GROUP CONCEPTS, RING CONCEPTS AND GROUP HOMOMORPHISM OF DOUBLY STOCHASTIC MATRIX

Dr. K. Gunasekaran¹, Mrs. N. Mohana²

¹Associate professor, Government Arts College (Autonomous), Kumbakonam-612 002. ²Assistant Professor, A.V.C. College (Autonomous), Mannampandal

Abstract- Defining the group concept, ring concept and also group homomorphism of doubly stochastic matrix. The basic concepts and theorems of the above are introduced with examples.

Index Terms- Doubly stochastic group, doubly stochastic group homomorphism and doubly stochastic ring.

AMS Classifications: 15A51, 15B99

DEFINITION: 1

A collection of absolute non-singular doubly stochastic matrix (G, *) is said to be a doubly stochastic group with respect to multiplication, it satisfies the following axioms.

Axiom-1: It is closure with respect to multiplication.(i.e.) $A * B \in G$. **Axiom-2:** * is associative.

(i.e.) $A^* (B * C) = (A * B) * C.$

Axiom-3: There exists an identity matrix I in G such that A * I = I * A = A for all $a \in G$.

Axiom-4: For each $A \in G$ there exists a matrix $A^{-1} \in G$ such that $A * A^{-1} = A^{-1} * A = I$ $\Rightarrow A^{-1}$ is the inverse of A.

DEFINITION: 2

A doubly stochastic group (G, *) is said to be doubly stochastic abelian group if the binary operation * is commutative. (i.e.) A * B = B * A \forall A, B \in G.

Note:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \text{ and } B = A = \\ \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \text{ then } \\ B = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix} \text{ where } c_{ij} = \sum_{k=1}^{3} a_{ik} b_{kj} \\ \text{(i.e) } A = (a_{ij})_{nxn} \text{ and } B = (b_{ij})_{nxn} \text{ then } AB = (c_{ij})_{nxn} \\ \text{where } c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \end{cases}$$

Product of doubly stochastic matrices is a doubly stochastic matrix.

THEOREM: 1

A doubly stochastic matrix in M_3 (R) is a doubly stochastic group with respect to multiplication. **PROOF:**

Axiom-1: Let
$$A = \begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \\ 1-a & a & 0 \end{pmatrix}$$
 and
 $B = \begin{pmatrix} 0 & 1-b & b \\ b & 0 & 1-b \\ 1-b & b & 0 \end{pmatrix} \in M_3 (R)$ then
 $A * B =$
 $\begin{pmatrix} (1-a)b + (1-b)a & ab & (1-a)(1-b) \\ (1-a)(1-b) & (1-a)b + (1-b)a & ab \\ ab & (1-a)(1-b) & (1-a)b + (1-b)a \end{pmatrix}$
 $\in M_3 (R)$
Axiom-2: Let $A = \begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \\ 1-a & a & 0 \end{pmatrix}$
 $B = \begin{pmatrix} 0 & 1-b & b \\ b & 0 & 1-b \\ 1-c & c & 0 \end{pmatrix}$ and
 $1-b & b & 0 \\ 0 & 1-c & c \\ (a + b+c) - (ab + bc + ca) - (a + b+c) - 2(ab + bc + ca) + 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b+c) - 2(ab + bc + ca) - 3abc \\ (a + b + c) - 2(ab + bc + ca) - 3abc \\ (a + b - c) - 2(a + bc + ca) - 3ab$

 $I * A = \begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \\ 1-a & a & 0 \end{pmatrix} = A$ (i.e.) A * I = I * A = A \forall A \in M₃ (R). **Axiom-4:** Let A = $\begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \\ 1-a & a & 0 \end{pmatrix} \in M_3$ (R) Using Cayley's Hamilton theorem, we get the inverse. The characteristic equation is $|A - \lambda I| = 0. \Rightarrow \lambda^3 + (3a^2 - 3a) \lambda - (3a^2 - 3a + 1) = 0$. Its satisfies its own characteristic equation then A³ + (3a² - 3a) A - (3a² - 3a + 1) = 0. $\Rightarrow A^{-1} = \frac{1}{3a^2 - 3a + 1} \begin{pmatrix} a^2 - a & a^2 & a^2 - 2a + 1 \\ a^2 & a^2 - 2a + 1 & a^2 - a \\ a^2 & a^2 - 2a + 1 & a^2 - a \end{pmatrix}$ (i.e.) A * A⁻¹ = A⁻¹ * A = I.

Hence M_3 (R) is a doubly stochastic group with respect to the given operation multiplication.

THEOREM: 2

A doubly stochastic matrix in M_3 (R) is a doubly stochastic abelian group with respect to multiplication.

PROOF:

From theorem 1 ($M_3(R)$, *) is a doubly stochastic group. Now its satisfies A * B = B * A

Let
$$A = \begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \end{pmatrix}$$
 and
 $1-a & a & 0 \end{pmatrix}$ and
 $B = \begin{pmatrix} 0 & 1-b & b \\ b & 0 & 1-b \\ 1-b & b & 0 \end{pmatrix} \in M_3 (R)$ then
 $A * B =$
 $\begin{pmatrix} (1-a)b + (1-b)a & ab & (1-a)(1-b) \\ (1-a)(1-b) & (1-a)b + (1-b)a & ab \\ ab & (1-a)(1-b) & (1-a)b + (1-b)a \end{pmatrix}$
 $B * A =$
 $\begin{pmatrix} (1-a)b + (1-b)a & ab & (1-a)(1-b) \\ (1-a)b + (1-b)a & ab & (1-a)(1-b) \end{pmatrix}$
 $(1-a)b + (1-b)a & ab & (1-a)(1-b) \end{pmatrix}$
 $A * B = B * A \forall A, B \in M_3 (R).$

Hence M_3 (R) is a doubly stochastic abelian group with respect to the given operation multiplication.

EXAMPLE: 1

Let
$$a = 1/2$$
 and $b = 1/3$ then

$$A = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2/3 & 1/3 \\ 1/3 & 0 & 2/3 \\ 2/3 & 1/3 & 0 \end{pmatrix}$$
(i) $A * B = \begin{pmatrix} 3/6 & 1/6 & 2/6 \\ 2/6 & 3/6 & 1/6 \\ 1/6 & 2/6 & 3/6 \end{pmatrix} \in M_3 (R)$
(ii) Let $c = 1/4$ then $C = \begin{pmatrix} 0 & 3/4 & 1/4 \\ 1/4 & 0 & 3/4 \\ 3/4 & 1/4 & 0 \end{pmatrix}$

A * (B * C) =
$$\begin{pmatrix} 7/24 & 11/24 & 6/24 \\ 6/24 & 7/24 & 11/24 \\ 11/24 & 6/24 & 7/24 \end{pmatrix}$$
 and
(A * B) * C = $\begin{pmatrix} 7/24 & 11/24 & 6/24 \\ 6/24 & 7/24 & 11/24 \\ 11/24 & 6/24 & 7/24 \end{pmatrix}$
 \Rightarrow * is associative
(iii) There exists an identity I = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ then
A * I = $\begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix}$ = A and
 $\begin{pmatrix} 1/2 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix}$ = A and
(iv) There exists an inverse using theorem 1,
A⁻¹ = $\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$ then
A * A⁻¹ = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ = I and
A⁻¹ * A = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and
A⁻¹ * A = $\begin{pmatrix} 3/6 & 1/6 & 2/6 \\ 2/6 & 3/6 & 1/6 \\ 1/6 & 2/6 & 3/6 \end{pmatrix}$ and
B * A = $\begin{pmatrix} 3/6 & 1/6 & 2/6 \\ 2/6 & 3/6 & 1/6 \\ 1/6 & 2/6 & 3/6 \end{pmatrix}$
Hence the given doubly stochastic matrix in M.(I)

Hence the given doubly stochastic matrix in $M_3(R)$ is an abelian group with respect to multiplication.

DEFINITION: 3

A collection of non-singular doubly stochastic matrix (G, +) is said to be a doubly stochastic group with respect to addition, it satisfies the following properties.

Axiom-1: It is closure with respect to multiplication. (i.e.) $1/2 (A + B) \in G$.

Axiom -2: Addition is associative. (i.e.)1/3[A + (B +C)] =1/3[(A +B) + C].

Axiom-3: There exists an identity matrix o in G such that A + O = O + A = A for all $a \in G$.

Axiom-4: For each $A \in G$ there exists a matrix $A^{-1} \in G$ such that $A + A^{-1} = A^{-1} + A = O$

If
$$\sum_{i=1}^{n} |a_{ij}| = 1, j = 1, 2, ...n$$
 and $\sum_{j=1}^{n} |a_{ij}| = 1, I = 1, 2, ...n$

 \Rightarrow A⁻¹ is the inverse of A

DEFINITION: 4

A doubly stochastic group (G, +) is said to be doubly stochastic abelian group if the binary operation + is commutative. (i.e.) 1/2 [A + B] =1/2 [B + A] \forall A, B \in G.

THEOREM: 3

A doubly stochastic matrix in M_3 (R) is a doubly stochastic group with respect to addition. **PROOF:**

Axiom-1: Let
$$A = \begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \\ 1-a & a & 0 \end{pmatrix}$$
 and
 $B = \begin{pmatrix} 0 & 1-b & b \\ b & 0 & 1-b \\ 1-b & b & 0 \end{pmatrix} \in M_3 (R)$ then
 $A + B = \begin{pmatrix} 0 & 1-a + b \\ a+b & 0 & 2-(a+b) & (a+b) \\ (a+b) & 0 & 2-(a+b) \\ 2-(a+b) & (a+b) & 0 \end{pmatrix}$
 $1/2[A+B] =$
 $\begin{pmatrix} 0 & 1-(a+b) & (a+b) \\ (a+b) & 0 & 1-(a+b) \\ (a+b) & 0 & 1-(a+b) \\ (a+b) & 0 & 1-(a+b) \\ (a+b) & 0 & 1-a \\ 1-a & a & 0 \end{pmatrix}$
 $A xiom-2:$ Let $A = \begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \\ 1-a & a & 0 \end{pmatrix}$ and
 $B = \begin{pmatrix} 0 & 1-b & b \\ b & 0 & 1-b \\ 1-b & b & 0 \\ 0 & 1-c & c \\ 0 & 1-c & c \\ 0 & 1-(a+b) & (a+b) \\ (a+b) & 0 & 1-(a+b) \\ 1-(a+b) & (a+b) & 0 \end{pmatrix}$
Similarly 1/3 [(A+B)+C] =
 $\begin{pmatrix} 0 & 1-(a+b) & (a+b) \\ (a+b) & 0 & 1-(a+b) \\ (a+b) & 0 & 1-(a+b) \\ (a+b) & 0 & 1-(a+b) \\ 1-(a+b) & (a+b) & 0 \end{pmatrix}$
Similarly 1/3 [(A+B)+C] =
 $\begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \\ 1-a & a & 0 \end{pmatrix} \in M_3(R),$
there exists an identity
 $O = \begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \\ 1-a & a & 0 \\ 0 & 0 & 0 \end{pmatrix} \in M_3(R)$ such that
 $O + A = \begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \\ 1-a & a & 0 \\ 0 & 1-a & a \\ 0 & 1-a & a \\ 0 & 1-a \\ 1-a & a & 0 \end{pmatrix} \in M_3(R).$
Axiom-4: Let $A = \begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \\ 1-a & a & 0 \\ 0 & 1-a & a \\ 0 & 1-a \\ 1-a & a & 0 \end{pmatrix} \in M_3(R)$ then the additive inverse of A is

$$A^{-1} = \begin{pmatrix} 0 & -1 + a & -a \\ -a & 0 & -1 + a \\ -1 + a & -a & 0 \end{pmatrix} \Rightarrow A + A^{-1} = A^{-1} + A = O.$$

Hence M_3 (R) is a doubly stochastic group with respect to the given operation addition.

THEOREM: 4

A doubly stochastic matrix in M_3 (R) is an doubly stochastic abelian group with respect to addition.

PROOF:

From the theorem 1 (M₃(R), +) is a group. Now its satisfies $1/2 [A + B] = \frac{1}{2} [B + A]$

Lat
$$A = \begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \\ 1-a & a & 0 \end{pmatrix}$$
 and
 $B = \begin{pmatrix} 0 & 1-b & b \\ b & 0 & 1-b \\ 1-b & b & 0 \end{pmatrix}$ then
 $1/2 [A + B] =$
 $\begin{pmatrix} 0 & 1-(a + b) & (a + b) \\ (a + b) & 0 & 1-(a + b) \\ (a + b) & (a + b) & 0 \end{pmatrix}$
 $1/2 [B + A] =$
 $\begin{pmatrix} 0 & 1-(a + b) & (a + b) \\ (a + b) & 0 & 1-(a + b) \\ (a + b) & 0 & 1-(a + b) \\ (a + b) & 0 & 1-(a + b) \\ (a + b) & 0 & 1-(a + b) \end{pmatrix}$
 $\Rightarrow 1/2 [A + B] = 1/2 [B + A] \forall A, B \in M_3 (R).$

Hence M_3 (R) is an doubly stochastic abelian group with respect to the given operation addition.

EXAMPLE: 2 Let a = 1/2 and b = 1/3 then $A = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2/3 & 1/3 \\ 1/3 & 0 & 2/3 \\ 2/3 & 1/3 & 0 \end{pmatrix}$ (i) A + B = $\begin{pmatrix} 0 & 7/6 & 5/6 \\ 5/6 & 0 & 7/6 \\ 7/6 & 5/6 & 0 \end{pmatrix}$ 1/2[A + B] = 1/2 $\begin{pmatrix} 0 & 7/6 & 5/6 \\ 5/6 & 0 & 7/6 \\ 7/6 & 5/6 & 0 \end{pmatrix}$ $= \begin{pmatrix} 0 & 7/12 & 5/12 \\ 5/12 & 0 & 7/12 \\ 7/12 & 5/12 & 0 \end{pmatrix} \in M_3(R)$ (ii) Let c = 1/4 then C = $\begin{pmatrix} 0 & 3/4 & 1/4 \\ 1/4 & 0 & 3/4 \\ 3/4 & 1/4 & 0 \end{pmatrix}$ 1/3[A + (B + C)] = 1/3 $\begin{pmatrix} 0 & 46/24 & 26/24 \\ 26/24 & 0 & 46/24 \\ 46/24 & 26/24 & 0 \end{pmatrix}$ $= \begin{pmatrix} 0 & 46/72 & 26/72 \\ 26/72 & 0 & 46/72 \\ 46/72 & 26/72 & 0 \end{pmatrix}$

Hence the given doubly stochastic matrices in $M_3(R)$ is an abelian group with respect to addition.

DEFINITION: 5

A homomorphism of a doubly stochastic group G in to G' is a map $f: G \rightarrow G'$ is defined by $f(a) = a^2$ such that f(ab) = f(a).f(b) for all $a, b \in G$ with respect to multiplication.

THEOREM: 5

A doubly stochastic group G into G' is a doubly stochastic group homomorphism with respect to multiplication such that f(ab) = f(a).f(b) for all a, $b \in G$ where $f(a) = A^2$ and $f(b) = B^2$ **PROOF:**

 $f(ab) = (AB)^2 = (AB) (AB) = A(BA)B$ = A(AB)B where AB = BA $= A^2 B^2 = f(a) f(b)$

EXAMPLE: 3

$$A = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix} B = \begin{pmatrix} 0 & 2/3 & 1/3 \\ 1/3 & 0 & 2/3 \\ 2/3 & 1/3 & 0 \end{pmatrix}$$

and $ab = \begin{pmatrix} 3/6 & 1/6 \\ 2/6 & 3/6 & 1/6 \\ 1/6 & 2/6 & 3/6 \end{pmatrix}$
then $f(a) = \begin{pmatrix} 1/2 & 1/4 & 1/4 \\ 1/4 & 1/2 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{pmatrix}$
 $f(b) = \begin{pmatrix} 4/9 & 1/9 & 4/9 \\ 4/9 & 4/9 & 1/9 \\ 1/9 & 4/9 & 4/9 \end{pmatrix}$
 $f(ab) = \begin{pmatrix} 13/36 & 10/36 & 13/36 \\ 13/36 & 13/36 & 13/36 \\ 10/36 & 13/36 & 13/36 \end{pmatrix}$

DEFINITION: 6

A homomorphism of a doubly stochastic group G in to G' is a map $f: G \rightarrow 1/2G'$ is defined by f(a) = A/2 and f(b) = B/2 such that f(a+b)=f(a) + f(b), for all a, $b \in G$ with respect to addition.

THEOREM: 6

A doubly stochastic group G into G' is a group homomorphism with respect to addition such that f(a+b) = f(a)+f(b), for all $a, b \in G$ where f(a) = A/2and f(b) = B/2

PROOF:

 $f(a+b) = \frac{A+B}{2} = \frac{A}{2} + \frac{B}{2} = f(a) + f(b)$

EXAMPLE: 4

$$A = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix} B = \begin{pmatrix} 0 & 2/3 & 1/3 \\ 1/3 & 0 & 2/3 \\ 2/3 & 1/3 & 0 \end{pmatrix}$$

and A + B =
$$\begin{pmatrix} 0 & 7/6 & 5/6 \\ 5/6 & 0 & 7/6 \\ 7/6 & 5/6 & 0 \end{pmatrix}$$

Then f(a) =
$$\begin{pmatrix} 0 & 1/4 & 1/4 \\ 1/4 & 0 & 1/4 \\ 1/4 & 1/4 & 0 \end{pmatrix}$$

f(b) =
$$\begin{pmatrix} 0 & 2/6 & 1/6 \\ 1/6 & 0 & 2/6 \\ 2/6 & 1/6 & 0 \end{pmatrix}$$

=

$$f(a+b) = \begin{pmatrix} 0 & 7/12 & 5/12\\ 5/12 & 0 & 7/12\\ 7/12 & 5/12 & 0 \end{pmatrix}$$

DEFINITION: 7

A collection of non-empty and non-singular doubly stochastic matrix R together with two binary operations denoted by "+" and "." are addition and multiplication which satisfy the following axioms is called a doubly stochastic Ring.

Axiom -1: (R, +) is an abelian group.

Axiom -2: "." is associative binary operation on R. Axiom -3: $\frac{1}{2}$ [A . (B + C)] = $\frac{1}{2}$ [A . B + A . C] and $\frac{1}{2}$ [(A + B) . C] = $\frac{1}{2}$ [A . C + B . C] for all A, B, C \in R.

THEOREM: 7

A doubly stochastic matrix in $M_{\rm 3}$ (R) is a doubly stochastic ring with respect to addition and multiplication.

PROOF:

Axiom-1: We know that M_3 (R) is a doubly stochastic abelian group with respect to addition from theorem 3 and 4.

Axiom-2: It is also satisfies the associative property with respect to multiplication from theorem 1. **Axiom -3:**

Let
$$A = \begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \end{pmatrix}$$

 $B = \begin{pmatrix} 0 & 1-b & b \\ b & 0 & 1-b \\ 1-b & b & 0 \end{pmatrix}$
and $C = \begin{pmatrix} 0 & 1-c & c \\ c & 0 & 1-c \\ 1-c & c & 0 \end{pmatrix} \in M_3 (R)$ then
 $A \cdot (B + C) =$
 $\begin{pmatrix} 0 & 1-a & a \\ a & 0 & 1-a \\ 1-a & a & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 2-(b+c) & (b+c) \\ (b+c) & 0 & 2-(b+c) \\ 2-(b+c) & (b+c) & 0 \end{pmatrix} =$
 $\begin{pmatrix} 2a+b+c-2ab-2ac & ab+ac & 2-2a-b-c+ab+ac \\ 2-2a-b-c+ab+ac & 2a+b+c-2ab-2ac & ab+ac \\ 2-2a-b-c+ab+ac & 2a+b+c-2ab & 2a+b+c-2ab-2ac \end{pmatrix}$
 $\frac{1}{2} [A \cdot (B + C)] =$
 $\begin{pmatrix} a+b-2ab & ab & 1-a-b+ab \\ 1-a-b+ab & a+b-2ab & ab \\ 1-a-b+ab & a+b-2ab & ab \\ 1-a-b+ab & a+b-2ab & ab \\ 1-a-c+ac & ac & 1-a-c+ac \\ 1-a-c+ac & a+c-2ac & ac \\ ac & 1-a-c+ac & a+c-2ac \end{pmatrix}$

$$\begin{array}{l} (2a+b+c-2ab-2ac & ab+ac & 2a+b+c-2ab-2ac & ab+ac \\ (2-2a-b-c+ab+ac & 2a+b+c-2ab-2ac & ab+ac \\ (2-2a-b-c+ab+ac & 2a+b+c-2ab-2ac & ab+ac \\ (2a+b+c-2ab-2ac & 2a+b+c-2ab-2ac & 2a+b+c-2ab-2ac \\ \end{array} \right) \\ \hline \frac{1}{2} \left[A.B+A.C \right] = \\ \left(\begin{array}{c} a+\frac{b}{2}+\frac{c}{2}-ab-ac & \frac{ab}{2}+\frac{ac}{2} & 1-a-\frac{b}{2}-\frac{c}{2}+\frac{ab}{2}+\frac{ac}{2} \\ 1-a-\frac{b}{2}-\frac{c}{2}+\frac{ab}{2}+\frac{ac}{2} & 1-a-\frac{b}{2}-\frac{c}{2}+\frac{ab}{2}+\frac{ac}{2} & 1-a-\frac{b}{2}-\frac{c}{2}+\frac{ab}{2}+\frac{ac}{2} \\ \frac{ab}{2}+\frac{ac}{2} & 1-a-\frac{b}{2}-\frac{c}{2}+\frac{ab}{2}+\frac{ac}{2} & a+\frac{b}{2}+\frac{c}{2}-ab-ac \\ \frac{ab}{2}+\frac{ac}{2} & 1-a-\frac{b}{2}-\frac{c}{2}+\frac{ab}{2}+\frac{ac}{2} & a+\frac{b}{2}+\frac{c}{2}-ab-ac \\ \frac{ab}{2}+\frac{ac}{2} & 1-a-\frac{b}{2}-\frac{c}{2}+\frac{ab}{2}+\frac{ac}{2} & a+\frac{b}{2}+\frac{c}{2}-ab-ac \\ \end{array} \right) \\ \Rightarrow \frac{1}{2} \left[A. (B+C) \right] = \frac{1}{2} \left[A. B+A.C \right] \text{ and also} \\ \left(A+B \right).C = \left(\begin{array}{c} 0 & 2-(a+b) & (a+b) \\ 2-(a+b) & (a+b) & 0 \end{array} \right) \\ \left(a+b \right) & 0 & 2-(a+b) \\ 2-(a+b) & (a+b) & 0 \end{array} \right) \\ \left(\begin{array}{c} 0 & 1-c & c \\ 2-2c-a-b+ac+bc & 2c+a+b-2ac-2bc \\ ac+bc & 2-2c-a-b+ac+bc & 2c+a+b-2ac-2bc \\ \frac{ac}{2}+\frac{bc}{2} & 1-c-\frac{a}{2}-\frac{b}{2}+\frac{ac}{2} & 1-c-\frac{a}{2}-\frac{b}{2}+\frac{ac}{2}+\frac{bc}{2} \\ 1-c-\frac{a}{2}-\frac{b}{2}+\frac{ac}{2}+\frac{bc}{2} & c+\frac{a}{2}+\frac{b}{2}-ac-bc \end{array} \right) \\ A. C+B. C = \\ \left(\begin{array}{c} 2-a-b+ac+bc & 2c+a-bc & ac+ac \\ ac-bc & 2-2c-a-b+ac+bc & 2c+ac \\ ac-bc & 2c+a-b-bc & b+c-2bc \end{array} \right) \\ = \\ \left(\begin{array}{c} 2-a-b+ac+bc & 2c-2bc & ac+bc \\ 2-2c-a-b+ac+bc & 2c+ab-2ac-2bc \\ ac+bc & 2c-2c-a-b+ac+bc \end{array} \right) \\ = \\ \left(\begin{array}{c} 2-a-b+ac+bc & 2c-2bc & ac+bc \\ 2-2c-a-b+ac+bc & 2c-2bc & ac+bc \\ 2-2c-a-b+ac+$$

Hence a doubly stochastic matrix in M_3 (R) is a doubly stochastic ring with respect to addition and multiplication.

EXAMPLE: 5

Let
$$a = 1/2$$
, $b = 1/3$ and $c = 1/4$ then

$$A = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix} B = \begin{pmatrix} 0 & 2/3 & 1/3 \\ 1/3 & 0 & 2/3 \\ 2/3 & 1/3 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & 3/4 & 1/4 \\ 1/4 & 0 & 3/4 \\ 3/4 & 1/4 & 0 \end{pmatrix}$$

From example 2, the given doubly stochastic matrices in $M_3(R)$ is an abelian group with respect to addition.

Next from example 1, the given doubly stochastic matrix in $M_3(R)$ is an abelian group with respect to multiplication.

Next we will show that

```
A \cdot (B + C) =
  0 1/2 1/2
                                  17/12
                                             7/12
                       / 0
 1/2 0
                      7/12
               1/2
                                   0
                                            17/12
 1/2 1/2
                 0 /
                      \17/12
                                   7/12
                                               0
   /24/24 7/24 17/24
=(17/24 \ 24/24 \ 7/24)
             17/24 24/24/
   7/24
                             7/48
                    /24/48
                                         17/48
\frac{1}{2} [A. (B + C)] = \begin{pmatrix} 17/48 & 24/48 \end{pmatrix}
                                         7/48
                               17/48
                     7/48
                                         24/48/
A \cdot B + A \cdot C =
 /3/6 1/6 2/6 /4/8 1/8
                                       3/8
 2/6 3/6 1/6 + 3/8 4/8 1/8
1/6 2/6 3/6/ 1/8 3/8 4/8
   /24/24 7/24
                        17/24
=(17/24 \ 24/24 \ 7/24)
           17/24 24/24
   7/24
                         /24/48
                                  7/48 17/48
 \frac{1}{2}[A.B+A.C] = \begin{pmatrix} 17/48 & 24/48 & 7/48 \\ 17/48 & 24/48 & 7/48 \end{pmatrix}
                          7/48
                                  17/48 24/48/
\Rightarrow \frac{1}{2} [A \cdot (B + C)] = \frac{1}{2} [A \cdot B + A \cdot C] and
(A + B) \cdot C =
  0 7/6 5/6
                         0
                                3/4 1/4
 5/6 0
               7/6 ]. [1/4]
                                0
                                       3/4
\7/6 5/6 0/
                        3/4 1/4
                                        0
   /22/24 5/24
                        21/24
= \left( \frac{21}{24} \quad \frac{22}{24} \quad \frac{5}{24} \right)
   5/24
           21/24 22/24
                     /22/48 5/48
                                         21/48
\frac{1}{2}[(A+B) \cdot C] =
                    21/48 22/48 5/48
5/48 21/48 22/48
                                         22/48/
A \cdot C + B \cdot C
  (4/8 1/8 3/8)
                           (5/12 1/12 6/12)
 = \begin{pmatrix} 3/8 & 4/8 & 1/8 \\ 1/8 & 3/8 & 4/8 \end{pmatrix} + \begin{pmatrix} 6/12 & 5/12 & 1/12 \\ 1/12 & 6/12 & 5/12 \end{pmatrix} 
   /22/24 5/24
                        21/24
= 21/24 22/24
                       5/24
   5/24 21/24 22/24
                        \begin{pmatrix} 22/48 & 5/48 & 21/48 \\ 21/48 & 22/48 & 5/48 \end{pmatrix}
 \frac{1}{2} [A.C+B.C] =
                          5/48
                                  21/48 22/48/
       \frac{1}{2}[(A+B) \cdot C] = \frac{1}{2}[A \cdot C + B \cdot C]
\Rightarrow
```

Hence the given doubly stochastic matrices in $M_3(R)$ is a doubly stochastic ring with respect to addition and multiplication.

REFERENCES

[1]. S.Krishnamoorthy, K. Gunasekaran, N. Mohana, "Characterization and theorems on doubly stochastic matrices" Antartica Journal of Mathematics, 11(5)(2014).

[2]. Borel, Armand (1991), Linear algebraic groups, Graduate Texts in Mathematics, **126** (2nd ed.),

Berlin, New York: Springer-Verlag, ISBN 978-0-387-97370-8, MR1102012

[3]. Judson, Thomas W. (1997), Abstract Algebra: Theory and Applications,

[4]. Rotman, Joseph (1994), An introduction to the theory of groups, New York: Springer-Verlag, ISBN 0-387-94285-8.

[5]. <u>I. N. Herstein</u>, Topics in Algebra, 2nd Edition, John Wiley & Sons, publication.