound particularly dissonant, not to mention that we 

have no way of notating ever-decreasing step sizes. 

To solve this problem, various tuning systems have 

been developed throughout history for instruments.  

The Pythagorean tuning system is based on the 

interval of a perfect fifth, and very closely on the 

harmonic series, using small integer ratios. This 

system fills in the chromatic scale with a series of 

fifths, as in the circle of fifths. In order to get to that 

final perfect octave, which is the seventh octave after 

the fundamental, eleven perfect fifths, and a 

significantly smaller fifth are needed. This sounds 

good when the not from smaller fifth is avoided, but 

doesn’t work well otherwise. This system is a 

theoretical system that hasn’t really been put into 

practice because of the problems of modulation and 

inconsistent fifths. Many historical systems have 

modified the Pythagorean system to keep some 

intervals pure, and some approximated, but many of 

these still had limits.  

The current dominant system is called equal 

temperament. This system approximates pure, 

Pythagorean ratios, but in a way that allows 

modulation and consistency. In an octave, there are 

twelve chromatic steps, which are half steps. Instead 

of having these steps vary slightly as they go up the 

harmonic series, equal temperament divides the 

octave into twelve equal steps. Since the frequency 

ratio for an octave is 2:1, this means that each half 

step has a frequency of  

                                                                             

  = ₀2 /12, 

 

where  ₀ is the fundamental frequency and n is the 

number of half steps from the fundamental note. 

Conversely, the number of half steps n between two 

frequencies u₁ and u₂ is a logarithmic equation of 

base 21/12,  

 =log ( ₁/ ₂) .  

Since each half step is exactly the same size, a G in 

the key of D will be exactly the same frequency as a 

G in the key of A. This allows for modulation. Also, 

following the fifths up, after 12 fifths, we will end up 

on a perfect octave, so we have consistency in 

frequencies.  

This system does still have a downside: because we 

use the number 21/12 for a half step, which is an 

irrational number, the intervals are not rationals, so 

they’re not pure to the harmonic series intervals. 

Since the intervals in equal temperament are not the 

pure rationals from the harmonic series, technically, 

they’re not quite in tune with each other. Key 

intervals in western music, such as the major third, 

the perfect fourth, and the perfect fifth, are very 

close, but some, such as the seventh, are noticeably 

off. This works out since the seventh is naturally 

dissonant sounding. To explain this, we divide each 

half step into 100 cents (yet another frequency 

measure). So the frequency of a given tone based on 

the fundamental and the number of cents difference is  

Since n is now the number of cents, and there are 100 

cents in a half step, the number of half steps has 

become 100n. This is just a way to more closely 

express interval sizes based on the frequency.  

An equal tempered fifth, which is seven half steps, 

should be exactly 700 cents. The perfect fifth with 

ratio of 3/2, however, is 702 cents, a very minimal 

difference. Another way to compare the frequencies 

would be to compute each pure ratio, and compare 

the decimal to the decimal irrational number from 

equal tempered system. Take the perfect fourth: 

4/3=1.3333… from the Pythagorean ratio, and 

25/12=1.3484… from equal temperament. 

We can see the difference in frequency ratios, but 

using cents gives a standardized comparison method. 

See the chart below for the comparison of all notes in 

the chromatic scale. 
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Figure k. This chart shows the frequency ratios for the two tuning systems in numbers, and in cents, based on the 

interval 

This leads to the question of Fourier Series 

representations of the sounds produced by equal 

tempered instruments verses Pythagorean tuned 

instruments. If equally tempered instruments have 

slightly different intervals between steps, does that 

mean they have different harmonics? The equal 

temperament system is just a method to have 

consistent step sizes when the instrument changes 

notes. This can change the fundamental frequency of 

certain notes, but the physics of sound still apply, in 

that each tone still has harmonics that are integer 

multiples of the fundamental frequency. A Fourier 

Series of a tone will still clearly represent the 

fundamental and the overtones in the same way, 

whether the tone is from an equally tempered or 

Pythagorean tune instrument. If the fundamentals of 

two tones are different, then the Fourier Series will 

be different. This would be slight if the difference is 

only 2 cents, as in the case of perfect vs. tempered 

fifths. 

VII. PRACTICAL APPLICATIONS AND THE 

FOURIER TRANSFORM 

While all this theory is interesting in itself, it does 

have some practical applications as well. Derived 

from the Fourier Series, the Fourier Transform can be 

used to turn musical signals into frequencies and 

amplitudes, which is what we need to understand it in 

terms of harmonics and the series. A simple form of 

the Fourier Transform, [( )]( ), is given by 

 
This can be derived from the generalized form of the 

Fourier Series and is the key to practically applying 

Fourier Analysis to music in audio form. This idea 

transforms our equations in the time domain to the 

frequency domain, or vice versa.  

Dr. Jason Brown, a mathematician at Dalhousie 

University in Canada, put this to use recently on a 

popular Beatles song, A Hard Day’s Night. To 

musicians, the opening chord (a distinct chang) has 

long been a mystery. Many scores of the song have 

tried to reproduce it, but none have ever quite 

matched. Brown decided to run the Fourier 

Transform on a one second recording of the chord 

using computer technology, and got a list of 

frequencies out—over 29,000 of them. He took only 

the frequencies with the highest amplitudes, as these 

would most likely be the fundamental frequencies, 

and possibly some strong harmonics. He then 

compared these frequencies to an A of 220Hz, using 

the half step frequency change for equal tempered 

instruments as discussed above, and found how many 
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half steps each was from the A. This was easily 

converted into a list of notes being played. Values of 

half steps that were not close to integers could be 

accounted for by out of tune instruments. Then, based 

on the instruments in the band and their physical 

capabilities, such as how many strings the piano and 

guitar instruments have for each note, he assigned 

each note to the instruments. The result was that he 

successfully recreated the chord as it was meant to 

sound, which others had only managed to 

approximate [Brown].  

Another possible use of Fourier Analysis in music is 

in using it to compose the music. Computer generated 

‘spectral’ music originated in Paris in the 1970’s, and 

emphasizes timbre, not pitch and rhythm as in 

traditionally composed music. It focuses on the 

internal frequency spectrum of the sound. Composers 

use Fourier Analysis to see and change the timbre of 

the sounds they’re creating. This could allow 

composers to create entirely new sounds, and not be 

confined by the physical capabilities of musical 

instruments. 

VIII. CONCLUSIONS 

As we can see, mathematics in music runs deep. The 

naturally pleasing ratios used in music are so pleasing 

because of the mathematical principals behind them, 

and all western music is based on the harmonic 

series. Modern tuning systems can be used to solve 

problems of modulation and consistency caused by 

the pure ratio intervals that our ears want to hear. 

Fourier Analysis is useful in modeling and breaking 

up sound, and the Fourier Transform opens up 

practical possibilities to model and define sound 

using Fourier Analysis. 
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