
© 2014 IJIRT | Volume 1 Issue 9 | ISSN: 2349-6002

IJIRT 101418 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 48

Throughput Optimization using Multi-Join Query Plans

Siddhi joshi, Jignesh Vania

Abstract - This paper introduces an efficient

framework for producing high and early result

throughput in multi-join query plans. While most

previous research focuses on optimizing for cases

involving a single join operator, this work takes a

radical step by addressing query plans with multiple

join operators. The proposed framework consists of

two main methods, a flush algorithm and operator

state manager. The framework assumes a symmetric

hash join, a common method for producing early

results, when processing incoming data. In this way,

our methods can be applied to a group of previous

join operators (optimized for single-join queries)

when taking part in multi-join query plans.

Specifically, our framework can be applied by 1)

employing a new flushing policy to write in-memory

data to disk, once memory allotment is exhausted, in a

way that helps increase the probability of producing

early result throughput in multi-join queries, and 2)

employing a state manager that adaptively switches

operators in the plan between joining in-memory data

and disk resident data in order to positively affect the

early result throughput. Extensive experimental

results show that the proposed methods outperform

the state-of-the-art join operators optimized for both

single and multi-join query plans.

Index Terms – Hash-merge join, RPJ, PMJ.

I. INTRODUCTION

Design of traditional join algorithm is based on

assumption that all input data is available before

join operation. Those algorithms are very useful to

produce overall query result, but they are not

suitable for applications that require result

immediately. Some new non-blocking join

algorithm suitable for such application like; i) when

input data arrives in online environment ii) user is

interested in first few result, rather than waiting for

complete result.

In this paper we propose a new efficient non-

blocking join algorithm for producing immediate

result in multi-join query plan (extension in

Adaptive Global Flush Algorithm). This non-

blocking join is differs from previous technique; it

explores a new approach to flush less memory

when data arrival rate is slow in order to maximize

throughput in multi-join query. This non-blocking

join selects the N amount of data to be flushed to

disk based on expected contribution of data in

previous result with least contribution.

This non-blocking Join distinguishes itself

from all other non-blocking join algorithm ([3], [4],

[7], [8] and [9]). in two new aspects: i) This Join

employs new memory flushing technique, which

flush N amount of data when memory is full (data

arrival rate is normal) or flush N/2 amount of data

when data arrival rate is slow. This Join maximize

overall query throughput for a multi-join query

plan predicting the throughput contribution of in-

memory data. ii) This Join employs a new operator

state manager that has ability to switch any

operator between joining in-memory data and on-

disk data by considering most beneficial state in

order to query throughput. Such operator state

manager does not exist in previous techniques ([3],

[4] and [7]).

II. LITERATURE SURVEY

Various non-blocking join algorithm ([3], [4],

[7], [8]) uses the symmetric hash join which is the

most widely used non-blocking join algorithm for

producing immediate result. These methods based

on; flush certain percentage of hash buckets to disk

either individually [3], [8] or in groups [4], [9]

when memory become full. All of these algorithms

used symmetric hash join in order to achieve non-

blocking behavior. The main difference between

them in the flushing algorithm used to free

memory.

These techniques focus only on the case of

single join operator while our proposed Join

extends with multi-join query plan. The closest

work to this Join is the state spilling method [7];

the only work related with multi-join query plan.

The main idea of state spilling is to score each hash

partition based on contribution in past query result

and to flush hash partition group with the lowest

score.

Hash-merge join (HMJ) algorithm is a non-

blocking join algorithm that deals with data items

from remote sources via unpredictable, slow, bursty

network traffic. The HMJ algorithm designed with

two goals: 1) Minimize the time to produce the first

few results, and (2) produce join results even if the

© 2014 IJIRT | Volume 1 Issue 9 | ISSN: 2349-6002

IJIRT 101418 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 49

two sources of the join operator occasionally get

blocked.

The HMJ algorithm has two phases: The

hashing phase and the merging phase. The hashing

phase employs an in-memory hash-based join

algorithm that produces join results as quickly as

data arrives. The merging phase is responsible for

producing join results if the two sources are

blocked. Both phases of the HMJ algorithm are

connected via a flushing policy that flushes in-

memory parts into disk storage once the memory is

exhausted. Experimental results show that HMJ

combines the advantages of two state-of-the-art

non-blocking join algorithms (XJoin and

Progressive Merge Join) while avoiding their

shortcomings.

Hash Merge Join (HMJ) [4] main idea is to

minimize time to produce first few result and

produce join result if two sources of operator

already blocked. HMJ consider only single join

operator.

Rate based Progressive Join (RPJ) maximizes

the output rate by optimizing its execution

according to the characteristics of the join relations.

RPJ utilizes a novel flushing algorithm which is

optimal among all possible alternatives (based on

the same statistics about data distributions, arrival

patterns, etc.). But RPJ is also considered as single

join operator.

This non-blocking join is concluding the

benefits of all three ([3], [4], [7]) and propose its

new approach with avoiding drawbacks of these

techniques. First, this non-blocking Join employ a

new flushing technique that take both input and

output characteristics at each join operator which

helps to predict the contribution of data in hash

buckets. Second, this non-blocking join employs an

operator state manager that switches operators in

between in-memory, on-disk resident data or in

block state, on the basis of which state is most

beneficial to produce massive result for efficient

throughput.

III. CONCLUSION

This paper introduces an algorithm to produce

massive and immediate result in multi-join query

plan. Algorithm calculate contribution of data in

overall result and flush least useful data to disk to

make room for new incoming data in online

environment. Operator state manager switches

operator in different states to maximize the overall

immediate throughput. Experimental result shows

that our proposed method is more efficient and

scalable in compare to previous non-locking join

algorithms when producing immediate and massive

result. Future work can be done on improving the

scoring of partition group; which fulfil the aim to

flush least useful partition. Also estimate optimal

data arrival rate which will help in order to produce

efficient and massive result in multi-join query.

REFERENCES

[1] V. E Ioannidis, “Query Optimization”, ACM

Computing Surveys (CSUR), pages 121-123,

March 1996.

[2] J. P Dittrich, B. Seeger, D. S Taylor, P.

Widmayer, “Progressive Merge Join: A Generic

and Non-Blocking Sort-Based Join Algorithm”, In

Proceedings of the International Conference on

Very Large Data Bases, VLDB, pages 299–310,

Hong Kong, Aug 2002.

[3] Y. Tao, M. Lung, D. Papadias, M.

Hadjieleftheriou, N. Mamoulis, “RPJ: Producing

Fast Join Results on Streams through Rate-based

Optimization”, In Proceedings of the ACM

SIGMOD international conference on Management

of data, pages 371-392, 2005.

[4] M. F Mokbel, M. Lu, W. G Aref, “Hash-Merge

Join: A Non-blocking Join Algorithm for

Producing Fast and Early Join Results”, In

Proceedings 20
th

 International conference on IEEE,

pages 251-262, 30 March-2 April 2004.

[5] X. Lin, “Query Optimization Strategies and

Implementation Based on Distributed Database”,

Computer Science and Information Technology,

ICCSIT, 2nd IEEE International Conference,

Page(s) 480-484, 8-11 Aug 2009.

[6] P. Bansal, Dr. R. Rathi, Mr. V. Jain, “DAP Join:

Produce Massive and Immediate Result in Multi

Join Query using Flushing”, In Proceedings of

IEEE Conference on Information and

Communication Technologies, pages 356-361,11-

12 April 2013.

[7] B. Liu, Y. Zhu, and E. A. Rundensteiner, “Run-

time operator state spilling for memory intensive

long-running queries,” in SIGMOD, 2006.

© 2014 IJIRT | Volume 1 Issue 9 | ISSN: 2349-6002

IJIRT 101418 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 50

[8] T. Urhan and M. J. Franklin, “XJoin: A

Reactively-Scheduled Pipelined Join Operator,”

IEEE Data Engineering Bulletin, vol. 23, no. 2,

Page(s) 27–33, 2000.

[9] levandoski et al.: on producing high and early

result throughput in multi join query plans, IEEE

transaction of knowledge and data engineering, vol.

23, no. 12, december 2011.

