
© 2014 IJIRT | Volume 1 Issue 8 | ISSN: 2349-6002

IJIRT 101453 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 17

Troubleshooting in Software as a Service (SaaS) Environments

using Multi-Agent Technology
PPG Dinesh Asanka

1
, Asoka S. Karunananda

2

Department of Computational Mathematics

University of Moratuwa, Moratuwa

Sri Lanka

Abstract— Troubleshooting in Software as a Service (SaaS)

environment is inherently complex due to involvement of multiple

sub-systems, which operate under lots of uncertainty. A research

has been conducted to develop a Multi Agent System (MAS) for

troubleshooting in SaaS environments by implementing an agent

for each subsystem. Each agent has its personal ontology with the

sub-system specific knowledge, whereas the domain ontology

comprises of commonly accessible knowledge. In presence of an

event requiring troubleshooting, the agents start communicating

with each other and arrive at a globally acceptable solution. The

communications among agents ensure the proper coordination and

negotiation so that resource utilization can be optimized within the

environment. The MAS solution has been evaluated with real

world SaaS operation in a medium scale software development

company. The experimental results show that Multi Agent solution

for troubleshooting in SaaS can generate more accurate solutions

in a lesser time.

Index Terms — Multi Agent Systems, SaaS, Message Space

Agent, Ontologies

I. INTRODUCTION

Software as a Service (SaaS) is a software delivery method

that provides access to software and its functions remotely as a

Web-based service. Software as a Service allows

organizations to access business functionality at a cost

typically less than paying for licensed applications since SaaS

pricing is based on a monthly fee or some sort of subscription

for the service that are utilized by end users. Also, because the

software is hosted remotely, users do not need to invest in

additional hardware. Software as a Service removes the need

for organizations to handle the installation, set-up, disaster

recovery, high availability and often daily upkeep and

maintenance [1], [22].

SaaS is a software distribution model, designed mainly for

web delivery, user can deploy and access through the Internet

hosting. SaaS providers need to build information for all

network infrastructures, software, hardware, operating

platform, and is responsible for the implementation of all post-

maintenance and other services including disaster recovery.

When Software and hardware and people resources are

correctly associated, deploying a SaaS application becomes

the more cost effective option in many cases [23]. Compared

with the traditional method of service, SaaS not only reduces

the cost of traditional software licensing, and vendors deploy

application software on a unified server, eliminating the end-

user's server hardware, network security devices and software

upgrade and maintenance expenses, the customer does not

need other IT investment in addition personal computers and

Internet connections to obtain the required software and

services [2]. Typical SaaS includes many sub-systems such as

network, databases, storage, servers, and applications are

interconnected, distributed and undergo changes. When there

is an issue with the one of the sub-system or small change in

the one environment, it will be significantly visible at some

other sub-system which is called butterfly [3].

In today's complex IT environments, it doesn't take much

time to cause a high impact incident. Any minute

misconfiguration or omission of a single configuration

parameter can quickly lead to an incident with high impact:

reputation damage, dissatisfied customers, financial losses,

legal liabilities, and full re-organization. Productivity drops

drastically as IT incident management teams are transformed

into a group of 'firefighters', running against time to stabilize

high-priority crises [4].

In today’s fiercely competitive environment, there are few

processes introduced by different organizations such as ITIL.

Most of the recommend process is to discuss between sub-

system experts to have a discussion to resolve the issue.

So, in case of an issue, these sub-systems need to be

communicated between them to identify the cause of the issue.

This kind of solution is difficult to produce with traditional

software technologies, because of the limits of these

technologies in coping with dynamically changing and

unmanaged environments. It would appear that agent-base

technologies represent a promising tool for deployment of

such applications because they offer the high level software

abstractions needed to manage complex applications and

because they were invented to cope with distribution and

inter-operability [5].

Though there are different practices proposed by organizations

like ITIL, there is no standard method to troubleshoot issues in

SaaS system. Different teams use their own customized ways

to troubleshoot. However, by using properties like emergent,

butterfly effect etc of Multi Agent Systems [3], system is

proposed to troubleshoot issues in SaaS.

II. SAAS PRACTICES IN TROUBLESHOOTING

In case of SaaS system, there can be multiple sub-systems

and these sub-systems will have heterogeneous supporting

platforms. These sub-systems have lot of interconnected

systems. For example, database sub-system might contain

different databases with different versions and editions like

SQL Server, Oracle, MySQL (Relational Database

© 2014 IJIRT | Volume 1 Issue 8 | ISSN: 2349-6002

IJIRT 101453 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 18

Management Systems) and MongoDB, Cassendra, Neo4j

(NoSQL). Similarly, multiple operating systems like Windows

and Linux can be operated in the system. Storage can be in

different types. In case of SaaS there should expert knowledge

on different supporting platforms as each platform needs

subject matter expert (SME) knowledge.

In SaaS, there can be three types of issues, Incidents,

Problems and Errors [6].

Incident is any event that is not part of the standard

operation of a service and causes or may cause an interruption

to or reduction in the quality of that service. A problem is an

unknown, underlying cause of one or more incidents. A single

problem may generate several incidents. An error is a problem

for which the root cause has been identified and a workaround

or permanent solution has been developed. Errors can be

identified through analysis of user complaints or by vendors

and development staff prior to production implementation [6].

The key concepts and language of incident and problem

management are shown in Figure 1 as indicated by ITIL. There

is a lifecycle relationship among incidents, problems and

errors: incidents are often the indicators of problems; problems

lead to the identification of the root cause of the underlying

error; errors are then systematically eliminated [6].

Incident Management (IM) refers to activities undertaken to

restore normal service operation as quickly as possible while

minimizing adverse impact on business operations. IM is a

reactive, short-term focus on restoring service as shown in

Figure 1 [6].

Figure 1: Incident Management Process [6]

Since incident managers need to communicate with other

relevant resources, there are few mechanism used in the

industry. War room is one of the main mechanisms used. A

war room is a central location where members of the resource

team are available. These members man the phones, answer

questions, take down issues, and work issues. It is good to

have a war room staffed with whiteboards, markers, phones,

and food. Resources will be available until IM declared that

the issue is resolved [7].

Different organizations use different mechanisms for War

room depending on the scale and the geographical location of

the resources. If resources are available with the same

premises, teams tend to have war rooms as verbal discussions.

If the teams are geographically separated, it will be either

conference calls or message boards broadcasting. In message

board broadcasting, team will broadcasts the message where

other members will acknowledge and responds [7].

Whatever the technology it uses, most of these processes can

be modeled with Agent technologies. During the war room,

after the discussion among the team members new knowledge

will evolve. Also, most of the resources are autonomous as

those resources have expert skills and knowledge on their

relevant subject area and need little information to work.

Pro-active and reactive are another two important features of

agents. During the war room, resources will react to the

questions from other resources, where as if these resources

found any issues with relevant to their own sub-system, they

will share the issue with other resources. Then, all resources

will troubleshoot issues with respect to the concern raised by

the other teams.

III. ENVIRONMENT OF SAAS

Number of dimensions was identified along which task

environments can be categorized. These dimensions will

determine the appropriate agent design and the applicability of

each of the principal families of techniques for agent

implementation [8].

In SaaS environment, it is not practical to collect

information all the time. Most of the time, data collection is

time base. For example, in the database systems, we need to

capture CPU percentage of the database instances. However, it

is not possible to retrieve the CPU continuously. Most of the

systems capture this information periodically, typically in five

minutes intervals. So between these intervals, vital

information can be lost or missed. On the other hand, some of

the parameters may not be able to collect during the all the

time due to the nature of the parameter. This means that there

can be situations where data capturing on different sub-

systems are slower and system will receive data after some

time. By considering both factors SaaS, environment is

partially observable. In order to behave truly effectively in a

partially observable environment, it is necessary to use

memory of previous actions and observations to aid in the

disambiguation of the states of the world [9].

If the next state of the environment is completely

determined by the current state and the action is executed by

agent, the environment is said to be deterministic [8]. In the

SaaS environment, next state events cannot be determined by

the current events as there are lots of changes occurring in

different sub-systems. Also, change of one sub-system will

affect one or many sub-systems. This means that in the SaaS

environment, current events cannot be determined by the

previous events. Therefore, SaaS environment is stochastic.

© 2014 IJIRT | Volume 1 Issue 8 | ISSN: 2349-6002

IJIRT 101453 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 19

In an episodic task environment, the agent’s experience is

divided into atomic episodes. Each episode consists of the

agent perceiving and then performing a single action [8]. In

case of SaaS environment, there will be a sequence of events

occur from different sub-systems. Therefore, SaaS is

sequential.

If the environment can change while an agent is

deliberating, then the environment is said to be dynamic [8]. In

case of SaaS, issues can escalate to different level during the

deliberation. For example, when database sub-system is having

high connections and while multi-agent database sub- system

troubleshooting, CPU level might increase rapidly and when

CPU is increased there can be other implications, hence SaaS is

dynamic.

The discrete/continuous distinction can be applied to the

state of the environment, to the way time is handled, and to the

percepts and actions of agent [8]. With regards to SaaS, most

of the situation they act as continuous.

Since there are lots of sub-systems and each sub-system

works in several clusters and these sub-systems has to

communicate between them [8]. Therefore, SaaS environment

is obviously a multi-agent environment.

All the environment’s parameters indicate that SaaS

operates in complex environment as one might expect, the

hardest case is partially observable, stochastic, sequential,

dynamic, continuous and multi-agent [8].

IV. FEATURES OF AGENTS

There are mainly three types of agents involve in the

proposed Multi Agent System.

 Unit Agents running on each sub-system

For each unit of the SaaS, agent will be running. For

example, each database instance is allocated to a dedicated

agent. This agent will capture relevant values for assigned

parameters for given frequency. This means that unit agents are

time based agents. Since for every unit has agent (unit agent)

hence these agents are thin. Since these are thin agents, by

executing these agents, it does not consume many resources

from the system.

 Agent Coordinator

For each sub-system, there is a coordinator which will

capture data from unit agents which is refereed earlier. Agent

Coordinators can be clustered depending on any feature set.

For example, databases, it can be configured to have one agent

coordinator for all the databases. Similarly, different databases

will have one agent coordinator. For example, SQL Server

databases will have one agent coordinator, Oracle databases

will have one agent coordinator and MySQL will have another

agent coordinator etc.

Also, you can cluster agents with respect to system

features as well. For example, transaction systems can have

one agent coordinator while data ware houses will have another

agent coordinator. Defining, agent coordinator will be up to the

users depending on their SaaS environment.

 Message Space Agent

Message Space Agent is the main agent which will

coordinate with sub-system agent. Until Message Space Agent

decides that the issue or the incident is over, all sub-systems

communicate to solve the incident.

Out of these agents, unit agents are time based agent

whereas agent coordinators and Message Space agent are event

base agents. Time based involves periodic sampling which

leads to significant over-provisioning of network resources

since the predetermined task period is determined by a worst

situation time interval in order to assure the system

performance [10].

In event-triggering agents the system state is sampled and

transmitted when a certain internal measurement function

exceeds a threshold [11]. Advantageously, the event-driven

control improves the overall control system performance while

maintaining the utilization rate of the communication

resources. See example [12].

Following are the agent management services introduced

to better management of the proposed multi agent system [13].

 Configuring

Different sub-systems have different parameters to check

depending on the sub-system. For example, database sub-

system checks database system for CPU [14], memory [15],

number of connections and number of blocking queries etc.

whereas storage sub-system checks SAN for port traffic,

number of seconds per write and number of seconds read.

Also, these ranges are abnormal depending on the time of

the day, day of the week or month of the year [16]. For

example, during the peak load season high CPU for a server is

normal whereas during the off-peak hours even medium CPU

would be a concern and it needs to be addressed.

Also, these configurations should be different from server

to another server since different servers are providing different

features of SaaS. For example feature1 will be a highly used

feature whereas feature2 is less used feature. Therefore,

configurations for feature1 and feature2 are different from each

other.

 Initiate Agent

In Multi Agent System, the level of dynamism allowed for

adding new agents has a significant effect on the properties of

the system. Multi Agent System allows agents to leave or enter

the system dynamically, during run time, without any explicit

message to all of the other agents in the system. The advantage

of such openness is in the ability of the system to dynamically

adjust itself to changes in the environment, tasks, and

availability of capabilities and resources. This type of

dynamism is important for Multi Agent System that is

deployed in environments with high levels of uncertainty [17].

© 2014 IJIRT | Volume 1 Issue 8 | ISSN: 2349-6002

IJIRT 101453 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 20

In SaaS system, infrastructure is not static as with the time

new servers are added. Whenever new server is added to the

SaaS, there should be option to add new unit agent to so that

new agent should start communicate with the new server and

provide information to the agent coordinator.

 Execute the Agent

Agents are extracting information from the sub-systems

which the agent is allocated to. After the information is

gathered it will send the information to coordinate agent. Then

the coordinate agent will validate it with the configurations. If

it is needed to be escalated to the message space agent (co-

ordinate agent will decide after analyzing with the anthology),

it will post the message to the message space agent. In case,

message space agent or any other sub-system request for

information, sub-system will post the current status irrespective

of the current status. For example, during an incident, message

space agent will ask for status update from all sub-systems

which are involved in the incident. Then, database sub-system

will send a message to the message space agent saying that

there are no issues with the databases.

Also, there are coordination agents who will co-ordinate

with the sub-system agent and message space agent.

 Supporting the Agent Security

Knowledge base can be divided into public and private

with respect to accessibility of the knowledge base. Public

knowledgebase can be accessible by any agent. However, only

relevant sub-system agent should have the access to its private

knowledge base and other sub-system agent should not have

the access to other private knowledge base.

 Suspending an Agent

Though agents are theoretically needs to run 24x7, there

can be instance where we need to suspend agent. During

maintenance events like service pack updates, infrastructure

upgrades, code releases and other events, relevant sub-system

agents need to be suspended [13]. If these agents are not

suspended during the maintenance event, unnecessary events

will be escalated to the Message Space Agent. If other

Subsystem agents are unaware about the maintenance event,

those agents will act to trouble shoot which is will raise false

alarms.

 Restarting an Agent

When the maintenance event or any other code releases

are finished, suspended agent needs to be restated. This option

would be helpful in case of internal issues in the agent.

 Terminating an Agent

As agents can initialize when there is new sub-system

components are added, whenever sub-system components are

removed from the system relevant agent should be terminated

[13]. Also, coordinating agents should remove sub-system

components from its coordination and communication.

V. MULTI AGENT SYSTEM ARCHITECTURE

Proposed Multi Agent System uses Blackboard model of

problem solving proposed by H. Penny [18] in Message Space

Agent will act as the blackboard while the agents will act as

knowledge sources.

Figure 2 shows the system architecture of the proposed multi-

agent system.

Figure 2: System Architecture for proposed Multi Agent System

Each sub system will be configured for swarm agent

where each agent is responsible for acquiring the different

parameters from each node at given intervals. For example,

agent running on one database node is configured to acquire

parameters like CPU, Memory and number of user connection

etc. These agents are shown in “agents running on one sub-

system” in the figure 2. These agents are sending data to its

agent coordinator at a configured time interval which is by

default five minutes.

Agent coordinator will raise an alert or event to the

message space agent if the data received from the sub-agents

has fallen to the critical state. Since different subsystems have

different critical levels depending on the time, agent

coordinator has to retrieve data from knowledge base.

Upon receiving a message, Message Space Agent will read

public knowledge base and it will identify which sub-systems

needed to be informed. Message Space Agent posts a message

requesting relevant subs-systems to check for their sub-

systems. Each relevant sub-system will acknowledge and

respond to the Message Space Agent and send their

information.

Message Space Agent needs to get the current status time

to time depending on the impact of the issue. If it is high

impact issue, it can request statuses in high frequency. To

measure the customer impact, another agent can be deployed

get the number of customer incidents.

These agents can recommend actions need to be taken to

resolve the issue by reading public and private knowledge

bases.

Until Message Space Agent declares that the issue is

closed, all agents should be continuously engaged in

troubleshooting.

© 2014 IJIRT | Volume 1 Issue 8 | ISSN: 2349-6002

IJIRT 101453 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 21

VI. SUB-SYSTEM PARAMETERS

Different sub-systems measure or monitor different

parameters to measure the health of each sub-systems.

TABLE I. SUB-SYSTEM PARAMETERS

Sub System Measure

Application Failing Scenarios

Slowness

Application Servers Memory

CPU

Server Availability

Databases CPU

Memory

User Connections

Blockings

IO Request Time

Server Availability

Storage Seconds per Write

Seconds per Red

Port Loads

Network Network Utilization

Data Packet Loss

Client Services Number of issues reported

If there are new parameters which are relevant to the sub-

system should be able to add. Every sub-system unit agent may

not collect all the parameters. For example, database systems

might be configured to capture above parameters specified in

the above table. However, in data ware house databases CPU

and Memory will reach high level during the time of user

access. Therefore, from date ware house database subsystems,

CPU and memory parameters can be ignored [19].

When the parameters are introduced, it needs to be

configured for the ranges and for different times as shown in

figure 3.

VII. ONTOLOGIES

As indicated earlier, for each sub-system has its own

private ontology which is accessible only to that sub-system.

Figure 3 shows sample of threshold values for one database

sub-system.

Figure 3: Sample of Multi-Agent Configuration

Figure 3 is configured for one database instance (DB01)

and for one parameter (CPU). In case of CPU, point of

attention is varied depending on the date, time and week day or

week end day. Since one Database server and one parameter

has nine configurations for half a year and if there are ten

database servers with three configuration there will be 360

configurations just for the database sub-system. When other

sub-systems are considered, there can be large number of

configurations.

The Unit Agent running on DB01, should have a

mechanism to capture CPU of the DB01. To obtain CPU value

for DB01, agent should have a mechanism. Similarly, for each

parameter there should be a way to obtain current value for the

sub-system. To obtain those values, Multi Agent System needs

to keep connection information. Since these connections are

security sensitive, connection information needs to be

encrypted.

Unit Agent running on DB01, periodically captures data

and sends data to Database Agent which is the agent

coordinator for the database sub systems. Database agent

coordinator receives all the information about database agents

and if it is in the range of high, database coordinator will

identify this as an issue and report to the message space agent.

Message Space Agent will call for other relevant sub-systems

to verify whether there are any issues with their own sub-

systems.

Public ontology has the connection between different sub-

systems. For example, when application sub-system reveals

that there are failures in one of the scenario, then Message

Space Agent needs to recognize what are servers involves with

this application features. Then Message Space Agent will

request for the health of the application servers. At the same

time, Message Space Agent will request for health of the

databases which is relevant to the failing sub-system. Also,

Message Space Agent will request for network health of the

system, which are connected to databases and application

servers. If there is an issue with any of the sub-system, it will

be sending the continuous updates to Message Space Agent

until the issue is resolved. To troubleshoot issues between sub-

systems, relations about different sub-systems should be

maintained.

VIII. EVALUATION

Some real world scenarios were identified to verify the

implemented Multi Agent System.

 A database server restarted automatically.

This incident is automatically recovered to its previous

stage and no troubleshooting needed. However, since the

database server was not available for 1-2 minutes, server

availability parameter was triggered. With the

unavailability of database triggered some applications to

fail and application failure scenarios were also trigged. So

during the incident database sub-system and application

sub-system were initially communicated and later

application server sub-system was called in to verify

whether there are issues with the there are any issues with

the servers.

© 2014 IJIRT | Volume 1 Issue 8 | ISSN: 2349-6002

IJIRT 101453 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 22

Since this was recovered automatically, database server

agent indicated to Message Space Agent that there are no

issues with the database end. However, application

scenarios were failing for little while and then recovered.

Until they were recovered, Message Space Agent was

receiving issues from the Application sub-system. Once

the application sub-system verified that the all the issues

were reverted, Message Space Agent indicated that the

issue was resolved.

 High CPU in a Database Server.

One of the databases CPU went from 80 – 96 % within 5

minutes. Database Coordinate Agent informed Message

Space Agent that the server CPU is 90% and after around

1 minute Database Servers again indicated that blockings

are high on one of the stored procedures released recently.

With using the Multi Agent System, SaaS was able to

indicate the issue very quickly.

Apart from above two issues, two other issues also were

able to rectified using Multi Agent System.

It was identified that database systems taking more time

for IO and during this incident storage and database sub-

systems work together to trouble shoot.

In another incident, one client scenarios are failing,

application servers indicated the issue to the Message

Space Agent and Windows server had some memory

issues and was able to resolve the incident.

It was found that whenever the evaluation done, it needs

more parameters to collect.

Whenever, there are other third party tools available as

part of SaaS, they need to support proposed Multi Agent

System. If not, issues related to third party tools will not be

able to troubleshoot.

IX. FUTURE WORKS

 Current research is only doing the troubleshooting of an

incident. Root cause analysis is not part of this research.

However, in typical route cause analysis, effected sub-

system owners will get to gather and analysis the root

cause so that this issue can be fixed permanently. Root

Cause Analysis helps organizations avoid the tendency to

single out one factor to arrive at the most expedient

resolution [20]. For example, in the first evaluation which

is database restarted automatically probably due to many

reasons like, network drive issue, database bug, driver

issue etc. By using Multi Agent technologies, it can be

designed for root cause analysis as well.

 Currently configurations are static and users have the

option of changing them manually which is not automatic.

With the growth of the system it is obvious that these

values should change time to time. These values can be

predicted by using data mining algorithms such as time

series [21].

X. CONCLUSION

This research is to implement Multi Agent System to

troubleshoot issues and incidents in SaaS system. SaaS system

environment is partially observable, stochastic, sequential,

dynamic, continuous and multi-agent which is the most

difficult combination of properties. Proposed Multi Agent

System uses blackboard model where sub-system will post

messages to the Message Space Agent. By using the private

and public ontologies, Multi Agent System will identify the

location of the troublesome sub-system.

Proposed Multi Agent System has the capabilities of

initiate agents, suspend agent, terminate agent etc for better

management of agent services. By evaluating the proposed

system with the real world scenarios, it can be conclude that

proposed system will be very much helpful to troubleshoot

issues and incidents.

By using, Agent Technologies to troubleshoot issues in

SaaS, it will be effective and efficient as less human

intervention is needed for standard tasks.

REFERENCES

[1] "SaaS - Software as a Service, Storage as a Service",

webopedia, [Online]. Available:

http://www.webopedia.com/TERM/S/SaaS.html [Accessed 14

02 2014].

[2] M.V. Luis, R. M. Luis, C. Juan, L. Maik. “A Break in the

Clouds: Towards a Cloud Definition”

. Computer Communication Review, vol.39, pp.50-55, 2009.

[3] George Rzevski, Petr Skobelev, "Emergent Intelligence in

Large Scale Multi-Agent Systems", International Journal of

Computers, Issue 4, Vlume 1, 2007.

[4] "ITIL Incident Management and Investigation“,

EVOLVEN, http://www.evolven.com/solutions/itil-incident-

management.html, [Accessed 21 03 2014].

[5]e Fabio Bellifemine, Agostino Pogg, Giovanni Rimassa,

"Developing multi-agent Systems with a FIPA-Complaint

Agent Framework“,Software-Practice and experience, 2001,

pp: 103-128.

[6] "A Framework for Incident and Problem Management “,

International Network Services, Victor Kapella,

http://kwesthuba.co.za/downloads/02_ins_incident_manageme

nt_0403.pdf, [Accessed 21 03 2014].

© 2014 IJIRT | Volume 1 Issue 8 | ISSN: 2349-6002

IJIRT 101453 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 23

[7] "The War Room “, International Network Services, Elyse,

http://www.anticlue.net/archives/000595.htm, [Accessed 21

03 2014].

[8] S. Russel, P. Norvig, "Agents" in Artificial Intelligence, A

modern Approach, Second Edition, Pearson Prentice Hall,

2011, p. 39-42.

[9] Leslie Pack Kaelbling , Michael L. Littman, Anthony R.

Cassandra , ""Planning and acting in partially observable

stochastic domains" ", Artificial Intelligence 101 (1998) 99-

134.

[10] Dong Xue , Sandra Hirche,, “Event-triggered Consensus

of Heterogeneous Multi-agent Systems with Double-Integrator

Dynamics”.

[11] P. Tabuada, “Event-triggered real-time scheduling of

stabilizing control tasks,” IEEE Transactions on Automatic

Control, vol. 54, pp. 452–467, 2007.

[12] K. A˚ Strom, B. Bernhardsson, “Comparison of riemann

and lebesgue sampling for first order stochastic systems,”

(USA),

pp. 2011–2016, in Proc. 41st IEEE Conf. Decision and

Control, 2002.

[13] D. Cowen, M. Griss, “Making Software Agent

Technology available to Enterprise Applications”, Software

Technology Laboratory HP Laboratories Palo Alto, 2002.

[14] S. Bathige, PPG Dinesh Asanka, “Middleware Layer for

Replication between Relational and Document Databases,”

International Journal of Engineering Research & Technology,

Vol. 3 - Issue 5 (May - 2014).

[15] Peter Boncz, Stefan Manegold, Martin Kerstanm,

“Database Architecture Optimized for the new Bottleneck:

Memory Access”, 25
th

 VLDB Conference, Edinburgh,

Scotland, 1999.

[16] "Peak Season Prep Guide: Preparing your Ecommerce

Site for the Next Big Rush," rackspace, [Online]. Available:

http://www.rackspace.com/knowledge_center/whitepaper/pea

k-season-prep-guide-preparing-your-ecommerce-site-for-the-

next-big-rush [Accessed 20 03 2014].

[17] O. Shehory, “Architectural Properties of Multi Agent

Systems”, The Robotics Institute, Carnegie Mellon University

, 1998.

[18] H. Penny Nii, “The Blackboard Model of Problem

Solving and Evolution of Blackboard Architectures”, AI

Magazine Volume 7 Number 2,1986.

[19] Steve Rees, Naveen K Singh, Thomas Rech, Olaf

Depper, Gang Shen, Roman B. Melnyk, “Best practices

Tuning and monitoring database system performance”, IBM,

July 2013, pp.25.

[20] "Root Cause Analysis “, Washington State Department of

Enterprise Services, [Online]. Available:

http://www.des.wa.gov/services/Risk/AboutRM/enterpriseRis

kManagement/Pages/rootCauseAnalysis.aspx [Accessed 02 05

2014].

[21] "Time Series Analysis: The Basics “, Site for the Next

Big Rush," Australian Bureau of Statistics, [Online].

Available:

http://www.abs.gov.au/websitedbs/D3310114.nsf/home/Time

+Series+Analysis:+The+Basics [Accessed 20 03 2014].

[22] S. Banerjee, S. Jain, “A survey on Software as a service

(SaaS) using quality model in cloud computing”, International

Journal Of Engineering And Computer Science ISSN:2319-

7242, Volume 3 Issue 1, January 2014 Page No. 3598-3602

[23] Software and Information Industry Association,

“Software-as-a-Service; A Comprehensive Look at the Total

Cost of Ownership of Software Applications”, IBM,

September 2006, pp.2.

